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Abstract

Categorising gender for soft biometric recognition is es-
pecially challenging from low quality surveillance footage.
Our novel approach discovers super fine-grained visual tax-
onomies of gender from pairwise similarity comparisons,
annotated via crowdsourcing. This paper presents our
techniques for collection, interpretation and clustering of
perceived visual similarities, and discusses the transition
from pre-defined categorisation to similarity comparisons
between subjects. We compare and evaluate our proposal
on two diverse datasets, demonstrating the ability to de-
scribe multiple concepts, including ambiguity and uncer-
tainty, that go beyond binary male-female designators. Our
method is applicable to a wide range of soft biometric traits
and image attributes, and can aid in efficiently annotating
large-scale datasets, by generating more discriminative, re-
producible and flexible categorical labels.

1. Introduction

Describing pedestrian images remains a significant chal-
lenge in video surveillance. Society desperately requires a
means to search for pedestrians in video footage, matching
human descriptions attained from eye-witness testimonies.
Soft biometrics are human describable attributes, designed
to consistently and precisely describe and identify people in
surveillance footage [18, 3]. They can be perceived at-a-
distance, in partially obscured, occluded and very low qual-
ity surveillance footage and when hard biometrics e.g. fin-
gerprint, iris or gait, are inapplicable.

This paper concerns the annotation of gender-from-body
as a soft biometric from surveillance images of pedestrians,
where hard biometrics are unavailable. Gender identity is a
universal trait and the most commonly predicted human at-
tribute, typically categorised as ‘male’ or ‘female’ [4, 21, 6].
As a contemporary topic, gender has been shown to be per-
ceived on a sliding scale [14, 8] and more complex repre-
sentations of gender are becoming widespread. For exam-
ple, services like Facebook now offer 71 gender options in
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(b) PETA binary labels [4].

Figure 1: (a) Labelling ambiguous genders continuously. (b) Im-
ages in which gender is hard-to-see or uncertain.

the UK, and a number of universities in the US now accept
non-binary pronouns beyond ‘he’ and ‘she’2.

Problem. State-of-the-art recognition of gender-from-
body performs significantly worse than recognition from
face [17, 3, 18] and even human performance is often far
from perfect [6, 12]. This suggests binary categorisation
may not always be suitable, especially when dealing with
challenging surveillance imagery.

Visually discerning gender (as opposed to biological sex)
is dependent on the observer interpreting multiple features
and cultural cues e.g. face shape, chest size, body propor-
tions, hair length, clothing appearance, accessories, make-
up etc. However, such cues are not always visible, and un-
familiar combinations can be contradictory. Figure 1a high-
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lights varying degrees of masculinity to femininity in clear
images, while Figure 1b illustrates the difficulty in perceiv-
ing gender in real-world surveillance footage, although both
image sets are originally labelled with binary ground-truths.

Comparative annotation has been successfully applied to
soft biometrics [20, 9] and most recently gender [14, 15, 1].
However, previous approaches cannot distinguish between
attribute ambiguity (Figure 1a) and image obscurity (Figure
1b), while pairwise comparisons for relative labels are dif-
ficult to scale. To meet the demand of ever larger datasets,
highly discriminative labelling solutions must also consider
efficiency, reproducibility and flexibility.

Proposal. We propose to annotate gender-from-body for
pedestrian images using pairwise similarity comparisons,
collected via crowdsourcing. Each pair of subject images is
annotated by visually comparing the perceived difference in
gender or its invisibility, thereby learning a consensus from
the crowd. A super fine-grained visual taxonomy is then
discovered by clustering subject similarities. By collect-
ing more open-ended annotations, our approach addresses
the challenges of labelling hard-to-see, confusing and multi-
concept attributes, further narrowing the ‘semantic gap’.

We demonstrate our approach on two datasets and pro-
vide comparisons to their original labels. The first dataset,
SoBiR [15], is a gender-balanced dataset, including four
forms of categorical and relative soft biometric labels, de-
scribing subject images captured in a controlled environ-
ment. The second dataset, PETA [4], is the largest and
most diverse pedestrian re-identification dataset, annotated
as 62.9% ‘male’ alongside 60 additional binary attributes.

We are primarily motivated by comparative soft biomet-
rics [20, 14, 1, 9], but our work is also analogous to [24, 7],
which investigate similarity comparisons via crowdsourc-
ing, with several important distinctions. Firstly, both [24, 7]
collect overall similarity annotations from a wide range of
image subject matter, finding broad, basic-level categories.
Instead, this study discovers super fine-grained visual con-
cepts within a specific attribute of pedestrian images. Sec-
ondly, we deal with very low-quality and highly subjective
images, necessitating the need to discern concepts of am-
biguity and uncertainty, not previously dealt with. Finally,
rather than grouping images [7] or matching a subset to a
query image [24], we explicitly annotate each image pair,
such that no pairwise comparison can be overlooked.

Contributions. (1) The introduction of comparative simi-
larity annotations to describe gender, applicable to ambigu-
ous, uncertain and multi-concept attributes. (2) A discus-
sion of our crowdsourcing methodology and novel spatial
interpretation of pairwise distances and uncertainties. (3) A
comprehensive evaluation on two diverse datasets, demon-
strating categorisation with more than two classes of gender.

2. Related Work

Gender recognition. Two recent soft biometric surveys
[18, 3] and a computer vision survey [17] analyse the de-
mographic estimation of gender. These reveal significantly
lower performance when classifying gender-from-body in
uncontrolled environments, over typically more constrained
facial images. An early study in gender recognition from
faces [6] demonstrated an 8.1% error rate, compared to
11.6% averaged by humans. The approach labels gender as
binary, but also includes a binary ‘certainty’ label and sug-
gests a ‘special category’ to permit outliers to be correctly
classified. Furthermore, the first attribute-based pedestrian
re-identification study [12], found 4.5% annotator disagree-
ment for the ‘male’ attribute on the PRID dataset. Almost
all contemporary re-identification studies classify gender as
binary, achieving accuracies up to 89.9% [4, 13, 26, 5].

Relative ordered comparisons. Relative attributes were
introduced in [19] and first applied to soft biometrics in
[20], using relative ordered annotations of psychologically
grounded global and body traits. Comparative soft biomet-
rics have since been employed to describe clothing [9], face
[1] and for the first time, gender [14], finding ambiguity in
even clear images. Therefore, gender uncertainty and am-
biguity concepts are supported in both early [6] and recent
[14] works, and are evident visually in Figures 1, 3 and 5.
Ordered comparisons seek more objective annotations
by comparing two subjects on a bi-polar scale, e.g. “more
feminine / more masculine”. These approaches produce
high quality, relative labels, that outperform traditional cat-
egorical labels for biometric recognition and automatic re-
trieval from body [9, 15]. However, predefined scales and
one-dimensional ranking interpretations are not able to con-
cisely describe multiple concepts or visual uncertainty, and
remain difficult to scale for very large dataset annotation.

Similarity comparisons. Similarity is a hotly debated
topic in psychology, being argued as the composition of fea-
tures [23], represented as a dynamic cognitive process [16]
and modelled as geometric distances [10, 22, 2]. In com-
puter vision, distance metrics are learnt to match images
based on similarity and attribute simile classifiers have been
show to outperform binary classifiers [11]. Overall image
similarity comparisons have also been crowdsourced to dis-
cover basic-level categories [24, 7]. These approaches dis-
cover a continuous embedded similarity space, that is richer
and more versatile than a fixed size vocabulary (predefined
categories) or one-dimensional ranking (relative attributes).

According to [8], gender predominantly means “male-
female difference”, and “in contemporary psychology is
represented as a continuum of psychological difference”.
Though many visual cues are intrinsic to gender identity, it



Gender

How different is the appearance and visibility of Gender
between the two people?

Answer

Visible in both images Impossible to see
No different Impossible to see in one image

Slightly different Impossible to see in both images

Quite different
Very different

Completely different

Figure 2: Example crowdsourcing task question.

is almost always represented as a sole feature. Collectively,
this suggests that while gender is hard to decompose, it can
be discerned through (dis)similarity. To our knowledge, no
other similarity-based system discovers concepts within an
attribute or deals with very low-quality and highly subjec-
tive images of homogeneous subject matter.

3. Crowdsourcing Data Collection

We designed a crowdsourcing task on Crowdflower® to
collect (g ) pairwise comparisons from both SoBiR, N =
100 and PETA, N = 95 datasets. As pairwise labelling
is of O(n?) space, we annotate a representative subset of
just 1% of PETA’s 8709 total unique subjects. From this
subset, a suitable visual taxonomy can be generated, en-
abling more refined categorical annotations of the remain-
ing dataset. Furthermore, to ensure indistinct subjects are
not overlooked, respondents are explicitly asked to judge
every possible image pair, rather than grouping subsets [7]
or matching to a query image [24].

Although similarity is commonly interpreted geometri-
cally [22, 10, 2], it has been shown to be asymmetric when
judging “subject A to subject B” [23]. In order to regu-
larise responses, our questions instead judge “between the
two subjects”, and the task randomly shuffles the presenta-
tion order of images. Questions also judge difference over
similarity, as it often defines gender [8] and is more succinct
in describing subtle variations of an attribute.

The crowdsourcing task is designed similarly to [14],
asking respondents to judge the difference in both appear-
ance and visibility of gender, as in Figure 2. Answers are
annotated on a 5-point Likert-type answer scale: “No dif-
ferent”, “Slightly different”, “Quite different”, “Very differ-
ent”, “Completely different”. Respondents may also answer
“Impossible to see in one image / both images” to clearly
state there are no visible cues, serving as a measure of un-
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Annotation Interpretation 844 Ui j
No different Completely similar 1 0
Slightly different Very similar 0.75 0
Quite different Quite similar 0.5 0
Very different Slightly similar 0.25 0
Completely different Not similar 0 0
Impossible to see in one image Not similar 0 1
Impossible to see in both images | Completely similar 1 1

Table 1: Encoding difference annotations to similarity s;;, and
uncertainty u;;, between subjects 7 and j.

certainty, and mitigating feigned responses. This enables
our approach to differentiate between ambiguity (open to
more than interpretation) and uncertainty (having imperfect
or unknown information).

Crowdsourcing respondents are vetted by requiring at
least 80% test question accuracy throughout the task. We
present an initial quiz page of 10 test questions, with re-
maining pages containing 1 test question and 9 genuine
questions. Test questions are carefully crafted to allow a
range of acceptable responses, ensuring respondents under-
stand the task, without overzealous priming.

4. Spatial Interpretation

We construct a Euclidean perceptual similarity space,
comprised of K = (];[ ) comparisons of similarity s;; and
uncertainty u;;, between all subjects 4,5 € 1,..., N. Table
1 details the annotation encoding of similarity as a linear in-
terval scale and uncertainty as a binary value. Uncertainty
measures, 0 < wu, < 1, are calculated per subject, as the
fraction of all “Impossible to see..” annotations:

o — ZjGN/\j;éi Ui
¢ N -1

Similarity comparisons may then be mapped to geomet-
ric dissimilarity distances using an appropriate monotonic
metric. We opt for exponential decay following [22, 10]:

d(s’ij) = 67)\8”‘ ’

where ) is decay rate. Setting A > 1 represents changes
in difference more evenly, approximating a linear function,
while A < 1 emphasises spatial separations between con-
cepts in the perceptual space. Next, we define an uncer-
tainty weighting function between u; and ; as follows:

w(ug, uy) = (Jug +ujl/2)°,

where 0 < e < 1 is eccentricity. Setting € ~ 1 repre-
sents ambiguity and uncertainty more equally, while ¢ < 1
accentuates distances between subjects with different un-
certainties. A distance matrix A € N x N, is constructed
as the dissimilarity distance between subjects ¢ and j:

Aij = |ug — uf]d(0)w(ug, uj) + d(si) (1 — w(ug, uj)).



Normalised scores

Relative 0.18 0.28 0.68 0.86 0.88
Similarity 017 0.18 0.47 0.89 0.89

(a) SoBiR original relative (Rel) [14] and new similarity (Sim) gen-
der scores, displaying the most ambiguous subjects.

Narmalised scores

100
Ranking

female female

Binary male female

Similarity 0.47 0.57 0.83 0.95

(b) PETA original binary [4] and new similarity gender scores, dis-
playing subjects with conflicting measures.

Figure 3: One-dimensional similarity ranking of SoBiR and PETA subjects using MDS. Dotted red lines indicate female-male split.

We can now apply a number of data exploration tech-
niques to our spatial interpretation. We use two forms of
dimensionality reduction, MDS to visualise the perceptual
space, and AHC to discover visual taxonomies.

Multi-dimensional scaling (MDS). MDS is a method for
representing dissimilarity measurements as distances be-
tween points, primarily applied to find structures in psy-
chology [2]. Given a distance matrix, A, MDS attempts to
find a lower-dimensional embedding of N vectors with D
dimensions, v1, ..., vy € R, such that, ||v; — v;|| = A;.
Since we supply a Euclidean distance matrix, we use an ef-
ficient, classical MDS approach that derives a coordinate
matrix via eigenvalue decomposition.

Agglomerative hierarchical clustering (AHC). AHC is
a procedure that forms hierarchical groupings of mutually
exclusive data subsets [25]. We use it to establish a visual
taxonomy, formed as c sets of images, grouped by their per-
ceived gender similarity. AHC is a ‘bottom up’ approach
to clustering, whereby each subject starts in its own cluster
and pairs of clusters are iteratively merged up the hierar-
chy. We use AHC with the popular Ward’s linkage criteria
to merge clusters [25], minimising within-cluster variance
by reducing squared distances from each cluster centre.

5. Experiments

We perform three experiments, to evaluate the character-
istics of our similarity data, demonstrate its representational
flexibility and compare it to previous approaches. First, we
investigate one-dimensional ranking, replicating a relative

attributes-based approach. Next, we apply clustering to dis-
cover visual taxonomies from randomly sampled subsets of
each dataset. Clusters are analysed against binary ground-
truths and for their consistency across sampled subsets. Fi-
nally, we present an example visual taxonomy of the PETA
dataset. Distance matrices are computed with A = 10 and
e = 0.7, found by a parameter grid search to maximise the
overall AMI scores in Sections 5.2 and 5.3.

5.1. One-dimensional Ranking

We compare a one-dimensional representation of our
gender similarity to SoBiR’s relative continuous gender la-
bels and PETA’s original binary ground-truth labels in Fig-
ure 3. The dotted red lines indicate where a binary female-
male split would normally occur around scores of 0.5. One-
dimensional embeddings are found by applying MDS with
D =1 to the distance matrix A, producing subject similar-
ity scores and associated ranks.

In Figure 3a, we observe highly analogous relative and
similarity scores of SoBiR’s 100 subjects. Although col-
lected through two disparate forms of comparative visual
annotation, scores vary on average only by —0.002 +0.047,
with a Spearman’s rank correlation coefficient of p =
0.84, p < e~ 26, Furthermore, the dataset’s most gender-
ambiguous subjects obtain identical ranks and very similar
relative scores. This suggests our methodology is at least as
informative as an ordered comparison approach [14].

Figure 3b visualises the crowd’s gender perception from
a subset of PETA. Lower quality and more obscure images
produce a shallower, less divisive slope. We find a pro-
portionally similar female-male split to the binary ground
truths, with the only four conflicting measures highlighted.
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Figure 4: Agreement (AMI score) between original binary parti-
tions and c clusters of n randomly sampled subjects.

5.2. Clustering Agreement to Binary Ground-truths

We investigate the agreement between clustering the per-
ceived gender similarities and previously annotated binary
ground-truths. Agreement is measured as an adjusted mu-
tual information score (AMI), in the range [0, 1]. AMI quan-
tifies the information shared by two partitions of mutually
exclusive subsets, adjusted for the effect of chance. A score
of 0 indicates purely independent (random) label assign-
ments, while a score of 1 indicates two label assignments
are equal. We uniformly randomly sample a subset of n
subjects and apply AHC to form c clusters. AMI scores are
averaged over 500 iterations per n. As expected, distinct
behaviours are observed between SoBiR and PETA, due to
disparities in image clarity and demographic distributions.

Clustering the similarity data from SoBiR’s clear images
with ¢ = 2 closely agrees with the original binary ground-
truth labels, Figure 4a. Atn ~ N we see c = 2 and ¢ = 3
AMI scores converging, suggesting a third cluster may de-
scribe small inconsistencies between the two original par-
titions. As expected, clustered similarity data from PETA
agrees much less closely to the original annotations, even
at ¢ = 2, Figure 4b. This indicates that an increased im-
age obscurity also increases the disparity between perceived
gender similarities and original binary labels.

5.3. Clustering Consistency and Visualisation

To discover consistent visual taxonomies, we apply AHC
to distance matrices computed from data subsets. Figure 5
shows the partitioning agreement between all N subjects
and n uniformly randomly sampled subjects, clustered into
c sets. AMI scores are averaged over 500 iterations per n.

For SoBiR, ¢ = 2 is very consistent, with almost per-
fect agreement and low deviation, in Figure 5a. Clusterings
of ¢ = 3,4 also converge to AMI scores of 1 at n ~ N.
Though less consistent, ¢ > 2 may be desirable for in-
creased discrimination. For PETA however, we observe that
¢ = 2,3 are inadequate at describing the perceived gender
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Figure 5: Agreement (AMI score) between all [NV subjects and n
randomly sampled subjects with c clusters.

similarities, being the least consistent, in Figure 5b. Instead,
we find that ¢ = 4,5 groups provide more consistently re-
producible and discriminative partitions.

Figure 6 displays an example visual taxonomy of PETA,
with ¢ = 5 clusters. Visual groups largely match the origi-
nal label concepts of ‘male’ and ‘female’ and our labelling
of ‘uncertainty’. For discussion, we attach semantic lan-
guage descriptions to each visual category. However, for
large-scale annotation, categories would be better defined as
related exemplar images. Although partitioning with ¢ = 5
only attains an AMI score of 0.45 to the original binary
labels, on visual inspection, intra-group images are highly
similar and clearly correspond to our language descriptions.
Interestingly, group 3 comprises just one subject, annotated
confidently by respondents but contradictory to other sub-
ject images, forming its own ‘neutral’ group. Alternatively,
setting ¢ = 4 merges the ‘neutral’ and ‘female’ groups, as
both possess low uncertainties.

6. Conclusions

We have introduced an approach for discovering super
find-grained taxonomies of gender-from-body in challeng-
ing surveillance imagery. Our methodology crowdsources
and interprets open-ended pairwise similarity comparisons,
demonstrating that fixed binary categories are insufficient
when labelling gender from very low quality pedestrian im-
ages. As in [6], we advocate the inclusion of ‘neutral’ and
‘uncertain’ categories for studies in human perception and
demographic estimation.

Generating a visual taxonomy enables efficient and re-
fined annotation of large datasets, and is highly applicable
to other soft biometric traits and image attributes. Our spa-
tial interpretation is also more flexible than one-dimensional
ranking, permitting alternative label representations e.g.
through fuzzy clustering and multi-dimensional ranking.
Future work could demonstrate very large-scale annotation
of super fine-grained attributes and investigate optimal rep-
resentations for automatic computer vision estimation.



Group 0 - “male”
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(98.1% labelled male)
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6.8% uncertainty
(0.0% labelled male)

® o
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Figure 6: Example visual taxonomy of gender similarities on the PETA [4] dataset, formed with ¢ = 5 clusters and visualised with
3-dimensional MDS embedding. Including group membership, average uncertainty and original binary ground-truths (in brackets).
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