
Towards a Subgraph/Supergraph Cached Query-Graph Index

Jing Wang, Nikos Ntarmos, Peter Triantafillou
School of Computing Science, University of Glasgow, Glasgow, UK

Email: j.wang.3@research.gla.ac.uk, {nikos.ntarmos, peter.triantafillou}@glasgow.ac.uk

I. INTRODUCTION AND MOTIVATION

Many modern big data applications deal with graph
structured data, such as databases of molecular compounds
represented as graphs of atoms and bonds, or “structured in-
teraction networks” in biological and social networks, where
nodes refer to entities (proteins, people, etc.) and edges
represent their relationships. Central to high performance
graph analytics over such data, is to locate patterns in dataset
graphs. Informally, given a graph dataset and a query (a.k.a.
pattern) graph g, the goal is to return stored graphs that con-
tain g (subgraph querying) or are contained in g (supergraph
querying). These operations are costly, as they entail the NP-
Complete subgraph isomorphism problem[1]. This is further
aggravated when the dataset consists of a large number of
graphs, as testing g for subgraph isomorphism against all of
them would require a very large amount of time.

The prominent solution to subgraph/supergraph querying
follows a filter and verify paradigm. Figure 1 illustrates the
case of subgraph querying, comprising three major stages:

1) Indexing: Dataset graphs are reduced to their features
(i.e., substructures of the graph, such as paths, trees,
cycles, or arbitrary subgraphs), which are then indexed
in an appropriate data structure (index).

2) Filtering: Query graph g is decomposed into its fea-
tures, which are then compared against the index, so as
to drop stored graphs that do not contain all features of
g and produce the query’s candidate set CS(g).

3) Verification: Filtering can produce false positives – i.e.,
graphs in CS(g) do contain all features of g but not
necessarily g itself; thus each of these graphs needs to
undergo an expensive subgraph isomorphism test vs g.

Graph Dataset

Dataset 
Graph
Index

Query g
Candidate 
Set CS(g)

Subgraph
Isomorphism 

Test
Result

Figure 1. The filter and verify paradigm

In most real-world scenarios the verification stage is by far
dominating the query processing time, and thus related work
focuses on reducing the candidate set size. Approaches can
be characterized by the way they produce features (e.g., data
mining for frequent and discriminative features, exhaustive

enumeration of all features up to a limit feature size) and
feature types (e.g., paths, trees, cycles, general graphs, etc.).
Mining based methods ([2], [3], [4]) utilize data mining
techniques to produce features. gIndex[5] and FG-Index[6]
mine for frequent (sub)graphs among the dataset graphs,
while Tree+∆[7] and TreePi[8] mine for and index frequent
trees (Tree+∆ can also index (sub)graphs). Such approaches
tend to mine for complex structures, which are expected
to have higher filtering power and thus pay off the expen-
sive mining cost of the indexing stage. Enumeration based
methods SING[9], GraphGrep[10], GraphGrepSX[11] and
Grapes[12] list all paths of dataset graphs, whereas CT-
Index[13] indexes trees and cycles. Exhaustive enumeration
can yield a large amount of features and thus make the
index too large to fit in memory. As a result, all exhaustive
enumeration approaches limit the size of features, usually
to a small number of edges (i.e., 10 or less). In addition,
some approaches (e.g., [9], [12], and [8]) manage to utilize
location information stored in the index (for those graphs
that survive the filtering process) to achieve further pruning.
Essentially, all these approaches are utilizing the knowledge
of dataset graphs characteristics to answer queries.

The key observation for our work is the realization that
in real applications, queries share subgraph or supergraph
relationships with each other. Think of the hierarchy of
queries in protein-interaction datasets, where query graphs
can vary from aminoacids, and proteins, to protein mixtures
and proteins of uni- or even multi-cell bacteria and organ-
isms. Up to now, this natural relationship among queries has
not been exploited.

II. OUR PROPOSAL

We propose a solution, coined iGQ, which can identify
whether a new query g is a subgraph or supergraph of
previously issued queries, and reuses the (positive and
negative) results of the latter to expedite g. The goal is for
iGQ to be incorporated into any subgraph or supergraph
query processing framework. It will piggyback on said
framework (let us call it method M) and augment it with
the iGQ index I. The latter consists of two components, Isub
and Isuper, usable for answering subgraph and supergraph
queries respectively.

Figure 2 illustrates how the system operates. Method M is
used to index the dataset graphs, while I starts off empty and
is populated as new queries are processed. Upon the arrival



of a query g, the query processing proceeds in three parallel
threads. One thread employs method M to decompose g
into its features and to produce the candidate set CS(g). The
two remaining threads operate on Isub and Isuper to identify
related previous queries and retrieve their results. These
three components combined, lead to significant reductions
in the number of subgraph isomorphism tests by further
pruning CS(g).

Figure 2. The iGQ framework

Operations on Isub and Isuper actually represent a mi-
crocosm of the original problem, i.e., subgraph/supergraph
query processing. Rather than indexing the dataset graphs,
here we index previous query graphs and derive the subset
of them which contain the query graph (subgraph querying)
or are contained in the query graph (supergraph querying).
For this reason, any approach from the related works can be
adapted to process I.

III. PERFORMANCE EVALUATION

We tested the performance gains of an initial imple-
mentation of iGQ on several high performance subgraph
querying methods, including GGSX[11], Grapes[12], and
CT-Index[13], over real datasets. For Grapes, we present two
alternatives: Grapes and Grapes(6), with the latter using 6
threads to improve query processing with parallelism.

The two real-world datasets we employed exhibit different
characteristics. AIDS[14] contains topological structures of
40,000 molecules. Graphs in AIDS are small, with on
average ≈45 vertices (std.dev.: 22, max: 245) and ≈47 edges
(std.dev.: 23, max: 250) per graph. PDBS[15] is a database
of 600 graphs representing DNA, RNA and proteins, with
on average ≈2,939 vertices (std.dev.: 3,217, max: 16,431)
and ≈3,064 edges (std.dev.: 3,264, max: 16,781) per graph.

We create the workloads, following the method for gen-
erating queries as found in the related works using these
datasets[16]. Here, queries are generated from the original
dataset graphs using random walks as follows. First, a
graph is selected uniformly at random from the dataset
graphs. Then an edge is selected uniformly at random within
this graph. Finally, a random neighboring edge is selected
uniformly at random and this continues so until the chosen
number of edges is reached. Once a set of query graphs
of a specific size is generated, then it is used to derive the
query graphs of the next smaller size, etc. For AIDS dataset,

Figure 3. Average number of subgraph isomorphism tests for AIDS.

Figure 4. Average number of subgraph isomorphism tests for PDBS.

we generated queries having a predefined size (4, 8, 12, 16,
and 20 edges). A similar process was followed for PDBS,
except that query sizes consisted of 20, 40, 60, 80, and 100
edges (as the dataset graphs of PDBS are much larger). Each
workload consists of 500 queries, 100 per query size.

We first examine the filtering power, which is reflected
by the number of subgraph isomorphism tests to perform.
The following figures show for each algorithm the number
of subgraph isomorphism tests performed, broken down
into the number of false positives (i.e., candidate graphs
which were not in the final answer set, shown as “False
Positive”) and the number of true positives (i.e., candidate
graphs which were indeed in the final answer set, denoted
as “Answer”). Figures 3 and 4 show the case of AIDS and
PDBS, respectively. We stress that iGQ reduces both the
number of false positives and the number of true positives
that need to undergo subgraph isomoprhism testing.

We now turn to query processing time, incurred by the
four methods and their iGQ counterparts. Figures 5 and
6 show the query processing time of AIDS and PDBS, in
line with corresponding figures on the number of subgraph
isomorphism tests. Note that the filtering time overhead of
iGQ is always very low, testifying that the overhead of
processing queries for the subgraph and supergraph cases
is a non-factor in overall query processing time.

Figures 7 and 8 quantify the performance improvements
introduced by iGQ over all datasets/workloads and across
all four methods. It is instructive to analyze figures 7 and
8 together. The key is that reductions in the number of
required subgraph isomorphism tests achieved by iGQ do
not translate necessarily into equivalent reductions in the
average query times.



Figure 5. Average query processing time in AIDS.

Figure 6. Average query processing time in PDBS.

Figure 7. Average subgraph isomorphism tests reduction across workloads
over GGSX, CT-Index, Grapes/(6).

Figure 8. Average query processing time reduction across workloads over
GGSX, CT-Index, Grapes/(6).

Finally, it is important to note that in the PDBS case,
Grapes(6) outperforms CT-Index (see Figure 4 and 6),
whereas the reverse holds in the AIDS case (Figure 3
and 5). This leads to an important conclusion: Among the
best performing methods in the literature, no method is
a clear winner in all datasets/workloads. So the elusive
goal is to achieve solid performance regardless of the
dataset/workload.

IV. CONCLUSION AND CHALLENGE

In a nutshell, iGQ has shown great potential to exploit
sub/supergraph relationships among queries and utilize the
results of past queries to expedite future query processing.
iGQ acts as an accelerator of method M with impressive

performance gains, by removing unnecessary subgraph iso-
morphism tests. Such unnecessary tests are not only caused
by false positives, but also graphs that are true positive.
Remaining challenges entail the formal proofs of correctness
for iGQ, efficient algorithms and structures of its main
threads, and the definition of proper algorithms for the
management of iGQ contents. The latter crucially contains a
replacement policy for (query) graphs, which fundamentally
differs from standard cache replacement policies.

REFERENCES

[1] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman,
1979.

[2] C. Chen et al., “Towards graph containment search and
indexing,” in Proc. VLDB, 2007.

[3] G. Zhu et al., “Prefindex : An efficient supergraph contain-
ment search technique,” in Proc. SSDBM, 2010.

[4] S. Zhang, J. Li, H. Gao, and Z. Zou, “A novel appropre-
findexach for efficient supergraph query processing on graph
databases,” in Proc. EDBT, 2009.

[5] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent
structure-based approach,” in Proc. ACM SIGMOD, 2004.

[6] J. Cheng, Y. Ke, W. Ng, and A. Lu, “FG-index: towards
verification-free query processing on graph databases,” in
Proc. ACM SIGMOD, 2007.

[7] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree + delta
>= graph,” in Proc. VLDB, 2007.

[8] S. Zhang, M. Hu, and J. Yang, “TreePi: A Novel Graph
Indexing Method,” in Proc. IEEE ICDE, 2007.

[9] R. Di Natale et al., “Sing: Subgraph search in non-
homogeneous graphs,” BMC bioinformatics, vol. 11, no. 1,
2010.

[10] R. Giugno and D. Shasha, “GraphGrep: A fast and universal
method for querying graphs,” in Proc. IEEE ICPR, 2002.

[11] V. Bonnici, et al., “Enhancing graph database indexing by
suffix tree structure,” in Proc. IAPR PRIB, 2010.

[12] R. Giugno et al., “Grapes: A software for parallel searching
on biological graphs targeting multi-core architectures,” PloS
One, vol. 8, no. 10, 2013.

[13] K. Klein, N. Kriege, and P. Mutzel, “CT-index: Fingerprint-
based graph indexing combining cycles and trees,” in Proc.
IEEE ICDE, 2011.

[14] NCI - DTP AIDS antiviral screen dataset, “http://dtp.nci.nih.
gov/docs/aids/aids data.html.”

[15] Y. He, et al., “Structure of decay-accelerating factor bound
to echovirus 7: a virus-receptor complex,” PNAS, vol. 99, pp.
10 325–10 329, 2002.

[16] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu, “iGraph:
A framework for comparisons of disk-based graph indexing
techniques,” PVLDB, vol. 3, no. 1-2, pp. 449–459, 2010.


