

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Sep 20, 2024

Scheduling with Bus Access Optimization for Distributed Embedded Systems

Eles, Petru; Doboli, Alex; Pop, Paul; Peng, Zebo

Published in:
IEEE Transactions on VLSI Systems

Link to article, DOI:
10.1109/92.894152

Publication date:
2000

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Eles, P., Doboli, A., Pop, P., & Peng, Z. (2000). Scheduling with Bus Access Optimization for Distributed
Embedded Systems. IEEE Transactions on VLSI Systems, 8(5), 472-491. https://doi.org/10.1109/92.894152

https://doi.org/10.1109/92.894152
https://orbit.dtu.dk/en/publications/cb6740cd-53fb-4814-9bcb-5e647191e3f3
https://doi.org/10.1109/92.894152

472 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Scheduling with Bus Access Optimization for
Distributed Embedded Systems

Petru Eles, Member, IEEE, Alex Doboli, Student Member, IEEE, Paul Pop, and Zebo Peng, Member, IEEE

Abstract—In this paper, we concentrate on aspects related to
the synthesis of distributed embedded systems consisting of pro-
grammable processors and application-specific hardware compo-
nents. The approach is based on an abstract graph representation
that captures, at process level, both dataflow and the flow of con-
trol. Our goal is to derive a worst case delay by which the system
completes execution, such that this delay is as small as possible;
to generate a logically and temporally deterministic schedule; and
to optimize parameters of the communication protocol such that
this delay is guaranteed. We have further investigated the impact
of particular communication infrastructures and protocols on the
overall performance and, specially, how the requirements of such
an infrastructure have to be considered for process and commu-
nication scheduling. Not only do particularities of the underlying
architecture have to be considered during scheduling but also the
parameters of the communication protocol should be adapted to fit
the particular embedded application. The optimization algorithm,
which implies both process scheduling and optimization of the pa-
rameters related to the communication protocol, generates an effi-
cient bus access scheme as well as the schedule tables for activation
of processes and communications.

Index Terms—Communication synthesis, distributed embedded
systems, process scheduling, real-time systems, system synthesis,
time-triggered protocol.

I. INTRODUCTION

M ANY embedded systems have to fulfill strict require-
ments in terms of performance and cost efficiency.

Emerging designs are usually based on heterogeneous archi-
tectures that integrate multiple programmable processors and
dedicated hardware components. New tools that extend design
automation to system level have to support the integrated
design of both the hardware and software components of such
systems.

During synthesis of an embedded system the designer maps
the functionality captured by the input specification on different
architectures, trying to find the most cost-efficient solution that,
at the same time, meets the design requirements. This design
process implies the iterative execution of several allocation
and partitioning steps before the hardware and software com-
ponents of the final implementation are generated. The term
“hardware/software cosynthesis” is often used to denote this

Manuscript received August 15, 1999; revised February 18, 2000.
P. Eles, P. Pop, and Z. Pang are with the Department of Computer and

Information Science, Linköping University, Sweden (e-mail: petel@ida.liu.se;
paupo@ida.liu.se; zebpe@ida.liu.se).

A. Doboli is with the Department of Electrical and Computer Engineering
and Computer Science, University of Cincinnati, Cincinnati, OH 45221 USA
(e-mail: adoboli@ececs.uc.edu).

Publisher Item Identifier S 1063-8210(00)09504-4.

system-level synthesis process. Surveys on this topic can be
found in [1]–[6].

An important characteristic of an embedded system is its per-
formance in terms of timing behavior. In this paper, we con-
centrate on several aspects related to the synthesis of systems
consisting of communicating processes, which are implemented
on multiple processors and dedicated hardware components. In
such a system, in which several processes communicate with
each other and share resources like processors and buses, sched-
uling of processes and communications is a factor with a deci-
sive influence on the performance of the system and on the way
it meets its timing constraints. Thus, process scheduling has to
be performed not only for the synthesis of the final system but
also as part of the performance estimation task.

Optimal scheduling, in even simpler contexts than that pre-
sented above, has been proven to be an NP complete problem
[7]. Thus, it is essential to develop heuristics that produce good
quality results in a reasonable time. In our approach, we assume
that some processes can only be activated if certain conditions,
computed by previously executed processes, are fulfilled [8],
[9]. Thus, process scheduling is further complicated since at a
given activation of the system, only a certain subset of the total
amount of processes is executed, and this subset differs from
one activation to the other. This is an important contribution of
our approach because we capture both the flow of data and that
of control at the process level, which allows a more accurate and
direct modeling of a wide range of applications.

Performance estimation at the process level has been well
studied in the last years. Papers like [10]–[16] provide a good
background for derivation of execution time (or worst case
execution time) for a single process. Starting from estimated
execution times of single processes, performance estimation
and scheduling of a system consisting of several processes can
be performed. Preemptive scheduling of independent processes
with static priorities running on single-processor architectures
has its roots in [17]. The approach has been later extended
to accommodate more general computational models and has
also been applied to distributed systems [18]. The reader is
referred to [19] and [20] for surveys on this topic. In [21],
performance estimation is based on a preemptive scheduling
strategy with static priorities using rate monotonic analysis. In
[22], an earlier deadline first strategy is used for nonpreemptive
scheduling of processes with possible data dependencies.
Preemptive and nonpreemptive static scheduling are combined
in the cosynthesis environment described in [23] and [24].

Several research groups have considered hardware/software
architectures consisting of a single programmable processor

1063–8210/00$10.00 © 2000 IEEE

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 473

and an application-specific integrated circuit acting as a hard-
ware coprocessor. Under these circumstances, deriving a static
schedule for the software component is practically reduced to
the linearization of a dataflow graph with nodes representing
elementary operations or processes [25]. In the Vulcan system
[26], software is implemented as a set of linear threads that
are scheduled dynamically at execution. Linearization for
thread generation can be performed both by exact, exponential
complexity, algorithms and by faster urgency-based heuristics.
Given an application specified as a collection of tasks, the
tool presented in [27] automatically generates a scheduler
consisting of two parts: a static scheduler that is implemented
in hardware and a dynamic scheduler for the software tasks
running on a microprocessor.

Static cyclic scheduling of a set of data-dependent software
processes on a multiprocessor architecture has been intensively
researched [28]. Several approaches are based on list sched-
uling heuristics using different priority criteria [29]–[32] or
on branch-and-bound algorithms [33], [34]. In [35] and [36],
static scheduling and partitioning of processes, and allocation
of system components, are formulated as a mixed integer linear
programming (MILP) problem. A disadvantage of this ap-
proach is the complexity of solving the MILP model. The size
of such a model grows quickly with the number of processes
and allocated resources. In [37], a formulation using constraint
logic programming has been proposed for similar problems.

It is important to mention that in all the approaches discussed
above, process interaction is only in terms of dataflow. This is
the case also in [38], where a two-level internal representation
is introduced: control-dataflow graphs for operation-level repre-
sentation and pure dataflow graphs for representation at process
level. The representation is used as a basis for derivation and
validation of internal timing constraints for real-time embedded
systems. In [39] and [40], an internal design representation is
presented that is able to capture mixed data/control flow speci-
fications. It combines dataflow properties with finite-state ma-
chine behavior. The scheduling algorithm discussed in [39] han-
dles a subset of the proposed representation. Timing aspects
are ignored and only software scheduling on a single processor
system is considered.

In our approach, we consider embedded systems specified as
interacting processes, which have been mapped on an architec-
ture consisting of several programmable processors and ded-
icated hardware components interconnected by shared buses.
Process interaction in our model is not only in terms of dataflow
but also captures the flow of control. Considering a nonpreemp-
tive execution environment, we statically generate a schedule
table and derive a guaranteed worst case delay.

Currently, more and more real-time systems are used in phys-
ically distributed environments and have to be implemented on
distributed architectures in order to meet reliability, functional,
and performance constraints. However, researchers have often
ignored or very much simplified aspects concerning the com-
munication infrastructure. One typical approach is to consider
communication processes as processes with a given execution
time (depending on the amount of information exchanged) and
schedule them as any other process, without considering issues
like communication protocol, bus arbitration, packaging of mes-

sages, clock synchronization, etc. These aspects are, however,
essential in the context of safety-critical distributed real-time
applications, and one of our objectives is to develop a strategy
that takes them into consideration for process scheduling.

Many efforts dedicated to communication synthesis have con-
centrated on the synthesis support for the communication infra-
structure but without considering hard real-time constraints and
system-level scheduling aspects [41]–[45].

We have to mention here some results obtained in extending
real-time schedulability analysis so that network communica-
tion aspects can be handled. In [46], for example, the CAN
protocol is investigated, while [47] considers systems based on
the asynchronous transfer mode (ATM) protocol. These works,
however, are restricted to software systems implemented with
priority-based preemptive scheduling.

In the first part of this paper we consider a communication
model based on simple bus sharing. There we concentrate on
the aspects of scheduling with data and control dependencies,
and such a simpler communication model allows us to focus
on these issues. However, one of the goals of this paper is to
highlight how communication and process scheduling strongly
interact with each other and how system-level optimization can
only be performed by taking into consideration both aspects.
Therefore, in the second part of this paper, we introduce a par-
ticular communication model and execution environment. We
take into consideration the overheads due to communications
and to the execution environment and consider the requirements
of the communication protocol during the scheduling process.
Moreover, our algorithm performs an optimization of param-
eters defining the communication protocol, which is essential
for reduction of the execution delay. Our system architecture is
built on a communication model that is based on the time-trig-
gered protocol (TTP) [48]. TTP is well suited for safety-critical
distributed real-time control systems and represents one of the
emerging standards for several application areas, such as auto-
motive electronics [28], [49].

This paper is divided as follows. In Section II, we formulate
our basic assumptions and set the specific goals of this work.
Section III defines the formal graph-based model, which is
used for system representation, introduces the schedule table,
and creates the background needed for presentation of our
scheduling technique. The scheduling algorithm for conditional
process graphs is presented in Section IV. In Section V, we
introduce the hardware and software aspects of the TTP-based
system architecture. The mutual interaction between scheduling
and the communication protocol as well as our strategy for
scheduling with optimization of the bus access scheme are
discussed in Section VI. Section VII describes the experimental
evaluation, and Section VIII presents our conclusions.

II. PROBLEM FORMULATION

We consider a generic architecture consisting ofpro-
grammable processorsand application specifichardware
processors(ASICs) connected through severalbuses. The
buses can be shared by several communication channels con-
necting processes assigned to different processors. Only one
process can be executed at a time by a programmable processor,

474 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

while a hardware processor can execute processes in parallel.1

Processes on different processors can be executed in parallel.
Only one data transfer can be performed by a bus at a given
moment. Data transfer on buses and computation can overlap.

Each process in the specification can be, potentially, assigned
to several programmable or hardware processors, which are
able to execute that process. For each process estimated cost
and execution time on each potential host processor are given
[50]. We assume that the amount of data to be transferred during
communication between two processes has been determined
in advance. In [50], we presented algorithms for automatic
hardware/software partitioning based on iterative improvement
heuristics. The problem we are discussing in this paper con-
cerns performance estimationof a given design alternativeand
scheduling of processes and communications. Thus, we assume
that each process has been assigned to a (programmable or
hardware) processor and that each communication channel,
which connects processes assigned to different processors,
has been assigned to a bus. Our goal is to derive a worst case
delay by which the system completes execution such that this
delay is as small as possible, to generate the static schedule and
optimize parameters of the communication protocol, such that
this delay is guaranteed.

For the beginning, we will consider an architecture based on
a communication infrastructure in which communication tasks
are scheduled on buses similar to the way processes are sched-
uled on programmable processors. The time needed for a given
communication is estimated depending on the parameters of
the bus to which the respective communication channel is as-
signed and the number of transferred bits. Communication time
between processes assigned to the same processor is ignored.
Based on this architectural model we introduce our approach to
process schedulingin the context of both control and data de-
pendencies.

In the second part of the paper we introduce an architectural
model with a communication infrastructure suitable for safety
critical hard real-time systems. This allows us to further in-
vestigate the scheduling problem and to explore the impact of
the communication infrastructure on the overall system perfor-
mance. The main goal is to determine the parameters of the com-
munication protocol so that the overall system performance is
optimized and, thus, the imposed time constraints can be satis-
fied. We show that system optimization and, in particular, sched-
uling cannot be efficiently performed without taking into con-
sideration the underlying communication infrastructure.

III. PRELIMINARIES

A. The Conditional Process Graph

We consider that an application specified as a set of inter-
acting processes is mapped to an abstract representation con-
sisting of a directed acyclic polar graph called

1In some designs certain processes implemented on the same hardware pro-
cessor can share resources and, thus, cannot execute in parallel. This situation
can easily be handled in our scheduling algorithm by considering such processes
in a similar way as those allocated to programmable processors. For simplicity,
here we consider that processes allocated to ASICs do not share resources.

aprocess graph. Each node represents one process.
and are the sets of simple and conditional edges, respec-
tively. and , where is the set
of all edges. An edge from to indicates that the
output of is the input of . The graph is polar, which means
that there are two nodes, calledsourceandsink, that convention-
ally represent the first and last task. These nodes are introduced
as dummy processes, with zero execution time and no resources
assigned, so that all other nodes in the graph are successors of
the source and predecessors of the sink, respectively.

A mapped process graph is generated
from a process graph by inserting additional
processes (communication processes) on certain edges and by
mapping each process to a given processing element. The map-
ping of processes to processors and buses is given by a
function , where
is the set of processing elements. , where

is the set of programmable processors, is the set of
dedicated hardware components, andis the set of allocated
buses. In certain contexts, we will call both programmable pro-
cessors and hardware components simply processors. For any
process , is the processing element to which is as-
signed for execution. In the rest of this paper, when we use the
termconditional process graph(CPG), we consider a mapped
process graph as defined here.

Each process , assigned to a programmable or hardware
processor , is characterized by an execution time.
In the CPG depicted in Fig. 1, and are the source and
sink nodes, respectively. For the rest of 31 nodes, 17, denoted

, are ordinary processes specified by the
designer. They are assigned to one of the two programmable
processors and or to the hardware component .
The rest of 14 nodes are so-calledcommunication processes

. They are represented in Fig. 1 as solid
circles and are introduced during the mapping process for each
connection, which links processes assigned to different pro-
cessors. These processes model interprocessor communication
and their execution time (where is the sender and the
receiver process) is equal to the corresponding communication
time. All communications in Fig. 1 are performed on bus. As
discussed in the previous section, we treat, for the beginning,
communication processes exactly as ordinary processes. Buses
are similar to programmable processors in the sense that only
one communication can take place on a bus at a given moment.

An edge is a conditional edge(represented with
thick lines in Fig. 1) and has an associated condition value.
Transmission on such an edge takes place only if the associated
condition value istrue and not, like on simple edges, for each
activation of the input process . In Fig. 1, processes
and have conditional edges at their output. Process, for
example, communicates alternatively with and , or with

. Process , if activated (which occurs only if condition
in has valuetrue), always communicates with but alter-
natively with or , depending on the value of condition

.
We call a node with conditional edges at its output adisjunc-

tion node(and the corresponding process adisjunction process).
A disjunction process has one associated condition, the value of

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 475

Fig. 1. Conditional process graph with execution times and mapping.

which it computes. Alternative paths starting from a disjunc-
tion node, which correspond to complementary values of the
condition, are disjoint, and they meet in a so-calledconjunc-
tion node(with the corresponding process calledconjunction
process).2 In Fig. 1, circles representing conjunction and dis-
junction nodes are depicted with thick borders. The alternative
paths starting from disjunction node , which computes con-
dition , meet in conjunction node . Node is the joining
point for both the paths corresponding to condition(starting
from disjunction node) and condition (starting from dis-
junction node). We assume that conditions are independent
and alternatives starting from different processes cannot depend
on the same condition.

A process that is not a conjunction process can be activated
only after all its inputs have arrived. A conjunction process can
be activated after messages coming on one of the alternative
paths have arrived. All processes issue their outputs when they
terminate. In Fig. 1, process can be activated after it receives
messages sent by and ; process waits for messages
sent by , , and or by and . If we consider the
activation time of the source process as a reference, the activa-
tion time of the sink process is the delay of the system at a cer-
tain execution. This delay has to be, in the worst case, smaller
than a certain imposed deadline. Release times of some pro-
cesses as well as multiple deadlines can be easily modeled by in-
serting dummy nodes between certain processes and the source
or the sink node, respectively. These dummy nodes represent
processes with a certain execution time but that are not allocated
to any processing element.

A Boolean expression , called aguard, can be associ-
ated to each node in the graph. It represents the necessary
conditions for the respective process to be activated. In Fig. 1,
for example, , , ,
and . is not only necessary but also sufficient
for process to be activated during a given system execution.
Thus, two nodes and , where is not a conjunction node,
are connected by an edge only if (which means
that is true whenever is true). This avoids specifications

2If no process is specified on an alternative path, it is modeled by a conditional
edge from the disjunction to the corresponding conjunction node (a communi-
cation process may be inserted on this edge at mapping).

in which a process is blocked even if its guard is true, because it
waits for a message from a process that will not be activated. If

is a conjunction node, predecessor nodescan be situated
on alternative paths corresponding to a condition.

The above execution semantics is that of a so-called single
rate system. It assumes that a node is executed at most once for
each activation of the system. If processes with different periods
have to be handled, this can be solved by generating several
instances of the processes and building a CPG that corresponds
to a set of processes as they occur within a time period that is
equal to the least common multiple of the periods of the involved
processes.

As mentioned, we consider execution times of processes, as
well as the communication times, to be given. In the case of
hard real-time systems this will, typically, be worst case execu-
tion times, and their estimation has been extensively discussed
in the literature [13], [14]. For many applications, actual execu-
tion times of processes are depending on the current data and/or
the internal state of the system. By explicitly capturing the con-
trol flow in our model, we allow for a more fine-tuned modeling
and a tighter (less pessimistic) assignment of worst case execu-
tion times to processes, compared to traditional dataflow-based
approaches.

B. The Schedule Table

For a given execution of the system, that subset of the pro-
cesses is activated that corresponds to the actual track followed
through the CPG. The actual track taken depends on the value of
certain conditions. For each individual track there exists an op-
timal schedule of the processes that produces a minimal delay.
Let us consider the CPG in Fig. 1. If all three conditions
and are true, the optimal schedule requiresto be activated
at time on processor and processor to be kept
idle until , in order to activate as soon as possible
[see Fig. 2(a)]. However, if and are true but is false,
the optimal schedule requires starting bothon and
on at ; will be activated in this case at , after

has terminated and, thus, becomes free [see Fig. 2(b)].
This example reveals one of the difficulties when generating a
schedule for a system like that in Fig. 1. As the values of the con-
ditions are unpredictable, the decision of on which process to ac-

476 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 2. Optimal schedules for two tracks extracted from the CPG in Fig. 1.

tivate on and at which time has to be taken without knowing
which values the conditions will later get. On the other side, at
a certain moment during execution, when the values of some
conditions are already known, they have to be used in order
to take the best possible decisions on when and which process
to activate. Heuristic algorithms have to be developed to pro-
duce a schedule of processes such that the worst case delay is as
small as possible. The output of such an algorithm is a so-called
schedule table. In this table, there is one row for each ordinary
or communication process, which contains activation times for
that process corresponding to different values of the conditions.
Each column in the table is headed by a logical expression con-
structed as a conjunction of condition values. Activation times
in a given column represent starting times of the processes when
the respective expression is true.

Table I shows a possible schedule table corresponding to the
system depicted in Fig. 1. According to this schedule processes

as well as the communication process are ac-
tivated unconditionally at the times given in the first column of
the table. No condition value has yet been determined to select
between alternative schedules. Process, on the other hand,
has to be activated at if and
if . To determine the worst case delay ,
we have to observe the rows corresponding to processesand

: .
The schedule table contains all information needed by a dis-

tributed run-time scheduler to take decisions on activation of
processes. We consider that, during execution, a very simple
scheduler located on each processor decides on process and
communication activation depending on actual values of con-
ditions. Once activated, a process executes until it completes.
Only one part of the table has to be stored on each processor,
namely, the part concerning decisions that are taken by the cor-
responding scheduler.

Our goal is to derive a minimal worst case delay and to
generate the corresponding schedule table given a conditional
process graph and estimated worst case
execution times for each process .

At a certain execution of the system, one of the
alternative tracks through the CPG will be executed. Each
alternative track corresponds to one subgraph ,

. For each subgraph, there is an associated
logical expression (the label of the track) that represents
the necessary conditions for that subgraph to be executed. The
subgraph contains those nodes of the conditional process
graph , for which (is the guard of node
and has to be true whenever is true). For the CPG in Fig. 1,
we have six subgraphs (alternative tracks) corresponding to the
following labels: , , , ,

, and .
If at activation of the system all the condition valueswould be

known in advance, the processescould beexecuted according to
the (near) optimal schedule of the corresponding subgraph.
Under these circumstances, the worst case delaywould be

with

where is the delay corresponding to subgraph.
However, this is not the case, as we do not assume any pre-

diction of the condition values at the start of the system. Thus,
what we can say is only that:3 .

A scheduling heuristic has to produce a schedule table for
which the difference is minimized. This means that
the perturbation of the individual schedules, introduced by the
fact that the actual track is not known in advance, should be as
small as possible.

C. Conditions, Guards, and Influences

We first introduce some notations. If is a logical expres-
sion, we use the notation to denote the set of conditions
used in . Thus, ;

. Similarly, if is a set of condi-
tion values, is the set of conditions used in . For ex-
ample, if , then . For a
set of condition values, we denote with the logical ex-
pression consisting of the conjunction of that values. If

, then .

3For this formula to be rigorously correct,� has to be the maximum of the
optimal delays for each subgraph.

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 477

TABLE I
SCHEDULE TABLE CORRESPONDING TO THECPG SHOWN IN FIG. 1

Activation times in the schedule table are such that a process
is started only after its predecessors, corresponding to the ac-
tually executed track, have terminated. This is a direct conse-
quence of the dataflow dependencies as captured in the CPG
model. However, in the context of the CPG semantics, there are
more subtle requirements that the schedule table has to fulfill in
order to produce a deterministic behavior that is correct for any
combination of condition values.

R1) If for a certain execution of the system the guard
becomes true, then has to be activated during that
execution.

R2) If for a certain process , with guard , there exists
an activation time in the column headed by the logical
expression , then ; this means that no
process will be activated if the conditions required for
its execution are not fulfilled.

R3) Activation times and the corresponding logical expres-
sions have to be determined so that a process is activated
not more then one single time for a given execution of
the system. Thus, if for a certain execution a process
is scheduled to be executed at (placed in column
headed by), there is no other execution time

for (placed in column headed by) so that
becomes true during the same execution.

R4) Activation of a process at a certain time has to
depend only on condition values that are determined at
the respective momentand are known to the processor
that takes the decision on to be executed.

The correct behavior, according to the semantics associated to
conditions, is guaranteed by requirements R1 and R2. R3 guar-
antees the functionality as a single rate system. Requirement R4
states that decisions at any location of the distributed system are
based on information available at the particular location and at
the given time.

A scheduling algorithm has to traverse, in one way or another,
all the alternative tracks in the CPG and to place activation times
of processes and the corresponding logical expressions into the
schedule table. For a given execution track, labeled, and a
process that is included in that track, one single activation
time has to be placed into the table (see R3 above); the
corresponding column will be headed by an expression. We
say that is the set of conditions used for scheduling. It
is obvious that and .

Whichconditions inset are tobeusedforschedulingacer-
tain process? This is a question to be answered by the scheduling
algorithm. A straightforward answer would be: those conditions
that determine if the process has to be activated or that have an
influence on the moment when this activation has to occur.

478 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 3. Examples of conditional process graphs.

In the following section, we will give a more exact answer to
the question above. As a prerequisite, we define theguard set

andinfluence set of a process .
Theguard set of a process is the set of conditions that

decide whether or not the process is activated during a certain
execution of the system. , where is the guard
of process . In Fig. 1, for example, ,

, and ; thus, ,
.

However, not only the conditions in the guard set have an im-
pact on the execution of a process. There are other conditions
that do not decide if a process has or does not have to be acti-
vated during a given execution, but that influence the moment
when the process is scheduled to start. In Fig. 3(a), for example,

; process is executed regardless of whetheris
true or false. However, the activation time of depends on the
value of condition : will be activated at ,
if , and at , if false. As a conse-
quence, the activation time of is also dependent on the value
of . We say that both and are influenced by , and this
influence is induced to them (from their predecessors) by suc-
cession in the CPG.

However, not only by succession can the influence of a con-
dition be induced to a process. This is illustrated in Fig. 3(b),
where we assume that each communication is mapped to a dis-
tinct bus and that . For

, we have . For
false, becomes ready and will be scheduled before;

thus, . The ac-
tivation time of depends on condition , because shares
the same programmable processor withand the activation
of is conditioned by . In this case, the influence of con-
dition is induced on from by resource sharing. This
influence is then further induced from , by succession, to the
communication process between and and to . and
the communication to as well as are not influenced by

.
Fig. 3(c) illustrates a more complex situation. We assume

that communications are mapped to distinct buses and that, if

there is a conflict for the processor, is scheduled first and,
with decreasing priority, , and . Concerning execu-
tion times, we assume: ,

.
Under these circumstances, if , then is ready when
the processor is released by, and thus will be scheduled be-
fore ; we have . For false,
is delayed because of the earlier activation of, which means
that will not be ready when has finished; thus, is
scheduled before and . In this case, the in-
fluence of on has been induced by resource sharing from

, which is influenced from its predecessor .
We can observe from the examples above that the influence

of a certain condition on a process can only be determined dy-
namically, during the scheduling process. A particular sched-
uling policy, priorities, and execution times all have an impact
on whether at a certain moment the scheduling of a process is in-
fluenced or not by a condition. In Fig. 3(c), for example, sched-
uling of is influenced by only because the scheduler has
considered with a higher priority, and this is also why is
not influenced by .

The set of conditions to be used for scheduling a certain
process at a moment consists of the guard set
corresponding to that process and of all the other conditions
that influence the activation of . An efficient heuristic has
to be developed for the scheduler in order to determine these
conditions so that a correct and close to optimal schedule
table is produced. In order to solve this problem, we define
the influence set corresponding to a process . It is
important to notice that this set of conditions can be determined
statically for a given CPG, and it consists of all conditions that
are not part of the guard set but potentially could influence the
scheduling of process .

A condition is in theinfluence set of a process if
is not in the guard set of and if the influence of

can be induced to by successionor by resource sharing.
The influence of condition can be induced to a process
by successionif is a successor of a process and the

following condition is satisfied: or .

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 479

The influence of condition can be induced to a process
by resource sharingif all the following three conditions are

satisfied.

1) is mapped on a programmable processor or a bus.
2) is neither the process that computes conditionnor a

predecessor of that process.
3) There exists a process mapped to the same resource as

and:

a) is neither a predecessor nor a successor of;
b) or .

In Fig. 3(b), for example,
. For the other processes, the influence set is void.can

be influenced by resource sharing and the other processes by
succession. In Fig. 3(c), the influence ofcan be induced by
succession to and by resource sharing to and . This is
then transferred by succession to and to the communi-
cation processes preceding them. The influence can be induced
by resource sharing to , and and then by succession to
the communications following and . For both examples,
we considered that communications do not share any bus. If in
Fig. 3(b) we consider that all communications are mapped to the
same bus, then , as a result of resource sharing.

In the next section we will see how the influence set is utilized
by a particular scheduling algorithm in order to determine the
actual set of conditions used for scheduling a process.

The activation of a process at a certain momentdepends
on the conditions specified in the expression heading the re-
spective column of the schedule table (the conditions used to
schedule). According to requirement R4, the values of all
these conditions have to be determined at the respective mo-
ment and have to be known to the processor .

, the processor that executes, if is not a communi-
cation process. If is a communication process, then

, where is the process that initiates the communica-
tion.

The value of a condition is determined at the momentat
which the corresponding disjunction process terminates. This
means that at any moment, , the value of the condition is
available for scheduling decisions on the processor that has exe-
cuted the corresponding disjunction process. However, in order
to be available on any other processor, the value has to arrive at
that processor. The scheduling algorithm has to consider both
the time and the resource (bus) needed for this communication.
Transmissions of condition values are scheduled as communi-
cations on buses. These communication processes are not rep-
resented in the CPG and are the only activities that are nota
priori mapped to a specific resource (bus). A condition commu-
nication will be mapped as part of the scheduling process to a
bus. For broadcasting of condition values, only buses are con-
sidered to which all processors are connected, and we assume
that at least one such bus exists.4 The time needed for such a
communication is the same for all conditions and depends on the
features of the employed buses. The transmitted condition value
is available for scheduling decisions on all other processors

4This assumption is made for simplification of the further discussion. If no
bus is connected to all processors, communication tasks have to be scheduled
on several buses according to the actual interconnection topology.

Fig. 4. Basic list scheduling algorithm.

time units after initiation of the broadcast. For the example given
in Table I, communication time for condition values has been
considered . In Table I, the last three rows indicate the
schedule for communication of the values of conditions ,
and .

IV. SCHEDULING OF CONDITIONAL PROCESSGRAPHS

A. The Scheduling Algorithm

Our algorithm for scheduling of conditional process graphs
relies on a list scheduling heuristic. List scheduling heuristics
[29] are based on ordered lists from which processes are ex-
tracted to be scheduled at certain moments. In the algorithm
presented in Fig. 4 we have such a list, , in which
processes are placed in increasing order of the time when they
become ready for execution (this time is stored as an attribute

of each process in the list, and is the moment when
all the predecessors ofhave terminated). If is mapped to a
hardware processor, it is scheduled, without any restriction, at
the moment when it is ready. On a programmable processor or
bus, however, a new processcan be scheduled only after the
respective processing element becomes free [free in-
dicates this moment]. There can be several processes mapped
on , so that, at a given moment, free . All
of them will be ready when processing element becomes
free. From these processes, functionSelectwill pick out the one
that has the highest priority assigned to it, in order to be sched-
uled. This priority function is one of the essential features that
differentiate various list scheduling approaches. We will later
discuss the particular priority function used by our algorithm.

The algorithm presented in Fig. 4 is able to schedule, based
on a certain priority function, process graphs without condi-
tional control dependencies. In Fig. 5, we show the algorithm
for scheduling of conditional process graphs. It is based on the
general principles of list scheduling, using the list to
store processes ordered by the time when they become ready

480 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 5. List scheduling of conditional process graphs.

for execution. is the set of those condition values
for which the corresponding disjunction process (which com-
putes the value) has been already scheduled. Each condition
value has two attributes attached: is the
moment when the valuehas been computed (the disjunction
process has terminated) and is the time when is avail-
able on processors different from the one that executes the dis-
junction process. The recursive procedure CPG
traverses the CPG analyzing each possible alternative track and
considering for each track only the processes executed for the re-
spective condition values. The algorithm, thus, proceeds along
a binary decision tree corresponding to the alternative tracks,
which is explored in depth first order.

Fig. 6 shows the decision tree explored during generation
of Table I for the CPG in Fig. 1. The nodes of the tree corre-
spond to the states reached during scheduling when a disjunc-
tion process has been scheduled and the algorithm branches for
the alternative condition values. Whenever a processhas been
scheduled, it is eliminated from the ready list , and
all processes that become ready afterhas been executed are
added to . If, however, is a disjunction process
computing condition , the two possible alternatives are han-
dled separately. First, the processes are added to that
become ready on the true alternative, and scheduling is con-
tinued with the condition set . Then, those pro-
cesses are added to that become ready on the false

Fig. 6. The decision tree explored at generation of the schedule table for the
CPG in Fig. 1.

alternative, and scheduling is continued with the condition set
.

Let us suppose that a processhas become ready and has
been added to the list before the branching for a
certain condition . If the process is scheduled before the
branching, it will be eliminated from and, thus, not
handled any more during further exploration of the tree below
that branching point. This scheduling decision is the one and
only decision valid for on all tracks including that point.
If has not been scheduled before branching on, it will
be inherited by on both branches (these branches
belong to different execution tracks through the CPG) and

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 481

will be eventually scheduled on both of them. There are two
important conclusions to be drawn here.

1) If a process becomes ready on a certain execution track
through the CPG, it will be scheduled for activation on
that track. By this, requirement R1 is satisfied.

2) During exploration of a certain execution track, a given
process that has to be activated on that track is considered
one single time for scheduling.

We will now discuss three additional aspects concerning the
scheduling algorithm in Fig. 5: the set of conditions used to
schedule a certain process, the communication of condition
values, and the priority assignment.

B. Conditions Used for Process Scheduling

When a process is ready to be scheduled at a moment, the
set of conditions to be used to schedule it has to be determined:

A condition will be used at moment for scheduling a
process if is a member of the guard set or of the influence
set of and, according to the current schedule, the value of
has already been computed at time.

There are several aspects to be discussed in the context of this
rule.

1) As discussed in Section III, the influence set consists
of all conditions, except those in the guard set, whichpo-
tentially could havean influence on the execution of .
The above rule selects from the influence set those con-
ditions thatactually havean influence on the execution
of , considering the actual track that is scheduled and
the particular moment. Those conditions are eliminated
that have not been computed at moment, according to
the current schedule, and, thus, are excluded to have any
influence (by sharing or succession) on the scheduling of

in the current context.
2) Every condition that is a member of the guard set of a

process is used to schedule . By this,
requirement R2 is satisfied.

We use the notationfor the value of condition cor-
responding to the current track. is a member of the
guard set of , which means that it is computed by a pre-
decessor of . Thus, and
(any predecessor of has been scheduled and has ter-
minated before becomes ready). Consequently,
and also (Fig. 5), which means that will be
used for scheduling .

3) Consider a process with guard . For a given ex-
ecution track, labeled , is scheduled
at , conditioned by expression. Let us suppose that
the same process is scheduled also on another track,
labeled at , conditioned by ex-
pression . We have shown in the previous subsection
that is scheduled one single time for a given execution
track. In order to prove that requirement R3 is satisfied,
we have to show that during execution of neither of the
two tracks can both expressionsand become true.

We have and E , where
and are conjunctions of condition values selected

from the influence set of ; we know that and
. Let us consider , the conditions

that appear both in and in , but with complementary
values. If we take, for example, the tracks labeled

and in Fig. 6, then is and
is . For any pair of tracks there has to be at least one
such condition (the one on which the two tracks branch).
If none of the conditions is a member of the
influence set of , then is scheduled at identical times
on the two tracks (there is no influence on the process
from any condition which differentiates the tracks) and,
thus, there is no conflict .

Let us suppose that is a member of the influence set
of . If is considered for scheduling before the algo-
rithm has branched on condition, then the respective
scheduling time is the only one for both tracksand
(see previous subsection) and there is no conflict.

If is considered for scheduling after the algorithm
has branched on condition, but before , we have

and, thus, no conflict (before , which
means that before the disjunction process has terminated
and has been computed, the two branches act identi-
cally). If is scheduled after , then will be used
to schedule on both tracks and
but with complementary values. Consequently,and
cannot both become true during the same execution.

C. Communication of Condition Values

In Section III-C, we have shown that the values of all condi-
tions needed to schedule a certain processhave to be known
on processor at the activation moment of that process. In
Fig. 5, we have used to denote the earliest moment when all
these conditions are available, and processwill not be sched-
uled before . Hence, correctness requirement R4 is also satis-
fied by the algorithm in Fig. 5.

Transmission of a value for condition is scheduled as soon
as possible on the first bus that becomes available after termi-
nation of the disjunction process that computes. At the same
time, the moment when the respective value becomes available
on processors different from the one running the disjunction
process has to be determined: , where is the time
at which transmission of the condition value has been sched-
uled. We mention that communication of a condition value will
only be scheduled if there exists at least one processso that

GS or IS , and is different from the pro-
cessor running the disjunction process.

D. Priority Assignment

In this section, we first introduce the priority function used
by our list scheduling algorithm and then show how priorities
are assigned in the particular context of a CPG.

List scheduling algorithms rely on priorities in order to solve
conflicts between several processes that are ready to be exe-
cuted on the same programmable processor or bus. Such pri-
orities very often are based on the critical path (CP) from the
respective process to the sink node. In this case (we call it CP

482 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

scheduling), the priority assigned to a processwill be the
maximal total execution time on a path from the current node to
the sink

where is the th path from node to the sink node.
Considering the concrete definition of our problem, signifi-

cant improvements of the resulting schedule can be obtained,
without any penalty in scheduling time, by making use of the
available information on process mapping.

Let us consider the graph in Fig. 7 and suppose that the list
scheduling algorithm has to decide between scheduling process

or , which are both ready to be scheduled on the same
programmable processor or bus. In Fig. 7, we have depicted
only the critical path from and to the sink node. Let us
consider that is the last successor of on the critical path
such that all processes from to are assigned to the same
processing element . The same holds for relative to .

and are the total execution time of the chain of processes
from to and from to , respectively, following the
critical paths. and are the total execution times of the
processes on the rest of the two critical paths. Thus, we have

and

However, we will not use the length of these critical paths
as apriority. Our policy, called partial critical path scheduling
(PCP), is based on the estimation of a lower boundon the total
delay, taking into consideration that the two chains of processes

and are executed on the same processor.
and are the lower bounds if and , respectively,

are scheduled first

We select the alternative that offers the perspective of the
shorter delay . It can be observed that if

, then , which means that we have to
schedule first so that ; similarly, if , then

, and we have to schedule first in order to get
.

As a conclusion, for PCP scheduling we use the value of
as a priority criterion instead of the length of the whole crit-
ical path. Thus, we take into consideration only that part of the
critical path corresponding to a processthat starts with the
first successor of that is assigned to a processor different from

.
For evaluation of the PCP policy, we used 1250 graphs gen-

erated for experimental purpose. Two-hundred fifty graphs have
been generated for each dimension of 20, 40, 75, 130, and 200
nodes. We considered architectures consisting of one ASIC, one
to 11 processors, and one to eight buses. We have evaluated the
percentage deviations of the schedule lengths produced by CP,

Fig. 7. Delay estimation for PCP scheduling.

UB,5 and PCP-based list scheduling from the lengths of the op-
timal schedules. The optimal schedules were produced running
a branch-and-bound based algorithm. The average deviation for
all graphs is 4.73% with UB, 4.69% with CP, and 2.35%, two
times smaller, with PCP. Further details concerning the PCP
policy and its experimental evaluation can be found in [33].

How is a PCP priority assignment applied to conditional
process graphs? The problem is that in a CPG a process
potentially belongs to several tracks, and relative to each of
these tracks it has a different PCP priority. Thus, a process is
characterized not by a single priority but by a set of priorities,
one for each track to which the process belongs.in Fig. 1,
for example, has priority 14 corresponding to all tracks that
imply condition value , priority 15 corresponding to the
tracks that imply , and 18 for those implying .

When a certain process is considered for scheduling, the
scheduler does not know the particular track to be followed,
and thus it is not obvious which priority to use for the given
process. We have used a very simple and efficient heuristic for
priority assignment to processes in a CPG: for each process,
that PCP priority is considered that corresponds to the most
critical track to which belongs. This means that gets
the maximal priority among those assigned for each particular
track. In the case of (Fig. 1), the chosen priority will be 18.

From a practical point of view, the above heuristic means that
priorities are assigned to processes by simply applying PCP pri-
ority assignment to the simple (unconditional) process graph
that is obtained from the CPG by ignoring conditional depen-
dencies and considering conditional edges as simple edges.

By this priority assignment policy, we try to enforce sched-
ules so that the execution of longer tracks is as similar as pos-
sible to the best schedule we could generate if we could know in
advance that the particular track is going to be selected. By in-
troducing perturbations (possible delays) into the shorter tracks
and letting the longer ones proceed as similar as possible to their
(near) optimal schedule, we hope to produce a schedule table
with a minimized worst case execution time. This is in line with
the objective formulated in Section III-B.

V. A TTP-BASED SYSTEM ARCHITECTURE

In the previous sections, we have considered a general system
architecture with a relatively simple communication infrastruc-
ture. Such a model is representative for a large class of appli-
cations, and this is the reason why it has been used in order to
develop our scheduling strategy for CPGs.

5Urgency-based (UB) scheduling uses the difference between the as late as
possible (ALAP) schedule of a process and the current time as a priority.

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 483

When designing a particular system, however, very specific
architectural solutions and particular communication protocols
often have to be used. In such a situation, particulars of the
communication infrastructure have to be considered for system
scheduling. At the same time, several parameters of the com-
munication protocol have to be optimized in order to meet time
constraints at the lowest possible cost. These two aspects are
strongly interrelated and have a strong impact on the quality of
the final design.

We consider a system architecture built around a communi-
cation model that is based on the TTP [48]. TTP is well suited
for the category of systems targeted by our synthesis environ-
ment. These are systems that include both dataflow and control
aspects and that are implemented on distributed architectures.
They have to fulfill hard real-time constraints and are often
safety-critical. TTP is also perfectly suited for systems imple-
mented with static nonpreemptive scheduling, and thus repre-
sents an ideal target architecture for the scheduling approach
presented in the previous sections.

While in the previous sections we emphasized the impact
of conditional dependencies on system scheduling, in the rest
of this paper we mainly concentrate on how the communica-
tion infrastructure and protocol have to be considered during
scheduling and how they can be optimized in order to reduce
the system delay. In this section, we describe our hardware and
software architecture based on the TTP. In Section VI, we then
show how scheduling and optimization of the communication
protocol interact with each other and how they can be considered
together in order to improve the overall system performance.

A. Hardware Architecture

We consider architectures consisting of nodes connected by a
broadcast communication channel [Fig. 8(a)]. Every node con-
sists of a TTP controller [48], a CPU, a RAM, a ROM, and an
I/O interface to sensors and actuators. A node can also have an
ASIC in order to accelerate parts of its functionality.

Communication between nodes is based on the TTP. TTP was
designed for distributed real-time applications that require pre-
dictability and reliability. The communication is performed on
a broadcast channel, so a message sent by a node is received
by all the other nodes. The bus access scheme is time-division
multiple-access (TDMA) [Fig. 8(b)]. Each node can transmit
only during a predetermined time interval, the so-called TDMA
slot . In such a slot, a node can send several messages pack-
aged in a frame. We consider that a slot is at least large
enough to accommodate the largest message generated by any
process assigned to node, so the messages do not have to
be split in order to be sent. A sequence of slots corresponding
to all the nodes in the architecture is called a TDMA round. A
node can have only one slot in a TDMA round. Several TDMA
rounds can be combined together in a cycle that is repeated pe-
riodically. The sequence and length of the slots are the same for
all the TDMA rounds. However, the length and contents of the
frames may differ.

Every node has a TTP controller that implements the protocol
services and runs independently of the node’s CPU. Communi-
cation with the CPU is performed through a message base in-

Fig. 8. TTP-based system architecture

terface (MBI), which is usually implemented as a dual-ported
RAM (see Fig. 9).

The TDMA access scheme is imposed by a message de-
scriptor list (MEDL) that is located in every TTP controller.
The MEDL basically contains the time when a frame has to be
sent or received, the address of the frame in the MBI, and the
length of the frame. MEDL serves as a schedule table for the
TTP controller, which has to know when to send or receive a
frame to or from the communication channel.

The TTP controller provides each CPU with a timer inter-
rupt based on a local clock, synchronized with the local clocks
of the other nodes. The clock synchronization is done by com-
paring thea priori known time of arrival of a frame with the
observed arrival time. By applying a clock synchronization al-
gorithm, TTP provides a global time-base of known precision,
without any overhead on the communication.

B. Software Architecture

We have designed a software architecture that runs on the
CPU in each node and that has a real-time kernel as its main
component. Each kernel has a schedule table that contains all the
information needed to take decisions on activation of processes
and transmission of messages, based on the values of conditions.

The message passing mechanism is illustrated in Fig. 9,
where we have three processesto . and are mapped
to node that transmits in slot , and is mapped to
node that transmits in slot . Message is transmitted
between and that are on the same node, while message

is transmitted from to between the two nodes. We
consider that each process has its own memory locations for
the messages it sends or receives and that the addresses of the
memory locations are known to the kernel through the schedule
table.

is activated according to the schedule table, and when it
finishes it calls thesendkernel function in order to send

484 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 9. Message passing mechanism.

and then . Based on the schedule table, the kernel copies
from the corresponding memory location in to the memory
location in . When will be activated, it finds the message in
the right location. According to our scheduling policy, whenever
a receiving process needs a message, the message is already
placed in the corresponding memory location. Thus, there is no
overhead on the receiving side for messages exchanged on the
same node.

Message has to be sent from node to node . At a
certain time, known from the schedule table, the kernel transfers

to the TTP controller by packaging it into a frame in the
MBI. Later on, the TTP controller knows from its MEDL when
it has to take the frame from the MBI in order to broadcast it on
the bus. In our example the timing information in the schedule
table of the kernel and the MEDL is determined in such a way
that the broadcasting of the frame is done in slotof Round
2. The TTP controller of node knows from its MEDL that it
has to read a frame from slot of Round 2 and to transfer it
into the MBI. The kernel in node will read message from
the MBI. When will be activated based on the local schedule
table of node , it will already have in its right memory
location.

In [51], we presented a detailed discussion concerning the
overheads due to the kernel and to every system call. We also
presented formulas for derivation of the worst case execution
delay of a process, taking into account the overhead of the timer
interrupt, the worst case overhead of the process activation, and
message passing functions.

VI. SCHEDULING WITH BUS ACCESSOPTIMIZATION

A. Problem Formulation

We consider a system captured as a CPG. The target architec-
ture is as described in Section V. Each process is mapped on a
CPU or an ASIC of a node. We are interested in deriving a delay
on the system execution time so that this delay is as small as
possible, and in synthesizing the local schedule tables for each
node, as well as the MEDL for the TTP controllers, which guar-
antee this delay.

For each message, its length is given. If the message is
exchanged by two processes mapped on the same node, the mes-
sage communication time is completely accounted for in the
worst case execution delay of the two processes as shown in
Section V-B. Thus, from the scheduling point of view, commu-

Fig. 10. Scheduling example.

nication of such messages is instantaneous. This is in line with
our CPG representation where no communication processes are
introduced between processes mapped to the same processor.
However, if the message is sent between two processes mapped
onto different nodes, the message has to be scheduled according
to the TTP protocol. Several messages can be packaged together
in the data field of a frame. The number of messages that can
be packaged depends on the slot length corresponding to the
node. The effective time spent by a messageon the bus is

, where is the length of slot and is the
transmission speed of the channel. In Fig. 9, depicts the
time spent by on the bus. The previous equation shows that
the communication time does not depend on the bit length

of the message but on the slot length corresponding to
the node sending .

The important impact of the communication parameters on
the performance of the application is illustrated in Fig. 10. In
Fig. 10(d), we have a graph consisting of four processesto

and four messages to . The architecture consists of
two nodes interconnected by a TTP channel. The first node,

, transmits on slot of the TDMA round, and the second
node, , transmits on slot . Processes and are mapped
on node , while processes and are mapped on node

. With the TDMA configuration in Fig. 10(a), where slot
is scheduled first and slot is second, we have a resulting
schedule length of 24 ms. However, if we swap the two slots
inside the TDMA round without changing their lengths, we can
improve the schedule by 2 ms, as seen in Fig. 10(b). Further-
more, if we have the TDMA configuration in Fig. 10(c) where
slot is first, slot is second, and we increase the slot lengths
so that the slots can accommodate both of the messages gener-
ated on the same node, we obtain a schedule length of 20 ms,
which is optimal. However, increasing the length of slots is not
necessarily improving a schedule, as it delays the communica-
tion of messages generated by other nodes.

Our optimization strategy, described in the following sec-
tions, determines the sequence and length of the slots in a
TDMA round with the goal of reducing the delay on the execu-
tion time of the system. Before discussing this optimization of

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 485

Fig. 11. Message communication planning.

the bus access scheme, we first analyze how the particularities
of the TTP protocol have to be taken into consideration at
scheduling of CPGs.

B. Scheduling with a Given Bus Access Scheme

Given a certain bus access scheme, which means a given or-
dering of the slots in the TDMA round and fixed slot lengths,
the CPG has to be scheduled with the goal to minimize the worst
case execution delay. This can be performed using our algorithm

CPG (Fig. 5) presented in Section IV. Two as-
pects have to be discussed here: the planning of messages in pre-
determined slots and the impact of this communication strategy
on the priority assignment.

The function in Fig. 11 is called in order to
plan the communication of a message, with length , gener-
ated on , which is ready to be transmitted at .

returns the first round and corresponding slot
(the slot corresponding to) that can host the message. In
Fig. 11, is the length of a TDMA round expressed
in time units (in Fig. 12, for example, ms).
The first roundafter is the initial candidate tobecon-
sidered.For this round,however, it canbetoo late tocatch theright
slot, in which case the next round is selected. When a candidate
round is selected, we have to check that there is enough space left
in the slot for our message (represents the total number
of bits occupied by messages already scheduled in the respective
slot of that round). If no space is left, the communication has to
be delayed for another round.

With this message planning scheme, the algorithm in Fig. 5
will generate correct schedules for a TTP-based architecture,
with guaranteed worst case execution delays. However, the
quality of the schedules can be much improved by adapting
the priority assignment scheme so that particularities of the
communication protocol are taken into consideration.

Let us consider the graph in Fig. 12(c), and suppose that
the list scheduling algorithm has to decide between scheduling
process or , which are both ready to be scheduled on the
same programmable processor. The worst case execution time
of the processes is depicted on the right side of the respective
node and is expressed in milliseconds. The architecture consists
of two nodes interconnected by a TTP channel. Processes
and are mapped on node , while processes and
are mapped on node . Node transmits on slot of the
TDMA round, and transmits on slot . Slot has a length
of 10 ms, while slot has a length of 8 ms. For simplicity, we

Fig. 12. Priority function example.

suppose that there is no message transferred betweenand .
PCP (see Section IV-D) assigns a higher priority tobecause
it has a partial critical path of 12, starting from, longer than
the partial critical path of which is ten and starts from. This
results in a schedule length of 40 ms depicted in Fig. 12(a). On
the other hand, if we schedule first, the resulting schedule,
depicted in Fig. 12(b), is only 36 ms.

This apparent anomaly is due to the fact that the way we have
computed PCP priorities, considering message communication
as a simple activity of delay 6 ms, is not realistic in the context of
a TDMA protocol. Let us consider the particular TDMA config-
uration in Fig. 12 and suppose that the scheduler has to decide at

which one of the processes or to schedule. If is
scheduled, themessage is ready tobe transmittedat.Based
onacomputationsimilartothatusedinFig.11, it followsthatmes-
sage will be placed in round , and it arrives in time
to get slot of that round .
Thus, arrives at , which means a delay relative to

(when the message was ready) of . This is the
delay that should be considered for computing the partial critical
path of , which now results in (longer than the
one corresponding to).

The obvious conclusion is that priority estimation has to be
based on message planning with the TDMA scheme. Such an es-
timation, however, cannot be performed statically before sched-
uling. If we take the same example in Fig. 12, but consider that
the priority-based decision is taken by the scheduler at ,
will be ready at . This is too late for to get into slot
of round 0. The message arrives with round 1 at . This
leads to a delay due to the message passing of ,
different from the one computed above.

486 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 13. Optimization of the bus access scheme.

We introduce a new priority function, the modified PCP
(MPCP), which is computed during scheduling, whenever
several processes are in competition to be scheduled on the
same resource. Similar to PCP, the priority metric is the length
of that portion of the critical path corresponding to a process

, which starts with the first successor of that is assigned to
a processor different from . The critical path estimation
starts with time at which the processes in competition are
ready to be scheduled on the available resource. During the
partial traversal of the graph, the delay introduced by a certain
node is estimated as follows:

if is not a message passing

if is a message passing.

is the time when the node generating the message termi-
nates (and the message is ready) andis the time when the
slot to which the message is supposed to be assigned has ar-
rived. The slot is determined as in Fig. 11, but without taking
into consideration space limitations in slots. As the experimental
results (Section VII) show, using MPCP instead of PCP for
the TTP-based architecture results in an important improvement
of the quality of generated schedules, with a slight increase in
scheduling time.

C. Optimization of the Bus Access Scheme

In the previous section, we have shown how our algorithm
CPG (Fig. 5) can produce an efficient schedule

for a CPG, given a certain TDMA bus access scheme. However,
as discussed in Section VI-A, both the ordering of slots and the
slot lengths strongly influence the worst case execution delay
of the system. In Fig. 13, we show a heuristic that, based on
a greedy approach, determines an ordering of slots and their
lengths so that the worst case delay corresponding to a certain
CPG is as small as possible.

The initial solution, the “straightforward” one, assigns in
order nodes to the slots (Node) and fixes the slot
length to the minimal allowed value, which is equal
to the length of the largest message generated by a process
assigned to Node. The algorithm starts with the first slot and

tries to find the node that, when transmitting in this slot, will
minimize the worst case delay of the system, as produced by

CPG. Simultaneously with searching for the
right node to be assigned to the slot, the algorithm looks for
the optimal slot length. Once a node is selected for the first slot
and a slot length fixed, the algorithm continues with the next
slots, trying to assign nodes (and fix slot lengths) from those
nodes that have not yet been assigned.

When calculating the length of a certain slot, a first alter-
native could be to try all the slot lengthsallowed by the
protocol. Such an approach starts with the minimum slot
length determined by the largest message to be sent from the
candidate node, and it continues incrementing with the smallest
data unit (e.g., 2 bits) up to the largest slot length determined
by the maximum allowed data field in a TTP frame (e.g., 32
bits, depending on the controller implementation). We call
this alternative . A second alternative,

, is based on feedback from the sched-
uling algorithm, which recommends slot sizes to be tried out.
Before starting the actual optimization process for the bus
access scheme, a scheduling of the straightforward solution is
performed that generates the recommended slot lengths. These
lengths are produced by the function (Fig. 11)
whenever a new round has to be selected because of lack of
space in the current slot. In such a case, the slot length that
would be needed in order to accommodate the new message
is added to the list of recommended lengths for the respective
slot. With this alternative, the optimization algorithm in Fig. 13
only selects among the recommended lengths when searching
for the right dimension of a certain slot.

As the experimental results show (see Section VII), optimiza-
tion of the bus access scheme can produce huge improvements
in terms of performance. As expected, the
alternative is much faster then the first one, while the quality of
the results produced is only slightly lower.

VII. EXPERIMENTAL RESULTS

In the following two sections, we show a series of experi-
ments that demonstrate the effectiveness of the proposed algo-

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 487

rithms. The first set of results is related to the scheduling of con-
ditional process graphs, while the second set targets the problem
of scheduling with optimization of the bus access scheme. As a
general strategy, we have evaluated our algorithms performing
experiments on a large number of test cases generated for ex-
perimental purpose. We then have validated the proposed ap-
proaches using real-life examples. All experiments were run on
SPARCstation 20.

A. Evaluation of the Scheduling Algorithm

As discussed in Section III-B, there are alternative tracks
through a CPG, and a schedule could be generated for each one
separately. Suppose that is the longest of these schedules.
This, however, does not mean that the worst case delay,
corresponding to the CPG, is guaranteed to be. Such a delay
cannot be guaranteed in theory, as the values of conditions, and
thus the actual track to be followed, cannot be predicted. The
objective of our scheduling heuristic is to generate a schedule
table so that the difference is minimized.

For evaluation of the scheduling algorithm, we used 1080
conditional process graphs generated for experimental purpose;
360 graphs have been generated for each dimension of 60, 80,
and 120 processes. The number of alternative tracks through the
graphs is 10, 12, 18, 24, or 32. Execution times were assigned
randomly using both uniform and exponential distribution. We
considered architectures consisting of one ASIC, one to 11 pro-
cessors, and one to eight buses.

Fig. 14(a) presents the percentage increase of the worst case
delay over the delay of the longest track. The delay

has been obtained by scheduling separately each alternative
track trough the respective CPG, using PCP list scheduling, and
selecting the delay that corresponds to the longest track. The
average increase is between 0.1% and 8.1% and, practically,
does not depend on the number of processes in the graph but
only on the number of alternative tracks. It is worth mentioning
that a zero increase was produced for 90% of the
graphs with ten alternative tracks, 82% with 12 tracks, 57% with
18 tracks, 46% with 24 tracks, and 33% with 32 tracks.

Concerning execution time, the interesting aspect is how the
algorithm scales with the number of alternative tracks and that
of processes. The worst case complexity of the scheduling al-
gorithm depends on the number of tracks, which theoretically
can grow exponentially. However, such an explosion is unlikely
for practically significant applications. Fig. 14(b) shows the av-
erage execution time for the scheduling algorithm as a function
of the number of alternative tracks. We observe very small ex-
ecution times for even large graphs and very good scaling with
the number of alternative tracks. The increase of execution time
with the number of processes, for a given number of alternative
tracks, is practically linear, which corresponds to the theoretical
complexity of list scheduling algorithms [52], [53].

One of the very important applications of our scheduling al-
gorithm is for performance estimation during design space ex-
ploration. We have performed such an experiment as part of
a project aiming to implement the operation and maintenance
(OAM) functions corresponding to the F4 level of the ATM
protocol layer [54]. Fig. 15(a) shows an abstract model of the

Fig. 14. Evaluation of the scheduling algorithm for CPGs.

ATM switch. Through the switching network, cells are routed
between the input and output lines. In addition, the ATM
switch also performs several OAM related tasks.

In [50], we discussed hardware/software partitioning of the
OAM functions corresponding to the F4 level. We concluded
that filtering of the input cells and redirecting of the OAM cells
toward the OAM block have to be performed in hardware as part
of the line interfaces (LI). The other functions are performed by
theOAM blockand can be implemented in software.

We have identified three independent modes in the function-
ality of the OAM block. Depending on the content of the input
buffers [Fig. 15(b)], the OAM block switches between these
three modes. Execution in each mode is controlled by a statically
generated schedule table for the respective mode. We specified
the functionality corresponding to each mode as a set of inter-
acting VHDL processes. These specifications have then been
translated to the corresponding CPGs. Table II shows the char-
acteristics of the resulting CPGs. The main objective of this ex-
periment was to estimate, using our scheduling algorithm, the
worst case delays in each mode for different alternative archi-
tectures of the OAM block. Based on these estimations as well
as on the particular features of the environment in which the
switch will be used, an appropriate architecture can be selected
and the dimensions of the buffers can be determined.

Fig. 15(b) shows a possible implementation architecture of
the OAM block, using one processor and one memory module
(1P/1M). Our experiments included also architecture models
with two processors and one memory module (2P/1M), as well

488 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 15. ATM switch with OAM block

as structures consisting of one (respectively, two) processors
and two memory modules (1P/2M, 2P/2M). The inclusion of
alternatives with two memory modules is justified by the fact
that the information processed by the OAM block is organized
in two main tables that potentially could be accessed in par-
allel. The target architectures are based on two types of pro-
cessors: one (p1) running at 80 MHz and another (p2) run-
ning at 120 MHz. For each architecture, processes have been
assigned to processors taking into consideration the potential
parallelism of the CPGs and the amount of communication be-
tween processes. The worst case delays that resulted after gener-
ation of the schedule table for each of the three modes are given
in Table II. As expected, using a faster processor reduces the
delay in each of the three modes. Introducing an additional pro-
cessor, however, has no effect on the execution delay in mode 2,
which does not present any potential parallelism. In mode 3, the
delay is reduced by using twop1 processors instead of one. For
the faster, p2 processor, however, the worst case delay cannot
be improved by introducing an additional processor. Using two
processors will always improve the worst case delay inmode 1.
As for the additional memory module, only in mode 1 does the
model contain memory accesses that are potentially executed in
parallel. Table II shows that only for the architecture consisting
of two p2 processors, providing an additional memory module
pays back by a reduction of the worst case delay in mode 1. The
reason is that, with the process execution times corresponding to
this processor and the 2P/1M architecture, the track containing
parallel memory accesses is the one that dictates the worst case
execution time. Thus, adding a second memory module results
in a reduced worst case delay of the system in mode 1.

B. Evaluation of Scheduling with Bus Access Optimization

In this set of experiments, we were interested to investigate
the efficiency of our scheduling algorithm in the context of the
TDMA-based protocol and the potential of our optimization
strategies for the bus access scheme. We considered TTP-based
architectures consisting of two, four, six, eight, and ten nodes.

Forty processes were assigned to each node, resulting in graphs
of 80, 160, 240, 320, and 400 processes. Thirty CPGs were gen-
erated for each graph dimension; thus a total of 150 CPGs were
used for experimental evaluation. Execution times and message
lengths were assigned randomly using both uniform and expo-
nential distribution. For the communication channel, we consid-
ered a transmission speed of 256 kbps and a length below 20 m.
The maximum length of the data field was 8 bytes, and the fre-
quency of the TTP controller was chosen to be 20 MHz.

The first results concern the improvement of the schedules
produced by our algorithm when using the MPCP priority func-
tion instead of the one based on the general PCP priority. In
order to compare the two priority functions, the 150 CPGs were
scheduled, considering the TTP-based architectures presented
above, using first PCP for priority assignment and then MPCP.
We calculated the average percentage deviations of the schedule
lengths produced with MPCP and PCP for each graph, from the
length of the best schedule among the two. The results are de-
picted in Fig. 16(a). The diagram shows an important improve-
ment of the resulted schedules if the TDMA-specific priority
function MPCP is used. On average, the deviation with MPCP
is 11.34 times smaller than with PCP. However, due to its dy-
namic nature, MPCP implies a slightly larger execution time, as
shown in Fig. 16(b).

In the following experiments, we were interested to check the
potential of the algorithm presented in Section VI-C to improve
the generated schedules by optimizing the bus access scheme.
We compared schedule lengths obtained for the 150 CPGs
considering four different bus access schemes: the straight-
forward solution, the optimized schemes generated with the
two alternatives of our greedy algorithm (
and), and a near-optimal scheme. The
near-optimal scheme was produced using a simulated annealing
(SA)-based algorithm for bus access optimization, which is
presented in [51]. Very long and extensive runs have been
performed with the SA algorithm for each graph, and the
best ever solution produced has been considered as the near
optimum for that graph.

Table III presents the average and maximum percentage de-
viation of the schedule lengths obtained with the straightfor-
ward solution and with the two optimized schemes from the
length obtained with the near-optimal scheme. For each of the
graph dimensions, the average optimization time, expressed in
seconds, is also given. The first conclusion is that by consid-
ering the optimization of the bus access scheme, the results im-
prove significantly compared to the straightforward solution.
The greedy heuristic performs well for all the graph dimensions.
As expected, the alternative (which con-
siders all allowed slot lengths) produces slightly better results,
on average, than . However, the execution
times are much smaller for . It is interesting
to mention that the average execution times for the SA algo-
rithm, needed to find the near-optimal solutions, are between 5
min for the CPGs with 80 processes and 275 min for 400 pro-
cesses [51].

A typical safety-critical application with hard real-time con-
straints, to be implemented on a TTP-based architecture, is a ve-
hicle cruise controller (CC). We have considered a CC system

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 489

TABLE II
WORSTCASE DELAYS FOR THEOAM BLOCK

Fig. 16. Scheduling with PCP and MPCP for TTP-based architectures.

derived from a requirement specification provided by the in-
dustry. The CC described in this specification delivers the fol-
lowing functionality: it maintains a constant speed for speeds
over 35 km/h and under 200 km/h, offers an interface (buttons)
to increase or decrease the reference speed, and is able to resume
its operation at the previous reference speed. The CC operation
is suspended when the driver presses the brake pedal.

The specification assumes that the CC will operate in an en-
vironment consisting of several nodes interconnected by a TTP
channel. There are five nodes that functionally interact with
the CC system: the antiblocking system, the transmission con-
trol module, the engine control module, the electronic throttle
module, and the central electronic module. It has been decided

to distribute the functionality (processes) of the CC over these
five nodes.

The CPG corresponding to the CC system consists of 32 pro-
cesses and includes two alternative tracks. The maximum al-
lowed delay is 110 ms. For our model, the straightforward so-
lution for bus access resulted in a schedule corresponding to a
maximal delay of 114 ms (which does not meet the deadline)
when PCP was used as a priority function, while using MPCP
we obtained a schedule length of 109 ms. Both of the greedy
heuristics for bus access optimization produced solutions so that
the worst case delay was reduced to 103 ms. The near-optimal
solution (produced with the SA-based approach) results in a
delay of 97 ms.

VIII. C ONCLUSIONS

We have presented an approach to process scheduling for
the synthesis of embedded systems implemented on architec-
tures consisting of several programmable processors and appli-
cation-specific hardware components. The approach is based on
an abstract graph representation that captures, at process level,
both dataflow and the flow of control. The scheduling problem
has been considered in strong interrelation with the problem of
communication in distributed systems.

We first presented a general approach to process scheduling
with control and data dependencies, considering a generic bus-
based distributed architecture. The proposed algorithm is based
on a list scheduling approach and statically generates a schedule
table that contains activation times for processes and communi-
cations. The main problems that have been solved in this con-
text are the minimization of the worst case delay and the gen-
eration of a logically and temporally deterministic table, taking
into consideration communication times and the sharing of the
communication support.

We have further investigated the impact of particular
communication infrastructures and protocols on the overall
performance and, specially, how the requirements of such
an infrastructure have to be considered for process and com-
munication scheduling. Considering a TTP-based system
architecture, we have shown that the general scheduling
algorithm for conditional process graphs can be successfully
applied if the strategy for message planning is adapted to the
requirements of the TDMA protocol. At the same time, the
quality of generated schedules has been much improved after
adjusting the priority function used by the scheduling algorithm
to the particular communication protocol.

490 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

TABLE III
EVALUATION OF THE BUS ACCESSOPTIMIZATION ALGORITHM

However, not only do particulars of the underlying architec-
ture have to be considered during scheduling but also the pa-
rameters of the communication protocol should also be adapted
to fit the particular embedded application. We have shown that
important performance gains can be obtained, without any ad-
ditional cost, by optimizing the bus access scheme. The opti-
mization algorithm, which now implies both process scheduling
and optimization of the parameters related to the communica-
tion protocol, generates an efficient bus access scheme as well
as the schedule tables for activation of processes and communi-
cations.

The algorithms have been evaluated based on extensive ex-
periments using a large number of graphs generated for experi-
mental purpose as well as real-life examples.

There are several aspects that were omitted from the discus-
sion in this paper. In [55], we have analyzed the optimization
of a TDMA bus access scheme in the context of priority-based
preemptive scheduling. There we also considered the possibility
of messages being split over several successive frames. We nei-
ther insist here on the relatively simple procedure for postpro-
cessing of the schedule table, during which the table can be sim-
plified for certain situations in which identical activation times
are scheduled for a given process on different columns. During
postprocessing, the table is also split into subtables containing
the particular activities to be performed by a certain processor.

REFERENCES

[1] G. De Micheli and M. G. Sami, Eds.,Hardware/Software Co-De-
sign. Norwell, MA: NATO ASI 1995, Kluwer Academic, 1996.

[2] G. De Micheli and R. K. Gupta, “Hardware/software co-design,”Proc.
IEEE, vol. 85, no. 3, pp. 349–365, 1997.

[3] R. Ernst, “Codesign of embedded systems: Status and trends,”IEEE
Design Test Comput., pp. 45–54, Apr.–June 1998.

[4] D. D. Gajski and F. Vahid, “Specification and design of embedded hard-
ware-software systems,”IEEE Design Test Comput., pp. 53–67, Spring
1995.

[5] J. Staunstrup and W. Wolf, Eds.,Hardware/Software Co-Design: Prin-
ciples and Practice. Norwell, MA: Kluwer Academic, 1997.

[6] W. Wolf, “Hardware-software co-design of embedded systems,”Proc.
IEEE, vol. 82, no. 7, pp. 967–989, 1994.

[7] J. D. Ullman, “NP-complete scheduling problems,”J. Comput. Syst.
Sci., vol. 10, pp. 384–393, 1975.

[8] A. Doboli and P. Eles, “Scheduling under control dependencies for het-
erogeneous architectures,” inProc. Int. Conf. Computer Design (ICCD),
1998, pp. 602–608.

[9] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of
conditional process graphs for the synthesis of embedded systems,” in
Proc. Design Aut. Test Eur, 1998, pp. 132–138.

[10] R. Ernst and W. Ye, “Embedded program timing analysis based on path
clustering and architecture classification,” inProc. Int. Conf. CAD,
1997, pp. 598–604.

[11] J. Gong, D. D. Gajski, and S. Narayan, “Software estimation using a
generic-processor model,” inProc. Eur. Design Test Conf., 1995, pp.
498–502.

[12] J. Henkel and R. Ernst, “A path-based technique for estimating hard-
ware run-time in Hw/Sw-cosynthesis,” inProc. Int. Symp. Syst. Syn-
thesis, 1995, pp. 116–121.

[13] Y. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” inProc. ACM/IEEE DAC, 1995, pp.
456–461.

[14] T. Lundqvist and P. Stenström, “An integrated path and timing analysis
method based on cycle-level symbolic execution,”Real-Time Syst., vol.
17, no. 2/3, pp. 183–207, 1999.

[15] S. Malik, M. Martonosi, and Y. S. Li, “Static timing analysis of em-
bedded software,” inProc. ACM/IEEE DAC, 1997, pp. 147–152.

[16] K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient software perfor-
mance estimation methods for hardware/software codesign,” inProc.
ACM/IEEE DAC, 1996, pp. 605–610.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,”J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[18] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,”Microprocess. Microprogram., vol. 40, pp.
117–134, 1994.

[19] N. C. Audsley, A. Burns, R. I. Davis, K. Tindell, and A. J. Wellings,
“Fixed priority pre-emptive scheduling: An historical perspective,”
Real-Time Syst., vol. 8, no. 2/3, pp. 173–198, 1995.

[20] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli,
“Scheduling for embedded real-time systems,”IEEE Design Test
Comput., pp. 71–82, Jan.–Mar. 1998.

[21] T. Y. Yen and W. Wolf,Hardware-Software Co-Synthesis of Distributed
Embedded Systems. Norwell, MA: Kluwer Academic , 1997.

[22] C. Lee, M. Potkonjak, and W. Wolf, “Synthesis of hard real-time appli-
cation specific systems,”Design Automat. Embedded Syst., vol. 4, no.
4, pp. 215–241, 1999.

[23] B. P. Dave and N. K. Jha, “COHRA: Hardware-software cosynthesis
of hierarchical heterogeneous distributed systems,”IEEE Trans. Com-
puter-Aided Design, vol. 17, no. 10, pp. 900–919, 1998.

[24] B. P. Dave, G. Lakshminarayana, and N. J. Jha, “COSYN: Hardware-
software co-synthesis of heterogeneous distributed embedded systems,”
IEEE Trans. VLSI Syst., vol. 7, no. 1, pp. 92–104, 1999.

[25] P. Chou and G. Borriello, “Interval scheduling: Fine-grained code
scheduling for embedded systems,” inProc. ACM/IEEE DAC, 1995,
pp. 462–467.

[26] R. K. Gupta,Co-Synthesis of Hardware and Software for Digital Em-
bedded Systems. Boston, MA: Kluwer Academic , 1995.

[27] V. Mooney, T. Sakamoto, and G. De Micheli, “Run-time scheduler syn-
thesis for hardware-software systems and application to robot control
design,” inProc. Int. Workshop Hardware-Software Co-Design, 1997,
pp. 95–99.

[28] H. Kopetz,Real-Time Systems-Design Principles for Distributed Em-
bedded Applications. Norwell, MA: Kluwer Academic , 1997.

[29] E. G. Coffman Jr and R. L. Graham, “Optimal scheduling for two pro-
cessor systems,”Acta Inform., vol. 1, pp. 200–213, 1972.

[30] P. B. Jorgensen and J. Madsen, “Critical path driven cosynthesis for het-
erogeneous target architectures,” inProc. Int. Workshop Hardware-Soft-
ware Co-Design, 1997, pp. 15–19.

ELESet al.: SCHEDULING WITH BUS ACCESS OPTIMIZATION 491

[31] Y. K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An ef-
fective technique for allocating task graphs to multiprocessors,”IEEE
Trans. Parallel Distrib. Syst., vol. 7, no. 5, pp. 506–521, 1996.

[32] M. Y. Wu and D. D. Gajski, “Hypertool: A programming aid for mes-
sage-passing systems,”IEEE Trans. Parallel Distrib. Syst., vol. 1, no. 3,
pp. 330–343, 1990.

[33] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Process sched-
uling for performance estimation and synthesis of hardware/software
systems,” inProc. Euromicro Conf., 1998, pp. 168–175.

[34] H. Kasahara and S. Narita, “Practical multiprocessor scheduling
algorithms for efficient parallel processing,”IEEE Trans. Comput., vol.
C-33, no. 11, pp. 1023–1029, 1984.

[35] A. Bender, “Design of an optimal loosely coupled heterogeneous multi-
processor system,” inProc. ED&TC, 1996, pp. 275–281.

[36] S. Prakash and A. Parker, “SOS: Synthesis of application-specific het-
erogeneous multiprocessor systems,”J. Parallel Distrib. Comput., vol.
16, pp. 338–351, 1992.

[37] K. Kuchcinski, “Embedded system synthesis by timing constraint
solving,” in Proc. Int. Symp. Syst. Synth., 1997, pp. 50–57.

[38] A. Dasdan, D. Ramanathan, and R. K. Gupta, “A timing-driven design
and validation methodology for embedded real-time systems,”ACM
Trans. Des. Aut. Electron. Syst., vol. 3, no. 4, pp. 533–553, 1998.

[39] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich, “Scheduling
hardware/software systems using symbolic techniques,” inProc. Int.
Workshop Hardware-Software Co-Design, 1999, pp. 173–177.

[40] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele, “Represen-
tation of process model correlation for scheduling,” inProc. Int. Conf.
CAD, 1998, pp. 54–61.

[41] P. H. Chou, R. B. Ortega, and G. Borriello, “The Chinook hardware/soft-
ware co-synthesis system,” inProc. Int. Symp. Syst. Synthesis, 1995, pp.
22–27.

[42] J. M. Daveau, T. B. Ismail, and A. A. Jerraya, “Synthesis of system-level
communication by an allocation-based approach,” inProc. Int. Symp.
Syst. Synthesis, 1995, pp. 150–155.

[43] P. V. Knudsen and J. Madsen, “Integrating communication protocol
selection with hardware/software codesign,”IEEE Trans. Com-
puter-Aided Design, vol. 18, no. 8, pp. 1077–1095, 1999.

[44] S. Narayan and D. D. Gajski, “Synthesis of system-level bus interfaces,”
in Proc. Eur. Design Test Conf., 1994, pp. 395–399.

[45] R. B. Ortega and G. Borriello, “Communication synthesis for distributed
embedded systems,” inProc. Int. Conf. CAD, 1998, pp. 437–444.

[46] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area
network (CAN) message response times,”Contr. Eng. Practice, vol. 3,
no. 8, pp. 1163–1169, 1995.

[47] H. Ermedahl, H. Hansson, and M. Sjödin, “Response-time guarantees
in ATM networks,” inProc. IEEE Real-Time Systems Symp., 1997, pp.
274–284.

[48] H. Kopetz and G. Grünsteidl, “TTP—A protocol for fault-tolerant
real-time systems,”IEEE Comput., vol. 27, no. 1, pp. 14–23, 1997.

[49] “X-by-wire consortium,”,
URL:http://www.vmars.tuwien.ac.at/projects/xbywire/.

[50] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hard-
ware/software partitioning based on simulated annealing and tabu
search,”Design Automat. Embedded Syst., vol. 2, no. 1, pp. 5–32, 1997.

[51] P. Pop, P. Eles, and Z. Peng, “Scheduling with optimized communication
for time-triggered embedded systems,” inProc. Int. Workshop Hard-
ware-Software Co-Design, 1999, pp. 178–182.

[52] G. De Micheli,Synthesis and Optimization of Digital Circuits: McGraw-
Hill, 1994.

[53] S. H. Gerez,Algorithms for VLSI Design Automation. New York:
Wiley, 1999.

[54] T. M. Chen and S. S. Liu,ATM Switching Systems. Norwood, MA:
Artech House , 1995.

[55] P. Pop, P. Eles, and Z. Peng, “Bus access optimization for distributed
embedded systems based on schedulability analysis,” inProc. Design
Aut. Test Eur., 2000.

Petru Eles (M’99) received the M.S. degree in
computer science from the Politehnica University
Timisoara, Romania, in 1979 and the Ph.D. degree
in computer science from the Politehnica University
Bucuresti, Romania, in 1993.

He is currently an Associate Professor with the
Department of Computer and Information Science
at Linköping University, Sweden. His research
interests include design of embedded systems,
hardware/software codesign, real-time systems,
system specification and testing, and computer-aided

design for digital systems. He has published extensively in these areas and has
coauthored several books, among themSystem Synthesis with VHDL(Norwell,
MA: Kluwer Academic, 1997).

Dr. Eles was a corecipient of best paper awards at the 1992 and 1994 European
Design Automation Conference.

Alex Doboli (S’99) received the M.S. and Ph.D. de-
grees in computer science from Politehnica Univer-
sity Timisoara, Romania, in 1990 and 1997, respec-
tively. He is currently pursuing the Ph.D. degree in
computer engineering at the University of Cincinnati,
Cincinnati, OH.

His research interest is in VLSI design au-
tomation, with special interest in mixed-signal
CAD, hardware–software codesign, and CAD for
reconfigurable computing.

Mr. Doboli is a member of Sigma XI and ACM.

Paul Pop (S’99) received the M.S. degree in
computer science from the Politehnica University
Timisoara, Romania, in 1997. He is currently
pursuing the Ph.D. degree in computer science at
Linköping University, Sweden.

His research interests include hardware/software
codesign, systems engineering, and real-time
systems.

Zebo Peng(M’91) received the Ph.D. degree in com-
puter science from Linköping University, Sweden, in
1987.

He is Professor and Chair of Computer Systems
and Director of the Embedded Systems Laboratory
(ESLAB) at Linköping University. His current
research interests include design and test of em-
bedded systems, electronic design automation,
design for testability, hardware/software codesign,
and real-time systems. He has published more than
90 technical papers in these areas and is coauthor of

System Synthesis with VHDL(Norwell, MA: Kluwer Academic, 1997).
Dr. Peng was corecipient of two best paper awards at the European Design

Automation Conferences in 1992 and 1994.

