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On Linear Equalization of Communication Channels

Alper T. Erdogan, Babak Hassibi, and Thomas Kailath

Abstract—As an alternative to existing techniques and algorithms, we
investigate the merit of the approach to the linear equalization of com-
munication channels. We first give the formulation of all causal equal-
izers using the results of and then look at the finite delay case. We compare
the risk-sensitive equalizer with the MMSE equalizer with respect to
both the average and the worst-case BER performances and illustrate the
improvement due to the use of the equalizer.

Index Terms— estimation, linear equalization, risk-sensitive estima-
tion.

I. INTRODUCTION

Equalization is a well-studied problem in the area of communica-
tions. The data model for the equalization is generally described by a
linear model of the type shown in Fig. 1. The discrete data sequence
fbig passes through the linear time-invariant channelH(z), which
causes inter-symbol interference (ISI). The observation sequence
fyig is then formed by the addition of an unknown measurement
disturbancefvig with the output of the communication channel
H(z). In many cases, in addition to the structural model given for the
observations, it is also possible to give statistical descriptions of the
input sequencefbig, the additive disturbance sequencefvig, and even
the channelH(z) itself.

In equalization, the basic aim is toinvert the effect of the channel to
reduce the ISI so that symbol-by-symbol detection can be applied to the
output of the equalizer. This is accomplished by estimatingbi�d, where
d > 0 represents some prescribed finite delay using the observations
fyj ; j � ig. This is achieved via a causal linear time-invariant filter
K(z), which is known as theequalizer.

In this correspondence, we address the robustness against variations
in the system parameters by approaching the equalization problem from
theH1 estimation point of view. The richness of robustH1 theory,
and especially its stochastic interpretation of risk-sensitive estimation,
has been the basic motivation for our approach. Finally, and perhaps
most importantly, the results obtained in this attempt provide us with a
new and different perspective for the understanding and analysis of the
equalization problem, as well as forH1 estimation itself.

In the next section of this correspondence, we pose the equalization
problem from theH1 estimation perspective and its stochastic coun-
terpart risk-sensitive estimation. Then, we will describe the equalizer
formulations for the causal and finite delay cases in Section III. In Sec-
tion IV, we compare the risk-sensitive and MMSE equalizers for the av-
erage and the worst-case BER performances. The conclusion is given
in Section V.

II. H1 AND RISK SENSITIVE EQUALIZATION

The basic aim inH1 equalization is to minimize the maximum en-
ergy gain from the disturbances to the estimation errors. This property
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Fig. 1. Linear data model.

ensures the fact that if the disturbances are small (in energy), then the
estimation errors will be as well.

The optimalH1 equalization problem can be formulated as follows.
Problem 1 (OptimalH1 Equalization Problem):Find a causal

equalizerK(z) that satisfies
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wherel2 denotes the space of square-summable sequences, andq and
r are positive weights. Moreover, find the min–max energy gain
2opt.

There are very few cases where a closed-form solution to the optimal
H1 equalization problem can be found, and in general, one relaxes the
minimization and settles for a suboptimal solution.

Problem 2 (SuboptimalH1 Equalization Problem):Given
 > 0,
find, if possible, a causal equalizerK(z) that guarantees
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This clearly requires checking whether
 > 
opt.
As shown in [1] and [2], one possible approach to solve this problem

is based onJ-spectral factorization. We need to first introduce the fol-
lowing so-calledPopov function:

r + qH(z)H�(z��) �qH(z)zd
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2 + q

which can be regarded as a certain indefinite generalization of the spec-
tral density functionr+qH(z)H�(z��). Then a causal
-level equal-
izerK(z) exists if, and only if, the Popov function admits a canonical
factorization of the form
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with �(z) and L11(z) causal and causally invertible, andL12(z)
strictly causal. If this is the case, then all possibleH1 equalizers of
level 
 are given by

K(z) = (L22(z)Q(z)� L21(z)) (L11(z)� L12(z)Q(z))�1 (5)

whereQ(z) is any causal and strictly contractive operator, i.e.,Q(z) is
causal and is such thatjQ(ej!)j2 < 1 for all ! 2 [0; 2�].

An important choice results from takingQ = 0 so that

Kcen(z) = �L21(z)L
�1
11 (z) (6)

which is the so-called “central” filter. Although theH1 estimation for-
mulation is a deterministic one, the central equalizer also has a nice sto-
chastic interpretation: If we assume that the disturbancesfbig andfvig
are stationary independent Gaussian random processes with variances
q andr, respectively, the central filter is the risk-sensitive equalizer that
minimizes
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jsi � ŝij2 (7)

where� = 1=
2 is known as the risk-sensitivity parameter.

III. H1 EQUALIZERS

A. Casual Case

Whend = 0, we constrain our equalizer to use onlyfyj ; j � ig to
estimate the value ofbi. In [1], when the channelH(z) is causal and
whend = 0, theJ-spectral factorization (4) was explicitly obtained,
and thereby, a characterization for allH1 equalizers was derived. The
main results can be summarized as follows.

i) The channelH(z) is nonminimum phase(in other words,
H�1(z) is not causal). In this case


2opt = q (8)

which is the same energy gain obtained fromK(z) = 0, i.e., not
equalizing at all! To this end, note that whenK(z) = 0, then the
estimation error isbi � b̂i = bi � 0 = bi so that the energy gain
from the disturbances to the estimation errors becomes

1
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Therefore, there is no hope for causally equalizing a nonmin-
imum-phase channel.

ii) The channelH(z) is minimum phase(in other words,H�1(z)
is causal). In this case


opt = 
opt;smoothing (10)

where smoothing equalizer is the Wiener filter that is noncausal.
This implies that from anH1 point of view, one can obtain

the same performance as the smoother by causally equalizing a
minimum-phase channel and without using future observations.
This means that one can expect to equalize a minimum-phase
channel without incurring any delay.

In the minimum-phase case (where, for simplicity, we have taken
q = 1), �(z) in (4) takes the form shown in (11) at the bottom of the
page, where the monic and minimum phase transfer function�(z) and
the scalarR� are found from the standard spectral factorization:
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Moreover, the min–max energy gain is
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Finally, allH1 equalizers are given by (5), and the central equalizer,
which is also the risk-sensitive equalizer, is given by

Kcentral(z) =�L21(z)L
�1
11 (z)
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We should also remark that another revealing choice of the causal
contractionQ(z) yields the following equalizer:

K(z) =
1� 
2

H(z)
(15)

which is simply a scaled version of the zero-forcing equalizer. Thus,
an appropriately scaled zero-forcing equalizer isH1-optimal. How-
ever, although it is has the optimum worst-case performance, due to its
noise-enhancement properties, the zero-forcing equalizer has undesir-
able average performance compared with, say, the centralH1-optimal
equalizer.

B. Finite Delay Case

1) Improvement Due to Delay:In the previous section, we con-
strained the equalizer to be causal by choosingd = 0. We can relax the
causality constraint by allowing the equalizer to use a finite number of
future observations. This case would be equivalent to choosingd > 0.
With this relaxation, it will be possible to equalize nonminimum-phase
channels by an appropriate choice ofd. Moreover, one can also expect
an improvement in equalizing minimum-phase channels with respect
to other criteria (such as theH2 or risk-sensitive criteria).

In order to illustrate the effect of delay, it will be instructive to look
at the special case of equalizing the single zero channelH(z) = 1 +
az�1.

Lemma 1 (Equalization of Single-Zero Channel):Consider the
scalar single-zero FIR channelH(z) = 1 + az�1, and suppose we
want to solve the problem
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Fig. 2. Optimal
 plot for two-(real) zero channel as a function of zero locations.

for d � 0. Then, we have the following result.

1) If d = 0, then
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(17)

2) If d = 1, then



2
opt; filtering =

maxw2[0;2�)
1

1 + jH(ejw)j2
; if jaj < 2

2

jaj2
; if jaj � 2.

(18)
3) If d � 2, then



2
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1

1 + jH(ejw)j2
: (19)

This example shows that for the channelH(z) = 1 + az�1 with
r = 1, allowing a single delay in equalization results in extending
the region for which
opt = 
smoothing from inside the unit circle
to inside a circle of radius two. Outside this region, although the in-
tersymbol interference component begins to dominate,
 does not stay
constant and decreases with increasing value ofa at a rate slower than
the smoothing case. Furthermore, ford � 2, 
2opt = 
2opt; smoothing,
i.e., a delay of two units is sufficient to obtain the sameH1 perfor-
mance as the smoother in equalizing a single-zero channel.

In Fig. 2, the
 values for linearH1 and MMSE equalizers are
compared for two-(real) zero channels. Fig. 2(a) compares thed = 0
case, and Fig. 2(b) compares thed = 1 case.

Unfortunately, there is no known explicit formulation for arbitrary
d > 0 and general nonminimum-phase channels. However, it has been
shown that in order to get an improvement over
opt = 1, the delayd
should be chosen greater than the number of nonminimum-phase zeros
of the channel, i.e., the number of zeros outside of the unit circle.

2) J-Spectral Factorization for Finite Delay Case:We obtained
the explicitJ-spectral factorization for the zero delay case. For the
finite delay case, unfortunately, we cannot obtain theJ-spectral fac-
torization as explicit as the zero delay case. However, we can still sys-
tematically carry on the factorization.

1) We first calculate optimal value of
opt; filtering, for example,
using the bisection method [4].

2) For a
 > 
opt; filtering, the Popov function can be written as
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Note that�(z) is not unimodular. In fact, its determinant is
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4) We first extract (23), shown at the bottom of the next page, so
that�1(z) is unimodular with determinant

det(�1(z)) = �(1� 

2): (24)

5) Since�1(z) is unimodular, one can apply standard spectral fac-
torization techniques outlined in [5] to obtain

�1(z) = P
0(z)

I 0

0 �I

J

P
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whereP 0(z) is causal and causally invertible. If we summarize
the steps in obtainingP 0(z), we first decompose

z
d��1(z)H(z) = z

d
W1(z) +W2(z) (26)



3230 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 11, NOVEMBER 2000

whereW1(z) = w1; 0 +w1; 1z
�1+ � � �+w1; d�1z

�(d�1), and
W2(z) = w2; 0 + w2; 1z

�1 + � � �. Using this substitution, we
apply the following factorization to�1(z):
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Therefore, contrary to�1(z), �2(z) is FIR besides being uni-
modular. Now, it is easy to reduce the degree of�2(z) by ap-
plying Gaussian elimination iteratively to the highest power of
z�1 terms at four blocks. Following this procedure, we obtain

�2(z) = P2(z)JP
�

2 (z
��) (28)

whereP2(z) is causal and unimodular.
Consequently, we can write

�(z) =F1(z)P1(z)P2(z)JP
�

2 (z
��)P�1 (z

��)F
(
1z
��)

=P (z)JP �(z��) (29)

whereP (z) = F1(z)P1(z)P2(z) is also causal and causally
invertible.

6) Finally, we obtain the desired spectral factorL(z) =
[L (z)
L (z)

L (z)
L (z) ] by multiplying P (z) with a J-unitary

matrix � from right, i.e.,L(z) = P (z)� so thatL11(z) is
minimum phase, andL12(z) is strictly causal. Here, we obtain
theJ-unitary matrix using the same procedure we used in the
zero delay case.

IV. COMPARATIVE PERFORMANCE OFEQUALIZATION

In this section of the paper, we will compare the performance of the
centralH1 equalizers with MMSE equalizers. The most reasonable
criterion for the comparison is BER, especially when all bits have the
same significance.

In general, for the various channels that we have studied, the risk-
sensitive equalizer and the MMSE equalizer have either similar average
BER performances or the MMSE equalizer slightly outperforms the
risk-sensitive equalizer. It thus appears that in terms of average BER
performance, there is no gain in using centralH1 equalizers, com-
pared with MMSE ones in the ideal setup.

Another criterion of interest, rather than the average behavior, is how
the equalizers will behave for individual paths of the noise process, par-
ticularly for the worst-case noise disturbance. For the infinite horizon,
worst-case noise disturbance refers to the singletone noise located at
the frequency at which error spectrum takes its maximum value. In the
finite horizon case, we can obtain the worst-case noise disturbance by
calculating the singular vector of the error transfer matrix, which maps

Fig. 3. Worst-case and average BER performances for the channelH(z) =
1 + 0:65z � 0:52z � 0:2975z .

error disturbances to the equalization errors to the equalization errors,
corresponding to the maximum singular value.

For time-invariant systems, the resulting noise waveform is a win-
dowed cosine function located at the frequency where error spectrum
takes its maximum value. Typically, both MMSE and risk-sensitive
equalizers have their maximum error spectrum values located at the
same frequency, which is determined by the zero locations of the
channel, especially if the noise spectral density is assumed to be flat.
Since the maximum error spectrum value for the risk-sensitive equal-
izer is less than the MMSE equalizer, we expect a better worst-case
performance for the risk-sensitive equalizer.

We illustrate this fact for the example channel

H(z) = 1 + 0:65z�1 � 0:52z�2 � 0:2975z�3: (30)

The lower two lines in Fig. 3 correspond to the average BER behavior
for two equalizers, whereas the upper two lines correspond to the
worst-case BER. It is clear from this figure that average BER perfor-
mance of the MMSE equalizer (dashed line) is slightly better, but they
are actually very close. However, if we look at the worst-case BER
performances, the risk-sensitive equalizer has considerably better
performance than the MMSE equalizer. Since the performance of
the risk-sensitive equalizer is less sensitive to the worst-case noise
disturbance, for individual noise paths, the maximum deviation from
average performance for risk-sensitive equalizer is smaller than
MMSE equalizer, and therefore, it is more robust in this sense. We
can consider the effect of modeling errors in channel and statistics
of the disturbances in the system to be the additional noise injected
to the system. Since risk-sensitive equalizers have better worst-case
performance, they will be more robust against modeling errors.

V. CONCLUSION

In this correspondence, we introduced theH1 criterion as an al-
ternative method for the equalization of communication channels. All
previous methods and algorithms mainly concentrate on the average
behavior (e.g., BER) of the equalizer without being concerned with
the worst-case performance. Moreover, from [1], we know that using
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1=2
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0 I
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R
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causalH1 equalizers, it is possible to achieve the same worst-case
performance as the noncausal smoothing filter in equalizing minimum-
phase channels. For nonminimum-phase channels, we need a sufficient
number of delays (at least equal to the number of nonminimum-phase
zeros of the channel) to achieve the desired worst-case performance.
Therefore, study ofH1 estimation provides us with a rigorous basis
for the importance of the concepts of minimum-phase channels and
delay in the equalization problem.

As in the case ofH1-optimal zero-forcing equalization, having a
good (indeed optimal) worst-case performance alone is not sufficient
for having acceptable performance in real applications. Fortunately,
theH1 criterion provides a family of filters that achieve the same
worst-case performance and have different performances with respect
to other criteria (such as MSE or BER). Therefore, it is a design
problem to choose a filter among this family that also has a good
average performance. In this correspondence, we illustrated that
the centralH1, or risk-sensitive, filter is such a possible choice.
We showed that it has good average properties due to its stochastic
interpretation, although it does not appear to be better than the MMSE
equalizer in terms of BER in the ideal case. Another possible choice,
besides the risk-sensitive filter, is the mixedH2=H1 solution,
i.e., anH1 filter with the best MSE behavior, which is an area of
active research. In the last section of the paper, we introduced BER
performance for the worst-case noise disturbance as an alternative
performance measure, and we illustrated that the centralH1 equalizer
is better and, therefore, more robust than the MMSE equalizer.
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A Class of Subspace Tracking Algorithms Based on
Approximation of the Noise-Subspace

Tony Gustafsson and Craig S. MacInnes

Abstract—This correspondence introduces a novel class of so-called sub-
space tracking algorithms applicable to, for example, sensor array signal
processing. The basic idea pursued in this correspondence is to reduce the
amount of computations required for an exact SVD update, applying a per-
turbation-like strategy, which is interpreted as an approximation of a noise
subspace. An interesting property of the derived algorithms is that they can
be applied to SVD updating of both auto- and cross-covariance matrices.

Index Terms—Sensor array signal processing, subspace tracking.

I. INTRODUCTION

The general mathematical problem considered in this contribution
is that of designing computationally efficient methods for computing a
low-rank approximation of the matrices.

1) Autocorrelation (AC) case:̂RRRxx(t) = �R̂RRxx(t � 1) + (1 �
�)xxx(t)xxxH(t). Here, it is implicitly assumed thatEfxxx(t)xxxH(t)g
is of type “low rank” plus a scaled identity matrix, whereEf�g
denotes expectation, and(�)H denotes conjugate transpose.

2) Cross-correlation (CC) case:̂RRRx�(t) = �R̂RRx�(t � 1) + (1 �
�)xxx(t)���H(t). Here, it is implicitly assumed thatRRRx� is of type
“low rank.”

The scalar� denotes the so-called forgetting factor0 < � � 1.
The above problem is frequently encountered in adaptive direction-of-
arrival (DOA) estimation using sensor arrays; see, e.g., [1], [5], and [8].
The reason for the interest in subspace tracking algorithms is due to the
fact that computing the singular value decomposition (SVD) ofR̂RRxx(t)
at every time instant is computationally prohibitive.

II. PROBLEM FORMULATION

Even though the application of subspace tracking is not limited to
sensor array processing, we formulate the problem in this context. Let
them-dimensional vectorxxx(t) contain the observed samples of an an-
tenna array, where it is assumed thatn < m narrowband plane waves
impinge on the array. Hence, the following data model is assumed to
be applicable; see, for example, [6]:

xxx(t) = AAA(���0(t))sss(t) + eee(t) (1)

where them�nmatrixAAA(�) is the so-called steering matrix. The vector
���0(t) contains the possibly time-varying DOA’s. To simplify the nota-
tion, the arguments ofAAA are suppressed. In the reminder, we will make
frequent use of the notationRRR�� = Ef���(t)���H(t)g for two arbitrary
stationary random processes���(t) and���(t). The unmeasurable signal
sss(t) 2 x�y is assumed to be a stationary zero mean random process
with covariance matrixRRRss: The noise vectorseee(t) are assumed to
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