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Abstract—Radiotherapy (RT) is a key component in the treat-
ment of various cancers, including Acute Lymphocytic Leukemia
(ALL) and Acute Myelogenous Leukemia (AML). Precise delin-
eation of organs at risk (OARs) and target areas is essential for
effective treatment planning. Intensity Modulated Radiotherapy
(IMRT) techniques, such as Total Marrow Irradiation (TMI)
and Total Marrow and Lymph node Irradiation (TMLI), provide
more precise radiation delivery compared to Total Body Irradi-
ation (TBI). However, these techniques require time-consuming
manual segmentation of structures in Computerized Tomography
(CT) scans by the Radiation Oncologist (RO). In this paper,
we present a deep learning-based auto-contouring method for
segmenting Planning Target Volume (PTV) for TMLI treatment
using the U-Net architecture. We trained and compared two
segmentation models with two different loss functions on a dataset
of 100 patients treated with TMLI at the Humanitas Research
Hospital between 2011 and 2021. Despite challenges in lymph
node areas, the best model achieved an average Dice score of
0.816 for PTV segmentation. Our findings are a preliminary but
significant step towards developing a segmentation model that
has the potential to save radiation oncologists a considerable
amount of time. This could allow for the treatment of more
patients, resulting in improved clinical practice efficiency and
more reproducible contours.

Index Terms—deep learning, PTV, TMI, TMLI, segmentation,
radiotherapy

I. INTRODUCTION

Radiotherapy (RT) plays a vital role in the treatment of
various cancers, and accurate delineation of organs at risk
(OARs) and target areas is essential for effective treatment
planning [1]. The delineation process involves defining the
boundaries of healthy tissues (OARs) to be spared from
high doses of radiation and tumor regions (targets) requiring
irradiation. Precise delineation ensures optimal radiation dose
delivery to the tumor while minimizing damage to surrounding
healthy tissues, leading to better treatment outcomes and
reduced side effects for patients undergoing RT.

Acute Lymphocytic Leukemia (ALL) and Acute Myeloge-
nous Leukemia (AML) are often treated with RT that targets
malignant cells within the bone marrow, lymph nodes, and
circulating blood. Total Body Irradiation (TBI) is a widely
used RT technique; however, it raises concerns due to radiation
toxicity and late effects [2]. Alternative treatments, such as
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Intensity Modulated Radiotherapy (IMRT), offer better control
over radiation amount and location. Recent advancements in
the field have led to the development of specialized IMRT
techniques, such as Total Marrow Irradiation (TMI) and Total
Marrow and Lymph node Irradiation (TMLI) [2]. Compared
to TBI, these treatments provide more precise radiation deliv-
ery, focusing on target volumes while minimizing exposure
to healthy tissues [3]. However, planning these treatments
necessitates manual segmentation of several structures by
ROs, including the Organs At Risk (OARs) and the Clinical
Target Volume (CTV), which encompasses bones, marrow,
spleen, and lymph nodes. The Planning Target Volume (PTV)
is created by adding a margin to the CTV to account for
uncertainties in setup positioning and internal motions [4].

Manual contour quality is crucial for the success of IMRI
techniques but poses a significant time burden on ROs,
creating a need for automated segmentation of structures
in Computerized Tomography (CT) scans. Traditional auto-
contouring methods, such as deformable image registration
(DIR), probabilistic, and atlas-based methods, have contributed
significantly to the field. However, these methods often face
limitations due to sensitivity to variations in patient anatomy,
imaging artifacts, and reliance on predefined atlases that
may not accurately represent individual patients. Recent ad-
vances in deep learning for medical imaging segmentation
have demonstrated potential for high-quality segmentation
to support clinicians’ work [5], [6]. While auto-contouring
solutions exist and are integrated into commercial software
like Raystation [7] and Limbus AI [8], they primarily focus
on OAR segmentation and local PTV for specific tumor
types. Currently, no commercial software can segment PTV
for TMLI treatment, and few studies in the literature have
addressed this task. In this paper, we present a deep learning-
based auto-contouring method for segmenting PTV for TMLI
treatment.

Specifically, we trained and compared two segmentation
models based on the U-Net architecture [9] with two different
loss functions. The models were trained and evaluated on a
dataset of 100 patients treated with TMLI at the Humani-
tas Research Hospital between 2011 and 2021. Our results
demonstrate that, despite challenges in lymph node areas,
the best model achieved a Dice score of 0.816 ± 0.064 for
PTV segmentation. These promising results represent a step
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towards developing a segmentation model for PTV that could
potentially be effectively utilized in clinical practice, saving
ROs significant time and enabling the treatment of more
patients.

The paper is organized as follows. In Section II, we review
the related work on PTV segmentation for TMLI treatment.
In Section IV, we describe the dataset, the models, and the
training and evaluation procedures. Finally, in Section V, we
present the results of our experiments, and in Section VI, we
provide conclusions and outline future work directions.

II. RELATED WORK

Over the past decades, substantial efforts have been ded-
icated to developing reliable auto-contouring methods as
an alternative to manual delineation. Early works on auto-
contouring emphasized the use of deformable image regis-
tration (DIR), probabilistic, and atlas-based methods [10]–
[16]. In recent years, deep learning (DL) has emerged as a
highly promising approach for creating auto-contouring tools
effectively utilized in RT planning [5], [6]. Numerous studies
have successfully applied deep learning to auto-contouring of
organs at risk (OARs) and target areas in various anatomical
regions, such as the head and neck [17], [18], thorax [19],
[20], abdomen [21], [22], and pelvis [23]–[25].

Total marrow irradiation (TMI) poses a significant challenge
as it requires delineation of OARs and targets across the entire
patient’s body. Regarding the segmentation of OARs, a few
recent studies have demonstrated the feasibility of developing
robust solutions for auto-contouring OARs in whole-body CT
images. A notable example is the work of Chen et al. [26], who
developed WBNet, a system comprising multiple segmentation
models [9], [27], [28] to segment 50 OARs across whole-
body CT images. Zhou [29] compared 2D and 3D convolution
neural network (CNN) approaches in segmenting 17 structures
in CT images, finding that the 3D approach achieved an
average Dice Score (DSC) of 0.79, while the 2D approach
reached 0.67. However, this improvement came at the cost
of increased training and inference time. The framework
used for 3D segmentation was divided into two steps: one
that detected the volume of interest (VOI), a 3D bounding
box containing the structure, and another that segmented the
structure by focusing on the bounding box. Wasserthal et
al. [30] introduced a new model based on nnU-Net [31] to
segment 104 anatomical structures (OARs, bones, muscles,
and vessels) in whole-body CT images, achieving a DSC
higher than 90% for most structures. Additionally, commercial
solutions such as the one developed by RayStation [7] and by
Limbus AI [8] are now available for segmenting OARs in CT
images.

On the other hand, there are only a few authors that pro-
posed approaches to segment the target of TMI. Shi et al. [32]
proposed a dual encoder network that combines the Swin
Transformer [33] and a ResNet [34], and then uses a decoder
to obtain the segmentation of the lymph nodes and bones in
the CT image, which is an integral part of the Planning Target
Volume (PTV). This new architecture achieved slightly better

performance than the U-Net, U-Net++, and DeepLabV3+
in the segmentation tasks. Additionally, Watkins et al. [35]
trained a commercial system based on U-Net to segment the
PTV for TMI. Their model was trained to segment PTV-Bone,
PTV-Lymph Nodes, PTV-ribs, and PTV-skull, achieving DSC
of 0.851, 0.830, 0.946, 0.814, respectively.

III. DATA

The dataset employed in this study consists of images from
100 patients diagnosed with pathologically proven hematolog-
ical malignancies. These patients were identified as candidates
for allogeneic transplantation and received nonmyeloablative
conditioning TMLI at Humanitas Research Hospital (Rozzano,
Milan, Italy) between 2011 and 2021. All TMLI patients were
immobilized in the supine position with their arms along their
bodies, utilizing an in-house dedicated frame with multiple
personalized masks [36]. A free-breathing, noncontrast com-
puted tomography (CT) scan with a 5-mm slice thickness was
acquired for each patient using a BigBore CT system (Philips
Healthcare, Best, Netherlands).

The TMLI clinical target volume (CTV) encompassed
the bone marrow (CTV BM), spleen (CTV Spleen), and all
lymph node chains (CTV LN). The CTV BM was considered
equivalent to the skeletal bones, with the chest wall added to
the ribs to account for breathing motions. To minimize oral
cavity toxicity, the mandible was excluded from the CTV BM,
along with the hands, which have an extremely limited bone
marrow presence. The total planning target volume (PTV Tot)
was defined as the union of three PTVs, derived from the
isotropic expansion of three corresponding CTVs, as follows:
(i) PTV BM = CTV BM + 2 mm (+8 mm for arms and legs)
to account for setup margin; (ii) PTV Spleen = CTV Spleen
+ 5 mm to account for breathing motions and setup margin;
and (iii) PTV LN = CTV LN + 5 mm to account for target
residual motion and setup margin. Figure 1 presents an exam-
ple of the PTV Tot defined for a patient. The dataset contains
the CT scans of each patient and the corresponding PTV Tot
structure stored using the DICOM-RT format. In this study,
we trained a model to directly segment the PTV Tot target.
Unlike other PTVs and CTVs, the PTV Tot is the only target
consistently annotated by ROs for all 100 patients included in
the dataset.

IV. METHODS AND EXPERIMENTAL DESIGN

In this study, we trained a convolutional neural network
(CNN) to segment the PTV Tot target from whole-body
CT scans of patients. This section provides details on data
preparation, the architecture of the convolutional network, and
the loss function employed.

A. Data Preparation

We extracted from the DICOM-RT data of each patient the
axial slices and their corresponding segmentation masks of
PTV Tot. The number of axial slices per patient varies within
a range from 164 to 534 and the slices are sized at 512 x
512 pixels with a resolution of 1.2 mm x 1.2 mm. The pixel



(a) (b)

Fig. 1: An example of the PTV Tot: (a) coronal view and (b)
saggittal view of a patient.

values of the slices, which represent tissue radiointensity, are
expressed in Hounsfield Units (HU). To enhance the contrast
of all anatomical structures encompassed within the PTV,
a linear Look Up Table (LUT) was applied to each pixel
value, ranging from -160 HU to 240 HU, as suggested by
the radiologist. Consequently, each slice was encoded as an
8-bit image, with pixel values ranging from 0 to 255.

B. CNN Architecture

The segmentation model used in this work is a U-Net
[9].The U-Net architecture consists of a contracting path and
an expansive path. The network receives as input a 512 x 512
image of a CT slice and outputs a 512 x 512 segmentation
mask. It consists of the repeated application of two 3x3 convo-
lutions (unpadded convolutions), each followed by a rectified
linear unit (ReLU) and a 2x2 max pooling operation for
downsampling. The expansive path consists of an upsampling
of the feature map followed by a 2x2 deconvolution (“up-
convolution”) that doubles the number of feature channels, a
concatenation with the correspondingly cropped feature map
from the contracting path, and two 3x3 convolutions, each
followed by a ReLU. The final layer is a 1x1 convolution that
maps each 64-component feature vector to the desired number
of classes. In total the network has 23 convolutional layers and
slightly less than 8 million parameters.

C. Loss Function

In this work, we trained two models with two different
loss functions, the Binary Cross Entropy Loss (BCEL) [4]
and the Dice Loss (DL) [37], as described in Equation 1 and
Equation 2, respectively. In both equations, the p represents
each pixel of the prediction and the y represents the pixels of
the groundtruth.

BCE(p, y) = −(y log(p) + (1− y) log(1− p)) (1)

DL(p, y) = 1− 2yp+ 1

y + p+ 1
(2)

BCEL calculates the loss for individual pixels, while DL
computes the overlap between the ground truth and prediction,
addressing class imbalance by considering only the percentage
of prediction overlapping with the ground truth rather than the
size of the prediction.

D. Training Process

To train and evaluate the performance of the segmentation
models, we employed a 5-fold cross-validation method as
depicted in Figure 2. The dataset is divided into five equally-
sized folds (20 patients per fold), with three folds allocated for
training, one for validation, and one for testing. To account
for variations in the delineation process and equipment, we
ensured that the five folds were uniformly sampled concerning
the acquisition dates of the CT series. Training was conducted
with a batch size of 4 and a learning rate of 10−5. The training
process was terminated as soon as no significant changes are
observed in the validation loss for 10 consecutive epochs.

Fig. 2: The cross-validation scheme used to assess the perfor-
mance of the trained models.

E. Evaluation Metrics

To assess the segmentation performance of the models, we
calculated the Dice Score (DSC) and Hausdorff Distance (HD)
as described in Equation 3 and Equation 4, respectively. The
DSC measures the overlap between the ground truth and the
predicted mask, with X representing the set of positive pixels
in the ground truth and Y representing the set of positive pixels
in the prediction.

DSC =
2|X ∩ Y |
|X|+ |Y |

(3)

The HD measures the maximum distance of all the nearest
distances between the surfaces of the two sets X and Y ,
denoted as SX and SY . To mitigate the impact of outliers
on HD values, we employed HD95, which excludes the top
5% highest HD values.



HD = max

{
max
x∈SX

d(x, SY ), max
y∈SY

d(y, SX)

}
, (4)

V. RESULTS

In this section, we present and discuss the results of
two models trained to segment the Planning Target Volume
(PTV Tot) using two different loss functions, Dice Loss (DL)
and Binary Cross-Entropy Loss (BCEL). We evaluate their
effectiveness in the segmentation process and provide visual
examples of segmentation outcomes to identify and understand
the areas where the model struggled to perform accurate
segmentation.

Figure 3 compares the segmentation performance of the
models trained with BCEL and DL loss functions. The box
plot on the left side presents the values of the Dice Similarity
Coefficient (DSC), and the box plot on the right presents
the 95% Hausdorff Distance (HD95) values, along with their
standard deviations, for all patients across all folds. The
BCEL-trained model consistently outperforms the DL-trained
model in the two metrics. Notably, the DSC values for the
BCEL model (0.816 ± 0.064) are higher than those for the
DL model (0.806 ± 0.072), indicating a better overlap between
the predicted segmentation and the ground truth. Additionally,
the BCEL model exhibits a lower average HD95 value (13.81
mm ± 7.602 mm) compared to the DL model (17.575 mm
± 17.386 mm). The range of the patient’s DSC values in the
BCEL model is from 39% to 89%, and in the DL model is
from 38% to 90%, although, in the HD95 values the BCEL
model range is from 7mm to 100 mm and in the DL model is
from 8 mm to 205 mm. Lower HD95 values suggest that the
BCEL model provides a more accurate segmentation in terms
of the maximum and 95% percentile distances between the
prediction and the ground truth. It is also possible to notice
that the performances of the BCEL are more consistent, with
a lower spread and fewer outliers.

To further understand the areas where the models do not
accurately segment the PTV, we provide some visual examples
of the poor segmentations Figure 4. The first row of the
Figure 4 shows four examples of slices poorly segmented
by the BCEL model. The first slice (Figure 4a) corresponds
to the head and neck area. The segmentation error in the
left and right areas of the head (i.e., the green areas) may
be due to conservative segmentation of the second level of
neck lymph nodes in the ground truth. The standard reference
point for segmenting these lymph nodes might be a slightly
higher slice, but the radiation oncologist likely included the
target on this slice due to the large CT thickness of 5 mm.
The second slice (Figure 4b) shows an absence of hepatic
portal lymph nodes. This area is subject to high anatomical
variability, and due to the lack of contouring guidelines [38] in
the early years of data acquisition, this area was often omitted
by the radiation oncologist. In the third slice (Figure 4c),
the absence of the pre-sacral lymph nodes (anterior to the
sacrum) is evident. Moreover, the predicted segmentation of
the external iliac lymph nodes is inaccurate. This target area is

Fig. 3: Boxplot of the DSC (left) and the HD95 values (right)
of the BCEL and DL models.

defined by adding a margin to the iliac vessels. In the fourth
slice (Figure 4d), representing the legs area, the prediction
fails to segment the inguinal lymph nodes, likely because these
are frequently omitted by physicians. The second row of the
Figure 4 shows the same slices overlayed with the predictions
of the DL model. Notably, the segmentation errors of the DL
model closely resemble those of the BCEL one, previously
discussed. Please notice that the segmentation mistakes of
DL model are very similar to the ones of the BCEL model,
previously discussed. Nevertheless, a higher propensity for
false negatives is discernible in the DL model’s segmentations,
evidenced by the larger green regions surrounding the bones in
Figure 4h and within the iliac lymph node area in Figure 4g.

VI. CONCLUSIONS

In this study, we trained two U-Net segmentation models
with different loss functions to segment the Planning Target
Volume (PTV) for Total Marrow Irradiation (TMLI) treatment.
The models were trained on a dataset comprising 100 patients
treated at Humanitas Research Hospital from 2011 to 2021.
The PTV encompasses several complex structures that are
subject to anatomical variability and includes an extra mar-
gin according to specific clinical guidelines. This increased
complexity poses challenges for accurate PTV segmentation,
with the most notable difficulties arising in the lymph node
areas. Moreover, the visual inspection of segmentation errors
indicates that the considerable variability in the ground truth,
stemming from the absence of comprehensive delineation
guidelines, may have influenced the performance of the mod-
els. Despite these challenges, the performance of the best



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Examples of poorly segmented CT slices. In each slice, the ground truth of the PTV is overlayed in green, while the
prediction is overlayed in red. The first row shows the slices with the predictions of the BCEL model, while the second row the
slices with the predictions of the DL model. Accordingly, in each slice, false negative regions appear in green, false positive
regions appear in red, and true positive regions appear in yellow.

model is promising, with Dice Similarity Coefficient (DSC)
values of 0.816± 0.064.

We believe that our results are encouraging and represent
a step towards the development of a segmentation model
for PTV that could potentially be effectively used in clinical
practice, saving a significant amount of time and leading to
more robust contours. Future research will involve exploring
additional deep learning architecture and enhancing the model
input by incorporating the delineation of pertinent anatomical
structures for PTV segmentation. Furthermore, we intend
to conduct an in-depth examination of the groundtruth in
the dataset employed in this study to improve adherence to
delineation guidelines.
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