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Abstract—The placement of Virtual Network Function –
Forwarding Graphs (VNF-FGs) is one of the basic operations in
the networks of the future. Being NP-hard, several heuristics and
metaheuristics have been proposed. However, these approaches
are inefficient due to the need to recalculate the solution at
each service placement. In this paper, we adapt one of the
most advanced approaches in Deep Reinforcement Learning
(DRL), in order to improve exploration by generalizing the
neural network calculating action values. We also propose an
evolutionary algorithm to evolve these neural networks in order
to discover better ones, which also avoids getting stuck in local
minima. In order to avoid going through the almost innumerable
number of infeasible solutions, we propose a heuristic, which
combined with our DRL, makes it possible to guarantee the
feasibility of the solutions and therefore to make the placement
much more efficient. The simulation results we obtained confirm
the quality of the solutions obtained as well as the superiority
of the proposed solution over the existing one.

I. INTRODUCTION

The advent of Network Function Virtualization (NFV)
brings more flexibility than ever to current network infras-
tructures by providing the ability to deploy complex services
on demand and in near-real time [1]. Combined with Soft-
ware Defined Networking (SDN) and applied to Wide Area
Networks (WAN), it is not only possible to deploy network
functions at scale but also to connect them, which allows the
instantiation of an entire virtual network, making the concept
of network slicing into a reality [2].

Network slicing offers network Infrastructure Providers
(InPs) new opportunities to get better returns on investments.
Indeed, this will allow InPs to be involved in the services
provisioning, and therefore to be part of the service delivery
value chain, whereas they are today only a carrier network.
However, network slicing raises several new challenges.

Although there are exact solutions to resolve services’
placement, these approaches are still applicable only to small
network instances [3]. Indeed, the problem is known to be
NP-hard, even when it comes to placing simple services [4].
In this paper, we focus on the placement of more complex
services, in the form of a graph, more commonly referred to
as Virtual Network Function – Forwarding Graph (VNF-FG).

Several solutions have been discussed in the literature
to solve the placement problem of VNF-FGs [5]. While
heuristic-based approaches present a rapid convergence time

[6], adding constraints or changing objectives in these ap-
proaches leads to the need of a complete redesign of the
heuristics. In addition, these approaches very often get stuck
in local minima. Several metaheuristics have been proposed
to avoid the latter problem [7]. Although they offer a certain
degree of efficiency and flexibility, these solutions have diffi-
culty exploring the vast space of solutions and can therefore
present convergence problems within limited time. Moreover,
with such approaches, at each service placement a new calcu-
lation takes place, so there is no accumulation of knowledge,
making the placement ineffective. Hence, our main concern
in this paper is to study the potential of learning for this type
of task.

Among the existing learning techniques, reinforcement
learning is certainly the most appropriate approach, in view
of the context encountered in networks (i.e. variable bit-rate
traffic, presence of congestions, unpredictable behaviour of
some services, etc.). Very few approaches in the literature
have considered this type of approach for resolving the
problem of VNF-FG placement. In [8], the authors proposed
a distributed Q-Learning based algorithm, in which they
proposed to discretize the state space, in order to avoid any
explosion in the number of states. This, however, makes the
approach impractical in realistic use cases.

More recently, Deep Reinforcement Learning (DRL) has
proven its efficacy in tasks where the space of solutions
to be explored can be very large [9], which is the case
of the VNF-FG placement. One of the most efficient DRL
approach, named Deep Deterministic Policy Gradient (DDPG)
[9], considers two neural networks: the first, named Critic, is
for the estimation of the value function and the second, named
Actor, is for the decision making. However, even DDPG is
not suitable for large-scale discrete action space [10].

In order to make the exploration of the solutions space more
efficient, we propose in this paper a methodology to increase
the number of critic networks in DDPG. Additionally, to avoid
getting stuck in local minima, we propose not only to consider
the classical learning approach for critic networks, based on
the gradient descent, but also to generate a better set of critic
networks using an evolutionary algorithm. Furthermore, to
improve performance in the context of VNF-FG placement,
we combine the proposed DRL with a heuristic, avoiding



going through the extremely large number of nonfeasible
solutions, given the resource constraints of the underlying
network.

The rest of this paper is structured as follows. The for-
mulation of VNF-FGs embedding problem is presented in
section II. Then, the problem is, then, reformulated as a
Markov Decision Process (MDP) problem in section III. In
this section, the background of the DRL and the formulation
of states, actions, and reward are provided. The proposed
framework is presented in section IV. The comparison of
the proposed framework and other approaches is presented
in section V and the conclusions of the work are presented
in section VI

II. PROBLEM FORMULATION

This paper focuses on embedding a set of V VNF-FGs
G = {G1, ..., GV } into a substrate network. The sets of
substrate nodes and substrate links are N and L, respectively.
VNF-FG ζ, Gζ , is described in the form of a directed
graph with the set of virtual network functions (VNFs)
N ′ζ connected by the set of virtual links (VLs) L′ζ . VNF
n′ requests various types of resources denoted as a vector
hn′ = [hn′,0, ..., hn′,KVNF−1], where KVNF is the number of
types of VNF resources. In this paper, we consider three types
of resources for VNFs (KVNF = 3), i.e. the amount of central
processing units (CPUs), random access memory (RAM),
and storage. VL l′ may request KVL types of resources and
QoS parameters. Three metrics (KVL = 3) are considered, i.e.
bandwidth, latency, and loss rate. The vector presented the
requests of a VL is fl′ = [fl′,0, ..., fl′,KVL−1]. The proposed
approach can be adopted to cope with more complicated
scenarios, e.g. KVNF > 3,KVL > 3, by extending the states
which will be discussed in next section.

A VNF is able to be deployed when its substrate host has
sufficient resources∑

n′

Φn
′

n hn′,k ≤ rn,k,∀n, k (1)

, where Φn
′

n =

{
1 , if n′ is hosted by n
0 , otherwise and rn,k is the

available amount of resource k at substrate node n.
The next constraints are to guarantee that each VNF is

deployed at only one substrate node∑
n

Φn
′

n ≤ 1,∀n′. (2)

A successful VL deployment requires a successful deploy-
ment of its ends (VNFs). In addition, the requirements of the
VL should be satisfied. The bandwidth related constraints are∑

l′

Φl
′

l fl′,bw ≤ rl,bw,∀l, (3)

where Φl
′

l =

{
1 , if l′ is hosted by l
0 , otherwise and rl,bw is the

available amount of bandwidth at the substrate link l. Unlike
the bandwidth, the accurate models for latency and loss
rate are difficult to identify, especially in multi-hop envi-
ronment [11]. Let us denote D(Φl′) and R(Φl′) as the

actual latency and loss rate corresponding to a given mapping
Φl′ =

[
Φl
′

0 ,Φ
l′

1 , ...,Φ
l′

|L|−1

]
. Therefore, the latency and loss

rate requirements (fl′,delay, fl′,loss) should be

fl′,delay ≥ D(Φl′) (4)

fl′,loss ≥ R(Φl′) (5)

Moreover, it requires a continuous substrate path in order
to connect the substrate nodes n and m which are the host of
VNFs n′ and m′, respectively. Following the model proposed
in [12], we have the following constraints∑

m

Φe
n′m′

enm −
∑
m

Φe
n′m′

emn = Φn
′

n − Φm
′

n ,

∀n ∈ N ,∀en
′m′ ∈ L

′
(6)

We introduce an auxiliary binary variable gζ to indicate
whether the VNF-FG ζ is deployed. The mathematical def-

inition of gζ is gζ = u

 ∑
n′∈N ′ζ

∑
n

Φn
′

n − |N
′

ζ |

, where

u(x) =

{
1 , x ≥ 0
0 , x < 0

. Consequently, gζ = 1 when all

VNFs of VNF-FG ζ are allocated. Following (6), all VLs
are also allocated when all VNFs are allocated. We have∑

n′∈N ′ζ

∑
n

Φn
′

n ≥ |N
′

ζ |gζ . (7)

The objective is to maximize the acceptance ratio of VNF-

FGs which is α =

∑
ζ

gζ

V

Problem 1 (VNF-FG Allocation).

max α
s.t. (1), (2), (3), (4), (5), (6), (7)

Due to the difficulties in determining the model of the
latency and loss rate ((4) and (5)) in multi-hop network, it is
not trivial to solve the above optimization problem. Without
considering the QoS constraints, this optimization problem
can be solved by using Integer Linear Programming (ILP)
solvers or heuristic algorithms [12], [13]. Thanks to abilities
of DRL in learning complex characteristics of networking
[14], it is able to determine the sub-optimal VNF-FG allo-
cation.

III. DEEP REINFORCEMENT LEARNING AGENT

A standard reinforcement learning setup comprises a learn-
ing agent, which interacts with an environment E in dis-
crete time-steps. The learning agent is able to enhance its
performance based on its experience. At every time-step t,
the learning agent observes an observation ot and identifies
an action at based on the observation. This action, then, is
executed in E and the agent obtains the reward rt depending
on the quality of at. When the environment is fully-observed,
the state at time-step t, st, is ot and we can model the
environment E as a Markov decision process (MDP) with
the state space S, the action space A, initial state distribution



p (s1), transition probability p (st+1|st,at), and reward func-
tion r (st,at). This assumption has been adopted to cope with
VNF-FG embedding problems [15]. A policy π of the agent
is to map the states to a distribution of the action π : S → A.
The objective of the learning agent is to determine the optimal
policy π∗ in order to maximize the expected reward.

In this paper, we define the states, actions, and rewards as
follows.

States: in routing problems, the traffic matrix has been
utilized as the states of the system [14]. Similarly, we will
formulate the descriptions of VNF-FGs as the states. The
VNF-FGs are described in the vector of size |N ′| ×KVNF +
|L′| × KVL. The first |N ′| × KVNF entries are the requests
of VNFs while |L′| ×KVL entries describe QoS requests of
VLs. This vector is fed into a DRL agent in order to determine
an action which expresses the mapping of VNF-FGs to the
substrate networks.

Actions: we introduce auxiliary variables an,n
′

t , wl,l
′

t ∈
[0, 1] indicating the favor of assigning VNF n′ at sub-
strate node n and the weights of link l regrading to
VL l′ in time-step t, respectively. Consequently, at =[
an,n

′

t , wl,l
′

t |∀n, n′, l, l′
]

and the size of an action is |N | ×
|N ′ |+ |L|×|L′ |. To convert the action to embedding strategy
(i.e. binary variables Φn

′

n and Φl
′

l ), we propose an algorithm,
called Weighted First Fit Algorithm (WF2A) which will be
presented thoroughly in the next Section.

Rewards: A VNF-FG is deployed when all VNFs and
VLs are deployed successfully. A ratio of the number of
successfully deployed VNF-FGs to the number of VNF-FGs
is the acceptance ratio which has been adopted to assess the
performance of VNF-FG embedding algorithms in [12]. The
greater acceptance ratio means more services can be deployed;
therefore, we adopt the acceptance ratio as the reward.

To identify the optimal policy π∗, the most well-known
DRL approach is Deep Q Networks [16]. However, it is not
able to cope with problems having a large-scale action space
[9]. DDPG [9] have been proposed to deal with continuous
control problem; however, we will show that DDPG has a
poor performance in large dimension action space in Section
V. Consequently, we propose an algorithm which is able to
achieve a better performance in the next section.

IV. EVOLUTIONARY ACTOR-MULTI-CRITIC MODEL
(EAMCM)

The operation of EAMCM is presented in Fig. 1.
EAMCM modifies the operation of DDPG so that it is able to
offer a better performance in networking problem. There are
four main modifications: Enhanced exploration, WF2A, MCN
Evaluator, and Evolutionary Function.

A. Enhanced Exploration

The DRL agent initializes H Ornstein–Uhlenbeck (OU)
processes. Then, the noisy action ãt,h is the combination of
the proto-action with hth OU process, ãt,h = at,p + Nh(t),
where at,p is the proto action which can be determined by
the actor network. Thanks to multiple noisy actions, the action
space could be explored better.
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Fig. 1: EAMCM

B. Weighted First Fit Algorithm – WF2A

Algorithm 1: Weighted First Fit Algorithm – WF2A

1 Input: ãt
2 Output: Φn

′

n ,Φl
′

l

3 ãn
′

t , w̃
l′

t = ãt;
4 foreach n

′

0 do

5 Sort ã
n
′
0
t in descending order;

6 foreach ã
n0,n

′
0

t ∈ ã
n
′
0
t do

7 if hn′0,k ≤ rn0,k,∀k then

8 Φ
n
′
0
n0 = 1, Φ

n
′
0
n = 0,∀n 6= n0;

9 rn0,k = rn0,k − hn′0,k,∀k;
10 break;

11 foreach l′ do
12 n′ ← Source (l′),m′ ← Destination (l′);
13 n← arg max

n
Φn
′

n , m← arg max
n

Φm
′

n ;

14 Load weights of substrate links from w̃l′

t ;
15 foreach l do
16 if rl,bw < fl′,bw then w̃l,l

′

t ← 1;

17 Substrate path P ← Dijkstra (n,m);
18 Based on P , set Φl

′

l ;

In [10], the authors claimed that DDPG is not suitable
for large-scale discrete action space and proposed action
embedding process to convert a proto action (fractional value)
to k-nearest integral solutions. However, the action embedding
process costs a lot of computing resources when the dimen-
sion of actions is huge. In addition, the solutions obtained by
action embedding process proposed in [10] may be unfeasible
due to the constraints of substrate networks. We propose a
light-weight algorithm, WF2A, in order to address this problem
efficiently. WF2A determines a feasible allocation policy for
VNFs based on the value of ãn,n

′

t from the output of DRL
agent. The algorithm is described in Alg. 1. From line 4 to
line 10, the algorithm determines the embedding of VNFs to
the substrate nodes. For each VNF n

′

0, the substrate nodes

are sorted in descending order of ãn,n
′
0

t . The VNF will be
allocated at the substrate node if it has sufficient resources
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Fig. 2: MIX operator

(line 7 to 10) and the amounts of resources are updated (line
9). When all VNFs are considered, the algorithm determines
the shortest path in terms of weights w̃l,l

′

t for each virtual
link l′ (line 11 to line 18). The sub-process from line 15 to
line 16 is to prevent the insufficient bandwidth links from the
selection.

C. Evolutionary Function

To enhance the performance of the DRL agent, we propose
an evolutionary function, which is able to generate a better set
of critic networks. The critic networks are ranked in terms of
their loss. The highest loss critic networks will be replaced by
the new critic networks while the lowest loss critic networks
are exploited to generate the new critic networks. Alg. 2
presents the details of this process. The function gets the set of
critic networks and returns the set of evolved critic networks.
First, the critic networks from the input are ranked in terms
of their loss (line 3). Then, the function select 2×Kc greatest
loss and lowest loss critic networks to form Qb and Qg ,
respectively (line 4, 5). The function creates Kc couples based
on Qg (line 6). The function creates novel critic networks
by executing MIX operator and adds these critic networks to
Qn (line 7 to 9). MIX operator gets two critic networks as
its input. It selects randomly a number of layers where the
swapping occurs. These layers are then swapped between the
critic networks to generate two novel critic networks inherited
the parameters of the original critic networks (line 8). Fig. 2
presents an example of MIX operator. In this example, two
layers are selected for swapping (layer 1 and layer 3). The
evolutionary function updates critic networks in Qb by the
critic networks generated by MIX operator (line 10 − 11).
The parameters are updated with the coefficient η as follows
θQ

e
k = ηθQ

n
k + (1− η) θQ

b
k . The large value of η will lead

to instability of the set of critic networks. Consequently,
we select the value of 0.01 for η in order to enhance the
quality of critic networks gradually. The algorithm returns the
evolutionary critic networks by combining Qg and Qe (line
12).

D. Proposed algorithm

Alg. 3 describes the proposed Evolutionary Actor-Multi-
Critic Model (EAMCM). In lines 1 and 2, K critic networks, the
actor network, K target critic networks, and the target actor
network are initialized. Then, the replay buffer and random
processes are initialized in lines 3 and 5. From the proto
action, a number of noisy actions are generated by adding
the noises from random processes (line 8). Then, these noisy
actions are processed by WF2A (line 10) and their Q-values are
computed by the critic networks (line 12). The best action in

Algorithm 2: Evolutionary Function – evol ()

1 Input: Qk, k = 1, ...,K
2 Output: Evolved critic networks

Qe = {Qek, k = 1, ...,K}
3 Rank Qk, k = 1, ...,K in terms of its loss;
4 2×Kc greatest loss critic networks → Qb;
5 2×Kc lowest loss critic networks → Qg;
6 Form Kc couples from Qg randomly → Qc;
7 foreach (Qk0 , Qk1) in Qc do
8 Qnk0 , Q

n
k1

= MIX(Qk0 , Qk1 );
9 Qn ←

(
Qnk0 , Q

n
k1

)
;

10 foreach Qbk, Q
n
k in

(
Qb,Qn

)
do

11 Update weights Qbk with Qnk → Qe ;

12 Qe = Qe
⋃

Qg;
13 return Qe;

terms of the average mean Q-values is selected and the system
executes it and stores the transition in the replay buffer (from
line 13 to line 15). Then, the loss of each critic network is
identified (from line 17 to line 19). The lowest loss critic
network will be selected to update the actor network (from
line 20 to line 22). The critic networks will be improved by
executing evolutionary function (line 23). Finally, the target
networks are updated (from line 24 to line 26).

V. SIMULATION RESULTS

For the substrate network, we consider the network topol-
ogy of BtEurope [17] with 24 nodes and 37 full-duplex links.
The capacity of a link is a random value of 100 Mbps, 150
Mbps, 600 Mbps, and 1 Gbps. OMNeT++ [18] (v5.4.1) was
utilized to simulate traffics and obtain the latency and packet
loss rate.

We execute 10 runs with different seeds of random gen-
erators. Erdős-Rényi model [19] is adopted to generate the
graphs of VNF-FGs. In this model, a graph G is defined by
the number of nodes n and the probability of adding a possible
edge to the graph p. In [19], when p > (1+ε) logn

n , the graph
G(n, p) will almost certainly be connected. Consequently, a

p value of 2.0 ×
log
(
|N
′
|
)

|N ′ | is selected. There are from 5 to
11 VNFs in each VNF-FG. The amounts of resources of the
substrate network and the requests of VNF-FGs are listed
in the Tab. I. There are 200 episodes for each run. In each
episode, the number of steps is 100. The reward of each
episode is the mean of rewards of every step in the episode.
Note that the VNF-FG requests are different in every step.
The DRL agent is set up with the parameters shown in Tab.
II. The number of units of fully-connected layers is 300. We
adopt the Rectified Linear Unit (ReLU) activation [20] for
dense layers except the output of the actor network where the
sigmoid activation is adopted so as to obtain the output in
range of (0, 1).

Fig. 3 presents the acceptance ratio when we apply DDPG
algorithm [9] in DRL agent. Although the acceptance ratio
increases, it is still very low (up to 5%); thus it is impractical



Algorithm 3: EAMCM
1 Randomly initialize K critic networks

Qk
(
s,a|θQk

)
, k = 1, ...,K and the actor µ (s|θµ)

with weights θQ1 , ...θQK and θµ.
2 Initialize target networks Q

′

k, k = 1, ...,K and µ
′

with
weights θQ

′
k ← θQk , k = 1, ...,K and θµ

′

← θµ

3 Initialize replay buffer R
4 foreach episode = 1,...,P do
5 Initialize H random process Nh, h = 1, ...,H
6 Receive initial observation state s1
7 foreach t = 1,...,T do
8 Generate actions

ãt,h = µ (st|θµ) +Nh, h = 1, ...,H
9 foreach action ãt,h do

10 Φn′

t,h,Φ
l′

t,h ← WF2A (ãt,h);
11 foreach Qk do qkt,h = Qk

(
st, ãt,h|θQk

)
;

12 Qt ← q̄t,h = 1
K

K∑
k=1

qkt,h

13 h∗ ← arg maxQt
14 E

(
Φn′

t,h∗ ,Φ
l′

t,h∗

)
→ rt, st+1;

15 (st, ãt,h∗ , rt, st+1)→ R
16 Sample N transitions (si,ai, ri, si+1) from R
17 foreach critic network k do
18 yi,k = ri + γQ

′
(
si+1, µ

′
(
si+1|θµ

′)
|θQ

′
k

)
19 Update critic network k by minimizing the

loss L← Lk =
1
N

∑
i=1,...,N

(
yi −Qk

(
si,ai|θQk

))2
20 k∗ ← arg minL
21 Update the actor policy using the sampled

policy gradient:
22 ∇θµJ ≈

1
N

∑
i

∇aQk∗
(
s,a|θQk∗

)
|s=si,a=µ(si)∇θµµ (s|θµ) |si

23 evol (Q);
24 Update the target networks:
25 θQ

′
k ← τθQk + (1− τ) θQ

′
k , k = 1, ...,K

26 θµ
′

← τθµ + (1− τ) θµ
′

Parameters Values
Substrate network

CPU, RAM, or Storage 0.3− 2.0
Link capacity 100, 150, 600 Mbps, and 1 Gbps

VNF-FG request
CPU, RAM, or Storage 0.1− 1.0
Bandwidth 1− 30 Mbps
Latency 1− 100 ms
Loss rate 0%− 0.5%

TABLE I: Parameters of Substrate networks and VNF-FG

Parameters Values

Learning rate of actor 10−3

Learning rate of critic 10−4

γ 1.0
τ 0.001

Batch size 32
Optimization method Adam [21]

TABLE II: Parameters of DRL agent
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Fig. 3: Acceptance Ratio of DDPG

to deploy it in the real system. DDPG, although was designed
to address continuous control environment, is not capable of
coping with the huge dimensional control environment (e.g.
VNF-FG embedding problem). We compare the acceptance
ratio of the Actor-Multi-Critic Model (AMCM) [22], in which
we do not consider the evolutionary part of EAMCM, and
the ILP-based solution. The ILP-based solution is derived
by solving the model in Problem 1 without considering the
QoS constraints (4) and (5) since the relationship of the
practical QoS metrics (e.g. latency) and traffic is not linear
[23]. Moreover, it is difficult to have an accurate model
for these QoS metrics in multihop networks [11]. In recent
studies [13], [24], VNF-FG embedding problem was formu-
lated as an ILP problem (without considering QoS metrics,
e.g. latency and loss rate) and heuristic algorithms were
proposed to determine the sub-optimal solution efficiently
since computing the optimal solution for VNF-FG embedding
problem costs extremely high computing resources and time.
Fig. 4 presents the acceptance ratio of ILP-based solution
and AMCM. Although the acceptance ratio of AMCM is lower
than one of ILP at the beginning, it increases progressively
and outperforms ILP after a few episodes. This is because
AMCM has capabilities of learning the hidden patterns of the
environment through interacting with the substrate network.

Next, we compare the performance between EAMCM and
AMCM. Fig. 5 shows the performance of EAMCM and
AMCM when considering the default configuration. EAMCM is
slightly better than AMCM. It is because the resource con-
straints in default configuration is not too strict (e.g. the
acceptance ratio can be up to 90%). Consequently, we
conduct simulations in more difficult scenarios by reducing
the capacities of links to random values of 50 Mbps, 100
Mbps, 300 Mbps or 500 Mbps. The results are shown in
Fig. 6. EAMCM clearly outperforms AMCM, especially at the
beginning. After 40 episodes, AMCM is able to shorten the
gap which is around 5%.
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VI. CONCLUSIONS

The issue of VNF-FGs placement is one of the recent
issues that has gained the attention of the research community,
with an interest not only in architectural and standardization
aspects but also in the algorithmic aspects, which we address
in this paper. We propose to solve this type of placement
by using deep reinforcement learning, which allows an in-
depth increase in knowledge unlike existing techniques which
requires a recalculation from scratch for each placement.
Given the very large space of possible solutions, we have
proposed in this paper several techniques to improve the ex-
ploration of this space. We adapted one of the most advanced
DRL approaches to improve exploration by generalizing the
neural network calculating action values. We also proposed
an evolutionary algorithm to evolve these neural networks in
order to discover better ones, which also avoids getting stuck
in local minima. To avoid going through the huge number of
infeasible solutions, we proposed a heuristic guaranteeing the
feasibility of the solutions and thus more efficiency.
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