
A Practical Modelling Notation for Secure Distributed Computation

Yih-Jiun Lee Peter Henderson
DSSE Research Group, School of Electronics and Computer Science

University of Southampton, SO17 1BJ, United Kingdom
y.lee@ecs.soton.ac.uk p.henderson@ecs.soton.ac.uk

Abstract

Mobile code computation has lead to a new paradigm of
distributed computation. A mobile process can move from
site to site and interact with the resources as a local pro-
cess. To prevent the misuse resources, authentication and
authorization need to be dealt with. Many modeling lan-
guages have been proposed to model distributed computa-
tion; Ambient Calculus [1] is one of them. Ambient Calcu-
lus, a type of process calculus, can be used to model bound-
ary crossing activities in a mathematical notation.
SJAN, a modeling language, extends the basic idea of Am-
bient Calculus, but it has a simple notation, design and rep-
resentation. SJAN can be verified by J-Ambient, a JAVA im-
plementation, to certify the correctness of the model.
In this paper, we will introduce SJAN notation and J-
Ambient. SJAN can be also used to model grid computa-
tion and provides the security consideration. Thus, finally,
we will address several security scenarios in SJAN to show
its functionality.

1. Introduction

Distributed computing establishes an environment to al-
low processes in different places around the network to
share distributed resources. Traditional distributed comput-
ing was achieved by code-on-demand or remote invocation.
They can provide stateless mobile computation. The newest
technologies of distributed computing, web-services based
computation and grid computing, enable stateful computa-
tion for reliable and reusable geographically distributed re-
source. However, precisely because the resource providers
and requesters are geographically distributed, so the secu-
rity risks are the significantly more important.
To model the security issues and distributed computing,
many abstract model notations have been proposed. Some
of them concern the functional expressions and some of
them focus on network process or dynamic connections. We
give an overview in [2].

In this paper, we will introduce a modeling notation called
SJAN. SJAN inherits the idea of ambient from Ambient
Calculus [1] which will be addressed in Section 2. Thus, it
can be used to model distributed computation which crossed
enterprise boundaries. It can be also used to model state-
ful distributed computation. This notation is based on our
experiment, J-Ambient, with JAVA and its associated tech-
nologies. The purpose of SJAN is to model secure dis-
tributed computation, including grid computing.
This paper has been organized as follows. In Section 2 we
briefly describe the idea of Distributed Computation and the
security risk. In Section 3 we introduce the SJAN notation
and its functionality. Then the security discussion and solu-
tion based on grid computing will be addressed in Section
4. In Section 5 we conclude our work and describe our fu-
ture plan.

2. Distributed Computation

From the computing’s point of view, computation mo-
bility can be classified into two different groups: weak mo-
bility which refers to the stateless movable code and strong
mobility which concerns both computation and the running
state moving together [3]. Stateful computation, shown in
Fig 1, is the capability that a submitted process can run part
of it on one server and the remains on another. From the

Service

Requester

Server 1
 Process

initial state

Server 2

Process

and state

Result

Run part of

process

Run part of

process

Figure 1. Stateful Distributed Computation

abstract models’ viewpoint, some abstract models, such as
CSP [4] and CCS [5], concern static connection and func-
tional, concurrent and distributed computing and some of
them, such as process calculi can be used to model pro-

cesses with dynamic connection, such as pi-calculus [6].
Ambient Calculus [1] is another case of processes calculi.
In Ambient Calculus, the mobile objects can be restricted
within the domains’ boundaries [6]. A formal idea, “ambi-
ent”, was used to represent a movable and executable envi-
ronment. The inner processes, gremlins, can move with the
ambient or be blocked until a condition is satisfied.
Since a process can carry computation and move around, se-
curity becomes a critical issue. Traditional security solution
is cryptography which uses symmetric or asymmetric key
to encrypt the message to ensure the integrity and privacy.
However, in the Distributed computation system, “access-
control” system is also important. Access-control is used to
ensure the crossing boundary processes only happen if the
processes are authenticated and authorized. In Ambient Cal-
culus, both of them can be achieved by the use of ambient
names.
Modeling distributed computation and its security solution
is difficult because the model has to represent the secu-
rity and stateful status. Secure J-Ambient Notation(SJAN)
is one of the solutions which will be discussed in the next
section 3.

3. Secure J-Ambient Notation(SJAN)

Secure J-Ambient Notation(SJAN) follows the exe-
cutable movable environment idea from Ambient Calculus
and inherits the syntax from J-Ambient, an implemen-
tation in JAVA and its associated technologies. The de-
tailed introduction of SJAN and J-Ambient can be found on
our WEB site [2].
Supposed, there are ambients, A, B, and C shown as fol-
lowing.

ambient A{
ambient B{

ambient C {
1. out B; 2. open B;

} || 3. in C; || 4. out A;
} || 5. be D;

}

There are 5 actions in the above example. Action 1 and 2
should run in sequence, because they are connected with
”;”. Ambient C, action 3 and 4 can run in parallel, because
they are separated by ”‖”.
Consider all the preconditions, only action 1, 4, and 5 can be
executed. If action 1 is chosen,ambient C moves out from
ambient B and becomes a child ofambient A. Then, ac-
tion 2 will be blocked because ”C:open B” has the precon-
dition, B must be a child ambient of C, to be satisfied. Now,
only action 3, 4, 5 satisfy all the preconditions. If action 3 is
chosen,ambient B will move into ambient C, so the pre-
condition of action 2 is satisfied and can be fired. However,

action 4 will be blocked because theambient B’s parent is
notambient A anymore.
Considering ”C:open B”, every gremlin in B will be moved
into ambient C with its state. Once opened,ambient B no
longer exists and action 4 becomes process inambient C
and can be unblocked.
Now, only action 4 and 5 are remaining. They have a se-
quence competition. Supposed, action 5 runs before action
4. Ambient A renames itself toambient D. ”C: out A” will
be never awoken. The system will end with ambient D{ am-
bient C{ out A } }.
If action 4 was chosen,ambient C becomes ambient A’s
sibling. Because action ”be” has no precondition, ”A:be D”
can be processed at any time. The final state of this exam-
ple will be ambient A{} ‖ ambient C{}.

4. Security in Grid Computing

4.1. Security risks on grid computation

According to [7], information security refers to protec-
tion of information systems against unauthorized access to
storage, processing or transit. Besides, [7] also points out
that two services, access control services and communica-
tion security services, are crucial for a secure Internet in-
frastructure. In this paper, only access control service will
be considered, because Secure Sockets Layer(SSL) is a pop-
ular utility to implement the communication security and
can be easily applied.
Considering two issues: authentication and authorization,
they are important functions in distributed computation. Au-
thentication proposes a service that a server can restrict the
specific operations to be available for a certain client only.
After authentication, the server can assign variant access
right to the client. It is called authorization [8, 9].

4.2. Authenticate a mobile process

The purpose of the “open” reduction is “upgrading” the
inner process which wants to be executed as a “first-level”
process that can be seen as a local process. The precondition
of open, which has been discussed earlier, leads to the idea
of authentication, because an ambient can be opened only
if it has been known. Once an ambient is opened, the inter-
nal processes can be authorized to execute as the local pro-
cesses. See [1] for more detailed how ambients’ names are
used for authentication.

4.3. Authorization with a security token

The following scenario is shown in Fig 2. In this sys-
tem, there is a user Joe on ServerA. Joe is authorized to

ServerA

Joe

ServerB

ServerC

Joe’s

Proxy

tokenJB

tokenJC

ProxyToken

Token

Verifier

Token

Verifier

ProxyToken

Figure 2. The scenario of authorization

run his jobs on ServerB by providing a security token, to-
kenJB. The idea of security token is broadly used in dis-
tributed computing. It is usually achieved by X.509 Pub-
lic key certificate or a pair of username and password. Now,
back to our scenario, Joe is on ServerA and wants to exe-
cute a job, P, on ServerB. The first thing he needs to do is
transferring the process P from his domain to ServerB with
his security token, tokenJB. The SJAN model is as below.

ambient ServerA{
ambient Joe{

ambient tokenJB{
out Joe; out ServerA;
in ServerB; P;

. . .
}
ambient ServerB{

repeat{ open tokenJB; }
||. . .

}

The behavior of tokenJB is moving itself from ServerB
to ServerA. Then there is a gremlin on ServerB. It is always
waiting to open tokenJB. The “open” operation can execute
until there is an ambient tokenJB inside ServerB. Once to-
kenJB has been opened, process P can run as a local pro-
cess.
Joe may have other computations running in parallel, but
any two running threads will not mutual affect.
The tokenJB can be seen as box with a lock and the open
statement is the mapping key. Joe is authenticated by virtue
of the fact, but he has a valid token.

4.4. Stateful computing within three servers

The basic idea of stateful computation is that a job can
run its first part on one server and another part on another
server, but the job has to be authenticated and authorized on
two servers. Thus, Joe has two security tokens: tokenJB for
ServerB and tokenJC for ServerC and a submitted process
which should run the first part, process P, on ServerB and
then execute the remains on ServerC.
Following shows the SJAN model.

ambient ServerA{
ambient Joe{

ambient tokenJB{
{out Joe; out ServerA;

in ServerB; P;
new Signal{in WaitForSignal;}

}||
ambient WaitForSignal{

open Signal; out ServerB;
in ServerC; be tokenJC;
Q;

}
}

}|| . . .
}
ambient ServerB{

repeat{ open tokenJB; } || . . .
}
ambient ServerC{

repeat{ open tokenJC; } || . . .
}

“TokenJB” firstly moves to ServerB and waits to be opened.
Because its next stop is ServerC and the running result
should go with it,ambient WaitForSignal can be used to
wait until a signal, ambient Signal, arrives. After execution,
ambient Signal will be generated by process P. The only job
of Signal is to be opened byWaitForSignal, so that the fol-
lowing operations, move to ServerC, can be executed. Sim-
ilar design can be used again if ServerC is not its final des-
tination.

4.5. Proxy delegation

The idea of proxy comes from Grid computing [10]. Be-
cause an execution might take a long time, waiting on-line
is not necessary. Thus, a user can create a temporary iden-
tity and delegate a subset of his rights to it. This temporary
identity is called proxy. The proxy can run on the behalf of
delegator.
In this scenario, Joe has created a proxy which is running
on ServerC. The proxy will send a job to ServerB, so Joe
needs to delegate his right, executing a job on ServerB, to
the proxy. Firstly, Joe has to inform ServerB that someone

who holds the ProxyToken is allowed to execute in Joe’s di-
rectory.

ambient Joe{
ambient tokenJB{

out Joe; out ServerA;
in ServerB; open ProxyToken;

}
|| . . .

}

The ServerB’s job is similar to the earlier example. Once
tokenJB has been opened, open ProxyToken became a run-
once gremlin on ServerB.

ambient ServerB{
open ProxyToken;
|| . . .

}

After the inform message has been sent, Joe sends the Prox-
yToken to Proxy via a message.

ambient Message{
out Joe; out ServerA;
in ServerC; in Proxy;
output ProxyToken;

}

ProxyToken can output as a message in Proxy, so Proxy can
consume it. When “be ProxyToken” is executed, the name
and identity ofambient temp will be renamed toProxyTo-
ken.

ambient Proxy{
open Message;
ambient temp{

input ProxyToken; be ProxyToken;
}

. . .
}

Changed to . .

ambient ProxyToken{
out Proxy; out ServerC;
in ServerB; P;

}

Now the ProxyToken can move to ServerB and can be
opened by the operation of “open ProxyToken;”
In this design, because Joe only send once ”open Proxy-
Token” to ServerB, ProxyToken can be only used(opened)
once to avoid malicious attack.

5. Conclusion

SJAN is a modeling language which can be used to
model both stateless and stateful distributed computing sys-

tem. To provide security modeling, SJAN models its secu-
rity representation by the simple reductions. Once a sce-
nario has been modeled, it can be easily implemented in
the real implementation language. For instance, an opened
name can be presented as a session key, so the content in
the opened ambient is encrypted. By this practical notation,
a distributed application can be modelled and validated be-
fore the real implementation. SJAN is also suitable for mod-
eling web-services based computation and grid computing
which has been shown in the earlier section. For formal
model verification, SJAN has been implemented in a mod-
eling language, ARC [11] for further validation. Neverthe-
less, we still need to give SJAN a more methodical defini-
tion and rules for the newest web-services based distributed
computing because the naming principle for web-services
has not been supplied in SJAN. Notwithstanding this prob-
lem, SJAN has proved that it can be used to model many
the distributed computing cases and the models will be very
legible and tiny. This is particular important because mod-
elling security model is often difficult to get right.

References

[1] L. Cardelli, “Abstractions for Mobile Computation,” Mi-
crosoft Research Technical Report MSR-TR-98-34,” Tech-
nical Report, July 1998.

[2] Y. Lee and P. Henderson. (2004, Oct.) A
practical modelling notation for secure distributed
computation-full version. Internet. [Online]. Available:
http://yihjiun.ecs.soton.ac.uk/paper.html

[3] P. W. L. Fong, “Viewer’s discretion: Host security in mobile
code systems,” School of Computing Science, Simon Fraser
University, Burnaby,” SFU CMPT TR 1998-19, Nov. 1998.

[4] C. Hoare,Communicating Sequential Processes. Prentice
Hall International, 1985.

[5] R. Milner,A Calculus of Communicating Systems. Springer
Verlag.

[6] Raja and Shyamasundar, “Mobile Computation: Calculus
and Languages (a tutorial),” inCSC: Asian Computing Sci-
ence Conference, LNCS, 1998.

[7] J. Joshi, W. Aref, A. Ghafoor, and E. Spafford, “Security
models for web-based applications,”Communications of the
ACM, vol. 4, no. 2, Feb. 2001.

[8] WebLogic. Introduction to weblogic security: Se-
curity fundamentals. [Online]. Available: http://e-
docs.bea.com/wls/docs81/secintro/concepts.html

[9] G. Gabor. (2001) Evaluation of distributed authentication,
authorization and directory services. [Online]. Available:
http://www.caesar.elte.hu/eltenet/projects/demogrid/demogrid-
report-1/dg-rep-1-sec-eval.pdf

[10] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,
J. Volmer, and V. Welch, “A national-scale authentication in-
frastructure,”IEEE Computer, vol. 33, no. 12, pp. 60–66.

[11] P. Henderson. Arc: A tool for system
level architecture modelling. [Online]. Available:
http://www.ecs.soton.ac.uk/˜ph/arc.htm

