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Delay-Rate Tradeoff for Ergodic Interference Alignment in the
Gaussian Case

Joseph C. Koo, William Wu, and John T. Gill, III

Abstract— In interference alignment, users sharing a wireless
channel are each able to achieve data rates of up to half of
the non-interfering channel capacity, no matter the number
of users. In an ergodic setting, this is achieved by pairing
complementary channel realizations in order to amplify signals
and cancel interference. However, this scheme has the possibility
for large delays in decoding message symbols. We show that
delay can be mitigated by using outputs from potentiallymore
than two channel realizations, although data rate may be
reduced. We further demonstrate the tradeoff between rate
and delay via a time-sharing strategy. Our analysis considers
Gaussian channels; an extension to finite field channels is also
possible.

I. I NTRODUCTION

The technique of interference alignment has expanded
what is known about achievable rates for wireless interfer-
ence channels. First proposed by Maddah-Aliet al. [1] and
then applied to wireless interference channels by Cadambe
and Jafar [2], interference alignment employs a transmis-
sion strategy that compensates for the interference channel
between transmitters and receivers. At each receiver, the
interference components can then be consolidated into a part
of the channel that is orthogonal to the signal component.
In fact, the interference is isolated to half of the received
signal space, while the desired signal is located in the other
half—leading to the statement that every receiver can have
“half the cake.” This is a significant improvement over every
receiver receiving only1/K of the cake, which is the case
if standard orthogonalization techniques are used (whereK
is the number of transmitter-receiver pairs).

Interference alignment in an ergodic setting is studied in
Nazeret al. [3], and provides the basis for our analysis. Using
their Gaussian achievable scheme, we delve deeper into the
associated decoding delays and consider how delays may be
reduced, although at the cost of decreased rate. Even though
the analysis in [3] additionally considers a scheme for finite
field channels (also similar to the method in [4]), we defer
to the reader the extension of our analysis to the finite field
case.

Our approach for reducing delays is to consider interfer-
ence alignment where alignment may require more than one
additional instance of channel fading. In [3], interference is
aligned by transmitting the same message symbol during
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complementary channel realizations. In contrast, our ap-
proach will utilize multiple channel realizations (potentially
more than two), which when summed together yield can-
celled interference (and amplified signal). We call such a set
of channel matrices analignment set—which will be more
formally defined later. Using multiple channel realizations to
align interference has also been studied in [5] for different
cases of receiver message requirements; however, we instead
consider how to utilize these many channel realizations to
reduce the delay of individual messages at each receiver. At
first glance, it may seem that using alignment sets of larger
sizes will only increase the delay; but if we allow alignment
using alignment sets of multiple sizes simultaneously, then
we can decrease the time required for a message symbol to
be decoded.

We now give a simple example of an alignment set and
show the concept of ergodic interference alignment.

Example 1:Consider a3-user Gaussian interference chan-
nel with channel response given byY = HX + Z, where
X denotes the transmitted symbols (with power constraint
E[|Xk|2] ≤ P for each userk = 1, 2, 3), H is the channel
matrix, Z is independently and identically distributed zero-
mean unit-variance additive white Gaussian noise, andY

gives the received symbols. Suppose the following channel
matrices occur at time stepst0, t1, t2, andt3, respectively:

H
(0) =





1 −1 1
1 1 −1

−1 1 1



 H
(1) =





1 −1 −1
−1 1 1
1 1 1





H
(2) =





1 1 −1
−1 1 1
−1 −1 1



 H
(3) =





1 1 1
1 1 −1
1 −1 1





.

If the same [complex] vectorX is sent at all these times, then
the sum of the non-noise terms is given by

∑3
i=0 H

(i)X =

4[X1, X2, X3]
T because

∑3
i=0 H

(i) = 4I. By utilizing
all four channel realizations together, the signals (diagonal
entries) are amplified, while the interference terms (off-
diagonal entries) are cancelled, so this collection of matrices
is an alignment set. As long as a receiver knows when
an alignment set occurs, then in order to decode his own
message, he does not need to know the channel fades to the
other receivers.

Inferring from [6] or [7], the astute reader may notice
that in the example, the sum capacity when sending across
each channel matrix separately is actually greater than the
alignment rate—a capacity of4 log(1 + 3P ) for separate
coding, compared to a rate of3 log(1 + 4P ) by using the
indicated interference alignment scheme. However, when the
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number of transmitters (and receivers) exceeds the number of
alignment channel realizations, then the rate benefits of using
alignment sets start to become evident. Aligning across4
channel realizations withK transmitter-receiver pairs, a rate
of K log(1+4P ) is achievable, which can quickly eclipse the
separate-coding sum capacity of4 log(1 +KP ). Moreover,
as we will discuss, the benefit of using larger alignment sets
is not in the rate, but rather in the reduction of decoding
delay.

In the next section, we will formally describe the inter-
ference alignment setup, and define our notions of rate and
delay. In Section III, we will take a brief look at the conven-
tional ergodic interference alignment scheme, by considering
the rate and delay inherent in aligning interference using
complementary channel realizations. Section IV will give
the main result of this work, which is the analysis of rate
and delay when aligning interference by utilizing multiple
channel realizations. We will also give a scheme for trading
off the rate and the delay. We conclude in Section V.

II. PRELIMINARIES

The setup is the same as theK-user interference channel
of [3] and [5], where there areK transmitter-receiver pairs.
The number of channel uses isn. For thek-th transmitter,
k = 1, . . . ,K, each messagewk is chosen independently
and uniformly from the set{1, 2, . . . , 2nR̃k} for someR̃k ≥
0. Only transmitterk knows messagewk. Let X be the
channel input and output alphabet. The messagewk is
encoded into then channel uses using the encoderEk :
{1, 2, . . . , 2nR̃k} → Xn. The output of the encoding function
is the transmitted symbolXk(t) = [Ek(wk)]t at time t, for
t = 1, . . . , n.

The communication channel undergoes fast fading, so the
channel fades change at every time step. At timet, the
channel matrixH(t) has complex entries[H(t)]kl = hkl(t)
for k, l = 1, . . . ,K. In this model, all transmitters and
receivers are given perfect knowledge ofH(t) for all timest.
We call H to be the set of all possible channel fading
matrices.

The message symbolXk(t) is transmitted at timet. We
assume zero delay across the channel, so the channel output
seen by receiverk at time t is the received symbol

Yk(t) =

K
∑

l=1

hkl(t)Xl(t) + Zk(t), (1)

whereZk(t) is an additive noise term. Each receiverk then
decodes the received message symbols according toDk :
Xn → {1, 2, . . . , 2nR̃k}, to produce an estimatêwk of wk.

Definition 1: The ergodic rate tuple(R1, R2, . . . , RK) is
achievable if for all ǫ > 0 and n large enough, there
exist channel encoding and decoding functionsE1, . . . , EK ,
D1, . . . ,DK such thatR̃k > Rk − ǫ for all k = 1, 2, . . . ,K,
andP

(

⋃K
k=1{ŵk 6= wk}

)

< ǫ.
We assume a Gaussian channel with complex channel

inputs and outputs, soX = C. Each transmitterk has power
constraint

E[|Xk(t)|
2] ≤ SNRk,

whereSNRk ≥ 0 is the signal-to-noise ratio. The channel
coefficientshkl(t), k, l = 1, . . . ,K, are independently and
identically distributed both in space and time. We require
also thathkl be drawn from a distribution which is symmetric
about zero, soP (hkl) = P (−hkl). The noise termsZk(t)
are drawn independently and identically from a circularly-
symmetric complex Gaussian distribution; thus,Zk(t) ∼
CN (0, 1).

A. Channel Quantization

In this exposition, we consider quantized versions of the
channel matrix. For some quantization parameterγ > 0, let
Qγ(hkl) be the closest point in(Z+jZ)γ to hkl in Euclidean
distance. Theγ-quantized version of the channel matrixH ∈
C

K×K is given by the entries[Hγ ]kl = Qγ(hkl).
Our scheme uses typical realizations of the channel matri-

ces. For anyǫ > 0, choose the maximum magnitudeτ > 0
such thatP (

⋃

k,l{|hkl| > τ}) < ǫ
3 . Throw out all time

indices with any channel coefficient magnitude larger thanτ .
Let γ andδ be small positive constants. Then choosen large
enough so that the typical set of sequencesAn

δ of channel
matrices has probabilityP (An

δ ) ≥ 1− ǫ
3 (see [3] for details).

Because this sequence ofγ-quantized channel matrices isδ-
typical, the corresponding rate decrease is no more than a
fraction of δ.

In the remainder of this paper, we will only deal with
the γ-quantized channel matricesHγ , so we drop the sub-
script γ; all further occurrences ofH refer to the quantized
channel realizationHγ . We also redefine the channel alpha-
bet H to only include the typical set of quantized channel
matrices, which has cardinality|H| = (2τ/γ)2K

2

.

B. Aligning Interference

In the standard interference alignment approach, the inter-
ference is aligned by considering the channel matrixH in
tandem with its complementary matrixHc, where

Hc =











h11 −h12 · · · −h1K

−h21 h22 · · · −h2K

...
...

. . .
...

−hK1 −hK2 · · · hKK











.

That is,Hc has entrieshkl for k = l and−hkl for k 6= l.
For alignment using more channel realizations, we define

the concept of an alignment set.
Definition 2: An alignment setof size m ∈ 2Z+ is a

collection of matricesA = {H(0),H(1), . . . ,H(m−1)} such
that the diagonal entries (signal terms) are the same:

h
(0)
kk = h

(1)
kk = · · · = h

(m−1)
kk (2)

for k = 1, . . . ,K, and the sum of interference terms cancel:
∣

∣

∣
h
(0)
kl

∣

∣

∣
=

∣

∣

∣
h
(1)
kl

∣

∣

∣
= · · · =

∣

∣

∣
h
(m−1)
kl

∣

∣

∣
(3)

and
∣

∣

∣
{h

(i)
kl = h

(0)
kl | i = 1, . . . ,m− 1}

∣

∣

∣
=

m

2
− 1 (4)

∣

∣

∣
{h

(i)
kl = −h

(0)
kl | i = 1, . . . ,m− 1}

∣

∣

∣
=

m

2
(5)



for k = 1, . . . ,K, l = 1, . . . ,K, k 6= l. Within an alignment
set, the sum of channel matrices,B =

∑m−1
i=0 H(i), will

have entriesbkk = mh
(0)
kk and bkl = 0, for k, l = 1, . . . ,K,

k 6= l. We denoteAH to be an alignment set of whichH
is a member.

We have seen some examples of alignment sets already.
Any channel realizationH and its complementHc together
form an alignment set of size2. Additionally, the set of
matrices given in Example 1 is an alignment set of size4.

Since channel transmission is instantaneous, the only delay
considered is due to waiting for the appropriate channel
realizations before a message symbol can be decoded.

Definition 3: Theaverage delayof an ergodic interference
alignment scheme is the expected number of time steps
between the first instance a message symbolX is sent and
the time untilX is recovered at the receiver.

If X(t0) is sent at timet0 but can not be decoded until
the appropriate interference alignment occurs at timet1, then
the delay ist1 − t0. Note that the delay does not consider
the decoding of the entire messagewk—just the symbols
transmitted at each individual time,Xk(t), k = 1, . . . ,K.

III. I NTERFERENCEALIGNMENT USING

COMPLEMENTARY CHANNEL REALIZATION

The method of interference alignment via sending the
same channel input vector when a complementary channel
realization occurs is given in [3]. CallR(2)

k the achievable
rate for interference alignment using complements (i.e.,
requiring two channel realizations before decoding each
message symbol).

Lemma 1 ([3, Theorem 3]):An achievable rate tuple by
aligning using complementary channel realizations is

R
(2)
k = 1

2E[log(1 + 2|hkk|2SNRk)]

for k = 1, . . . ,K, where the expectation is over the dis-
tribution of channel fadeshkk drawn from the matrices in
H.

When a channel realizationH occurs, then the sent mes-
sage symbol is decoded when the complementary channel
realizationHc occurs. Letd(2) denote the average delay
between channel realizationsH andHc.

Lemma 2:When all channel realizations are equally
likely, the average delay incurred by interference alignment
with complementary channel realizations isd(2) = |H|.

Proof: Each channel realization is equally likely at
each time. The time untilHc occurs is a geometric random
variable with parameterP (Hc) = 1/|H|. The average delay
is |H|.

Note that the delayd(2) can be quite large. Using our
quantization scheme,d(2) = |H| = (2τ/γ)2K

2

.

IV. I NTERFERENCEALIGNMENT USING MULTIPLE

CHANNEL REALIZATIONS

This section will focus on using alignment sets of sizes
m = 2 andm = 4. Extensions for larger alignment sets will
be discussed in Section IV-C.

For ease of analysis, we assume that each channel realiza-
tion H is equally likely, although the ideas presented may be
readily extended to the cases where the distribution of chan-
nel realizations is non-uniform. However, for this particular
interference alignment scheme to work, all channel realiza-
tions within the same alignment set must be equiprobable: for
an alignment setAH = {H,H(1),H(2), . . . ,H(m−1)}, we
require thatP (H) = P (H(1)) = P (H(2)) = P (H(m−1)).
Fortunately, this holds since we assume that channel entries
are drawn from distributions that are symmetric about zero.

A. First-to-Complete Alignment

We call the following scheme for achieving lower delay
the first-to-completescheme, which is essentially a coupon-
collecting race between an alignment set of size2 and an
alignment set of size4. For some channel realizationH ∈ H
(occurring at a timet0)—since the entire future of channel
realizations is known—we can collect the realizations occur-
ring at future timest > t0. Now we say that an alignment
set AH of size 4 has beencompletedonce all matrices
H̃ ∈ AH have been realized. IfHc occurs beforeAH

is completed, then pair upH with that realization ofHc.
Otherwise, group togetherH with the other members of the
alignment setAH .

We derive the achievable rate by separately finding the
rates when decoding using alignment sets of different sizes,
and then weighting these rates by the probabilities that a
particular-sized set is completed before the other. From [3],
if H at timet0 is paired withHc at timet1, then the same
symbol vectorX(t0) is transmitted at both timest0 andt1.
Since this is alignment with channel complements, the rate
Rk = 1

2E[log(1 + 2|hkk|2SNRk)] − ǫ is achievable with
probability1− ǫ.

Now we find the rate whenH at time t̂0 = t0 is instead
grouped with the members of its size-4 alignment setAH .
Assume that the channel realizations of the other members of
the alignment set occur at timest̂1, t̂2, and t̂3, respectively.
In the scheme, we send the same message symbolXk(t̂0) at
times t̂0, t̂1, t̂2, and t̂3. The channel outputs are

Yk(t) = hkk(t)Xk(t̂0) +
∑

l 6=k

hkl(t)Xl(t̂0) + Zk(t) (6)

for t = t̂0, t̂1, t̂2, t̂3. From the alignment set definition,
we know hkk(t̂0) = hkk(t̂1) = hkk(t̂2) = hkk(t̂3) and
hkl(t̂0) + hkl(t̂1) + hkl(t̂2) + hkl(t̂3) = 0 for k = 1, . . . ,K
andl 6= k. Thus, the signal-to-interference-plus-noise ratio of
the channel fromXk(t̂0) to Yk(t̂0)+Yk(t̂1)+Yk(t̂2)+Yk(t̂3)
is at least

SNRk((4|ℜ(hkk)| − 2γ)2 + (4|ℑ(hkk)| − 2γ)2)

4 + (2γ)2
∑

l 6=k SNRl
.

Taking the channel quantization parameterγ → 0, the SINR
is 4|hkk|2SNRk, which gives the rate (asτ → ∞):

Rk = 1
4E[log(1 + 4|hkk|2SNRk)]−

2ǫ
3 . (7)
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Fig. 1. Success runs Markov chain associated with first-to-complete
alignment. States indicate progress towards completion ofthe alignment
sets. Quantities above the arrows indicate transition probabilities.

Thus there existγ and τ such that we achieveRk >
1
4E[log(1 + 4|hkk|2SNRk)]− ǫ with probability1− ǫ when
aligning using an alignment set of size4.1

Recall thatH at timet0 is only grouped with the channel
realizations of the alignment set which completes first, so
that the realizations corresponding to the other alignmentsets
are not associated withH and can be used for some other
transmissions. For example, ifHc occurs between timeŝt1
andt̂2 (i.e., t0 < t̂1 < t1 < t̂2 < t̂3), then since the transmit-
ter knows the sequence of channel realizations in advance,
it may avoid utilizingH(t̂1) to sendX(t0), which would
become a wasted transmission whenHc occurs at timet1.
In this example, decoding is via channel complements, so
X(t0) is sent during timest0 andt1, but never during times
t̂1, t̂2, and t̂3.

We now determine the probability that the first-to-
complete scheme decodes using the alignment set of size4
rather than the alignment set of size2. This can be computed
by considering a Markov chain with the following states:

s−1: Decode usingH and its complement,Hc

s0: No matches yet to any alignment set
s1: First match with size-4 alignment set
s2: Second match with size-4 alignment set
s3: Third match with size-4 alignment set, so decode usingAH

The Markov chain is shown in Figure 1. Statess−1 ands3 are
absorbing. Because this is a success runs Markov chain [8],
its absorption probabilities and hitting times are known. The
probability of decoding via the alignment set of size4 is the
probability of absorption at states3 starting from states0,
and is computed to beβ4 = 1/4. Note thatβ4 does not
depend on the number of possible channel realizations,|H|.
This is intuitive since matrices not belonging to an alignment
set do not affect the probability that one set completes before
another.

Lemma 3:An achievable rate tuple for the first-to-
complete scheme has rates (for allk = 1, . . . ,K):

R
(2,4)
k = 3

8E[log(1 + 2|hkk|2SNRk)]

+ 1
16E[log(1 + 4|hkk|2SNRk)].

Proof: Because decoding via the size-2 alignment set
occurs 1 − β4 of the time, and decoding via the size-4
alignment set occursβ4 of the time, an achievable rate is
R

(2,4)
k = 1

2 (1−β4)E[log(1+2|hkk|2SNRk)]+
1
4β4E[log(1+

4|hkk|2SNRk)]. Plugging inβ4 = 1/4 gives the result.

1Higher rates may be possible by optimizing power allocations, for
example via water-filling. Here we only consider rates achievable using
equal-power allocations.

Lemma 4:For the first-to-complete scheme, the average
decoding delay isd(2,4) = (3/4)|H| = (3/4)d(2).

Proof: The delay until either alignment set is completed
is the mean hitting time until one of the corresponding
absorption states is reached in the Markov chain of Figure 1.
A simple computation for the hitting time yieldsd(2,4) =
(3/4)|H|.

B. Delay-Rate Tradeoff

Although the first-to-complete scheme achieves lower de-
lay than interference alignment using only complements,
it has the drawback of having lower rate. By using time-
sharing, we can achieve any delayd such that(3/4)|H| =
d(2,4) ≤ d ≤ d(2) = |H|, and every userk ∈ {1, . . . ,K}

will still have increased data rate over that ofR
(2,4)
k .

In the time-sharing scheme, with probability1−α where
0 ≤ α ≤ 1, pair up H with the first instance ofHc

which occurs later in time; this is alignment using only
complements. With probabilityα, however, perform the first-
to-complete scheme: pair upH with Hc only if Hc occurs
before any alignment set of size4 is completed; otherwise,
groupH with the size-4 alignment set which completes first.

Theorem 5:The achievable rate when time-sharing with
probabilityα of using the first-to-complete scheme is

Rk(α) = (1− α)R
(2)
k + αR

(2,4)
k

= 1
2

(

1− α
4

)

E[log(1 + 2|hkk|2SNRk)]

+ α
16E[log(1 + 4|hkk|2SNRk)].

Proof: Evident.
Theorem 6:The average delay when time-sharing is

d(α) = (1− α)d(2) + αd(2,4) = (1− α/4)|H|.
Proof: Evident.

Corollary 7: The average delay, when time-sharing be-
tween the first-to-complete scheme (using alignment sets of
both sizes2 and 4) and channel-complement alignment, is
lower than the average delay when using only complements.

Proof: By choosing anyα > 0, we get delayd(α)
strictly less than|H| = d(2).

The reduced delay is an intuitive result since the first-
to-complete scheme allows additional opportunities to align,
without disallowing existing opportunities.

C. Extension to Larger Alignment Sets

We now extend our analysis to more general collections
of alignment sets. Consider a finite tuple of positive even
numbersI = (m1,m2, . . . ,m|I|), possibly with repetitions.
We generalize first-to-complete alignment by using non-
overlapping alignment sets with sizes dictated by the entries
of I. As soon as all members of any particular alignment
set have been seen, we say that that alignment set has
been completed; we transmit and decode using the particular
alignment set. As an example, the first-to-complete alignment
scheme given in the first part of this section corresponds to
I = (2, 4). For the case of a general tupleI, the process is
identical to the multiple subset coupon collecting problemof
Chang and Ross [9], in which coupons are repeatedly drawn



TABLE I

ABSORPTIONPROBABILITIES AND DELAYS†

Set sizes Absorption probability Delay

I βI
m1

βI
m2

βI
m3

dI

(2, 4) 0.75 0.25 0.75|H|
(2, 6) 0.8333 0.1667 0.8333|H|
(2, 4, 4) 0.6429 0.1786 0.1786 0.6429|H|
(2, 4, 6) 0.6944 0.2083 0.0972 0.6944|H|
(4, 4) 0.5 0.5 1.2167|H|
(4, 6) 0.625 0.375 1.3988|H|
(4, 8) 0.7 0.3 1.4972|H|
(4, 4, 4) 0.3333 0.3333 0.3333 0.9790|H|
(6, 10) 0.6429 0.3571 1.8607|H|

† For values to be valid,|H| ≥ 1 +
∑|I|

i=1(mi − 1) must hold.

with replacement until any one of several preordained subsets
of coupons have been collected.

To compute the achievable rates(RI
1, R

I
2, . . . , R

I
K) and

delaydI associated with running first-to-complete alignment
amongI-sized alignment sets, we construct the associated
Markov chain. The state vectors = (s1, s2, . . . , s|I|) is
defined so that elementsi counts how many members of
the i-th alignment set have already occurred, excluding the
initial matrixH . Initially, the Markov chain is at states = 0,
since no alignment set member aside fromH has yet been
realized. At each timet, if H(t) is a member of thêı-th
alignment set and has not yet been realized, then increment
sı̂ := sı̂ + 1. When sı̂ = mı̂ − 1 for some ı̂, this means
that theı̂-th alignment set (of sizemı̂) has been completed.
The Markov chain enters an absorbing state, and the receiver
decodes. LetV denote the set of absorbing states. The state
transition probabilities are

Ps,s′ =























mı̂−1−sı̂
|H| s′ı̂ = sı̂ + 1 for someı̂, . . .

s′i = si for all i 6= ı̂, s 6∈ V

1−
∑

i

mi−1−si
|H|

s
′ = s, s 6∈ V

1 s
′ = s, s ∈ V (absorption)

0 otherwise

.

Let βI
m be the probability that the first completed alignment

set is the alignment set of sizem ∈ I. Equivalently,
βI
m is the probability that the Markov chain reaches the

absorption state corresponding to the completion of a specific
size-m alignment set. These absorption probabilities can be
computed via matrix inversion (see the Appendix or Taylor
and Karlin [8] for more details). Table I gives example values
for βI

m.
Following a similar argument as in Lemma 3, the rate for

receiverk ∈ {1, . . . ,K} by using a first-to-complete scheme
with specific alignment sets of sizes drawn fromI is

RI
k =

∑

m∈I

1

m
βI
mE[log(1 +m|hkk|

2SNRk)].

We now incorporate time-sharing and describe the delay-
rate tradeoff. LetI be a finite collection of these tuplesI;
that is, I ⊆ {I = (m1, . . . ,m|I|) | mi ∈ 2Z+}. We
can do time-sharing between first-to-complete schemes, with
sizes drawn fromI ∈ I, according to the vectorα =

(αI1 , αI2 , . . . , αI|I|
) where

∑

I∈I αI = 1 andαI ≥ 0 for
all I ∈ I. The rate will be

Rk(α) =
∑

I∈I

αIR
I
k. (8)

Alternatively, to be explicit about the rates due to alignment
sets of particular sizes, the rate can also be written as

Rk(α) =
∑

m∈2Z+

(

∑

I∈I :m∈I

αIβ
I
m

)

1

m
E[log(1+m|hkk|

2SNRk)].

The average delay using alignment sets of sizesI =
(m1,m2, . . . ,m|I|) is equal to the mean absorption time for
the Markov chain. From [9], by using Poisson embedding,
this delay can be computed as2

dI = |H|

∫ 1

0

1

1− u

|I|
∏

i=1

(1 − umi−1) du. (9)

Table I gives average delays for some representative collec-
tions of alignment sets. Then the delay using time-sharing
is

d(α) =
∑

I∈I

αId
I , (10)

which is linear in the number of possible channel realiza-
tions, |H|.

From Table I, we can make an observation regarding
the computed absorption probabilities and associated de-
lays. When the first alignment set has size2, notice that
dI = βI

2 |H|. This holds for any tupleI which contains an
alignment set of size2 (see Appendix).

D. Further Considerations

In this analysis, we only consider alignment sets that do
not share any common matrices. However, as the number of
allowable sizes,|I|, grows larger, this condition will become
harder to fulfill since there will be greater potential for
collisions. Finding tuples of alignment sets such that there
are no overlapping channels is an avenue for future work.
One thing to note is that because only2K(K−1) matrices
satisfyh(i)

kk = hkk and |h
(i)
kl | = |hkl| for k = 1, . . . ,K and

2This evaluates to an inclusion-exclusion sum of harmonic numbersHn:

dI = |H|





∑

U⊆I,U 6=∅

(−1)1−|U|H(−|U|+
∑

m∈U
m)



 .

The delay can also be expressed analytically using the digamma function
Ψ, giving

dI = |H|
∑

U⊆I

(−1)1−|U|Ψ



1− |U |+
∑

m∈U

m





= |H|



γ +
∑

m1∈I

Ψ(m1) −
∑

m1,m2∈I

Ψ(−1 +m1 +m2)

+
∑

m1,m2,m3∈I

Ψ(−2 +m1 +m2 +m3)− · · ·



 ,

whereγ is the Euler-Mascheroni constant. Also, from [9], we can findthe
variance of this delay, as well as the average delay when alignment sets
overlap.
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Fig. 2. Plot showing the decrease of the delay linear scalingfactor, for
multiple disjoint alignment sets of size4. The number of alignment sets of
size4 is n. Thus each point represents the delay associated with the tuple
I = (4, 4, 4, . . .), where the tuple hasn elements.

l 6= k, an alignment set of sizem = 2K(K−1) would consist
of all possible channel matrices which might align withH,
and so necessarily must collide with any other alignment set.

A related issue is that of allowing decoding usingall
alignment sets of a particular sizem, of which there are
(

m−1
m/2

)K(K−1)
such alignment sets. For example, a system

could choose to perform first-to-complete alignment among
anyalignment set of sizes2 and4. Because non-intersection
between different alignment sets may no longer be guaran-
teed, the analysis will be more complicated.

From Table I, we can start to notice the potential for
delay reduction via using multiple alignment sets of the
same size. Although the delay will still scale linearly in
|H|, it is possible to significantly reduce the delay below
d(2) = |H|. As an example, from Figure 2 we can observe the
behavior of the linear scaling factor, in the case of allowing
alignment using more and more size-4 alignment sets.3 Thus
a deeper consideration of alignment with multiple same-size
alignment sets may be a fruitful area for further inquiry.

There are myriad other ways in which alignment may
occur; i.e., there is more than one way to align channel
matrices. Definition 2 gives one set of sufficient conditions
for channel realizations to align, in order to keep the analysis
tractable—and the benefits which arise by considering larger
alignment sets are already evident. An obvious extension to
this would be to consider alignment sets in which arbitrary
linear combinations add up to multiples of the identity, andto
only consider alignment among subsets of users. Subsequent
work by [10] takes a step in this direction.

The moral of this story, however, is that delay can always
be reduced by allowing alignment using a greater number
of possible choices of alignment sets. The data rate may
decrease correspondingly, so the tradeoff needs to be appro-
priately chosen according to the needs of the communication
system.

3Of course, the trend shown in the Figure 2 only holds for scenarios
where the number of usersK is large enough that there exists enough
distinct alignment sets of size4 for alignment.

V. CONCLUSION

In our analysis, we have not considered the delays between
when a message symbol is available and when it is first
transmitted. We have only defined delay as the time between
when the symbol is first transmitted and when it is able to
be recovered by the receiver. We believe this is a reasonable
metric of delay, as long as message symbols are not all
generated at one time. However, an analysis using queueing
theory may be necessary to verify this claim.

In this work, we have proposed an interference align-
ment scheme which reduces delay, although with potentially
decreased data rate. Delay is mitigated by allowing more
ways to align interference—through the utilization of larger
alignment sets. We have also introduced a scheme to trade
off the delay and rate. In the end, even though the rate may
be reduced, we can still say, in the parlance of interference
aligners, that each person getsκ of the cake, where1/K ≤
κ ≤ 1/2—so our scheme can still be an improvement over
non-aligning channel-sharing strategies in terms of data rate.

APPENDIX

MARKOV CHAIN ANALYSIS

We provide more details on computing the absorption
probabilities and hitting times from the Markov chain con-
structions of Section IV, using techniques from [8]. Assume
there are a total ofn states in the Markov chain, withk
transient states andn − k absorbing states. In the rest of
the appendix, letei denote a vector consisting of all0’s
except for a1 in the i-th position (i.e., ei is the canonical
basis vector in thei-th direction). We let statei = 0 be the
initial state of the Markov chain—with no alignment sets
completed—soe0 is the initial probability distribution. Also,
let 1 be the all-ones vector (of appropriate length).

Consider then× n probability transition matrixP , with
the Pij entry denoting the probability of transitioning from
state i to statej. Without loss of generality, we may re-
order the states so that the transient states are indexed first,
and then followed by the absorbing states. Equivalently, we
permute the rows and columns ofP to have the block upper-

triangular formP =

[

Q R

0 I

]

, where the blockQ (of

size k × k) corresponds to transition probabilities between
transient states and the blockR (of size k × (n − k))
corresponds to transition probabilities from transient states
to absorbing states. (The lower-right block is the identity
matrix since an absorbing state can only transition to itself,
and obviously the lower-left block is all zeros since absorbing
states can not transition to transient states.) As an example,
if we consider the Markov chain of Figure 1 with re-ordered
state vectors = (s0, s1, s2, s3, s−1), then the permuted
probability transition matrix is

P =













1− 4
|H|

3
|H| 0 0 1

|H|

0 1− 3
|H|

2
|H| 0 1

|H|

0 0 1− 2
|H|

1
|H|

1
|H|

0 0 0 1 0
0 0 0 0 1













,



which evidently has the appropriate structure.
Expressions for the absorption probabilities and hitting

times can be derived using the various blocks of the proba-
bility transition matrix.

Lemma 8:Define the length-(n − k) absorption proba-
bility vector β, where theβj entry is the probability of
becoming absorbed in statej. Then

β = (eT0 (I −Q)−1R)T .
Proof: We consider thek × (n − k) transient-to-

absorbing matrixU , where theUij entry denotes the proba-
bility of starting in transient statei and ultimately becoming
absorbed in absorbing statej. By first-step analysis,U
satisfies the recursionU = QU +R, soU = (I −Q)−1R.
BecauseQ represents the probabilities of transitioning be-
tween transient states,(I −Q)−1 is the fundamental matrix
and is well-defined. Thenβj is the probability of starting
in state0 and eventually becoming absorbed in statej, so
β = (eT

0 U)T = (eT0 (I −Q)−1R)T .
Lemma 9:The hitting time (i.e., the time until absorption

in any absorption state) is given by

d = eT0 (I −Q)−1
1.

Proof: Let D be the length-k vector where theDi

entry is the hitting time when starting in transient statei.
Then first-step analysis gives the recursionD = QD + 1,
so D = (I −Q)−1

1. The overall hitting time is thend =
eT0 D = eT0 (I −Q)−1

1.
Suppose one employs the first-to-complete alignment

scheme with alignment sets of sizesI = (m1,m2, . . . ,m|I|),
and where the first alignment set has sizem1 = 2. Here we
prove that the mean time to absorption of the Markov chain
is equal to the number of possible channel fading matrices
multiplied by the probability of completion using the set of
size2.

Theorem 10:If 2 ∈ I, thendI = βI
2 |H|.

Proof: Let ̂ be the state associated with the realization
of the channel complement (i.e., the state associated with
completing the size-2 alignment set). We assume that each
channel realization is equally likely with probability1/|H|,
so the probability of transitioning into statê is 1/|H| starting

from any [transient] state. From Lemma 8 and since the
̂-th column of R is (1/|H|)1, we see thatβI

2 = β̂ =
(1/|H|)eT0 (I−Q)−1

1. SincedI = eT0 (I−Q)−1
1, the result

follows.
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