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Ho0 Optimality of the LMS Algorithm 
Babak Hassibi, Ali H. Sayed, Member, IEEE, and Thomas Kailath, Fellow, IEEE 

Abstract- We show that the celebrated least-mean squares 
(LMS) adaptive algorithm is Ha optimal. The LMS algorithm 
has been long regarded as an approximate solution to either 
a stochastic or a deterministic least-squares problem, and it 
essentially amounts to updating the weight vector estimates along 
the direction of the instantaneous gradient of a quadratic cost 
function. In this paper, we show that LMS can be regarded as the 
exact solution to a minimization problem in its own right. Namely, 
we establish that it is a minimax filter: It minimizes the maximum 
energy gain from the disturbances to the predicted errors, whereas 
the closely related so-called normalized LMS algorithm minimizes 
the maximum energy gain from the disturbances to the filtered 
errors. Moreover, since these algorithms are central Ha filters, 
they minimize a certain exponential cost function and are thus 
also risk-sensitive optimal. We discuss the various implications of 
these results and show how they provide theoretical justification 
for the widely observed excellent robustness properties of the 
LMS filter. 

I. INTRODUCTION 
LASSICAL methods in estimation theory (such as max- C imum likelihood, maximum entropy, and least squares) 

require a priori knowledge of the statistical properties of the 
exogenous signals. In many applications, however, one is faced 
with model uncertainties and lack of statistical information. 
Therefore, the introduction of the least-mean-squares (LMS) 
adaptive filter by Widrow and Hoff in 1960 came as a signifi- 
cant development for a broad range of engineering applications 
since the LMS adaptive linear-estimation procedure requires 
essentially no advance knowledge of the signal statistics [l]. 
Since this pioneering work, adaptive filtering techniques have 
been widely used to cope with time variations of system 
parameters and lack of a priori statistical information [2], [3]. 

The LMS algorithm was originally conceived as an ap- 
proximate recursive procedure that solves the following least- 
squares adaptive problem: Given a sequence of 1 x n input 
row vectors {h,} and a corresponding sequence of desired 
responses { d i } ,  find an estimate of an n x 1 column vector of 
weights w such that the sum of squared errors ELo Id, - h, w l2 
is minimized. The LMS solution recursively updates estimates 
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of the weight vector along the direction of the instantaneous 
gradient of the squared error. 

Algorithms that exactly minimize the sum of squared errors, 
for every value of N ,  are also known and are generally referred 
to as recursive least squares (IUS) algorithms (see, e.g., [3], 
[4]). Although such exact least-squares algorithms have vari- 
ous desirable optimality properties (such as yielding maximum 
likelihood estimates), under certain statistical assumptions on 
the signals (such as temporal whiteness and Gaussian distur- 
bances), they are computationally more complex and are less 
robust to disturbance variation than the simple LMS algorithm. 
For example, it has been observed that the LMS algorithm 
has better tracking capabilities than the RLS algorithm in the 
presence of nonstationary inputs [3]. 

In this paper, we show that the superior robustness prop- 
erties of the LMS algorithm are due to the fact that it is 
a minimax algorithm or, more specifically, an H" optimal 
algorithm. We shall define precisely what this means in 
Section 111. Here, we note only that recently, following some 
pioneering work in robust control theory (see, e.g., [5]), there 
has been an increasing interest in minimax estimation (see 
[6]-[13] and the references therein) with the belief that the 
resulting so-called H" algorithms will be more robust and 
less sensitive to model uncertainties and parameter variations. 
The similarity between the objectives of adaptive filtering and 
H" estimation suggests that there should be some connection 
between the two, and indeed, our result on the H" optimality 
of the LMS algorithm provides such a connection. 

In addition to giving more insight into the inherent robust- 
ness of the LMS algorithm and why it has found such wide 
applicability in a diverse range of problems, our result provides 
LMS with a rigorous basis and furnishes a minimization 
criterion that has long been missing. To be more precise, using 
some well-known results in H" estimation theory, we show 
that the LMS algorithm is the so-called central a priori H"- 
optimal filter, whereas the closely related normalized LMS 
algorithm is the central a posteriori H"-optimal filter. 

The H" optimality property of LMS is a deterministic 
characterization of the algorithm. It is also possible to give a 
stochastic characterization of this algorithm under the assump- 
tions of temporal whiteness and Gaussian disturbances. In this 
case, we show that LMS minimizes the expected value of a 
certain exponential cost function and is therefore risk-sensitive 
optimal (in the sense of Whittle [16]). 

It is ironic that the LMS algorithm is not H 2  optimal, 
contrary to what its name suggests, but that it rather satisfies 
a minimax criterion. Moreover, in most H" problems, the 
optimum solution has not been determined in closed form. 
What is usually determined is a certain type of suboptimal 

1053-587X/96$05.00 0 1996 IEEE 



268 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 2, FEBRUARY 1996 

hsl hlz hs3 h,, A. Least-Squares Methods 
There are a variety of choices for Wj,, but the most widely 

used estimate is one that satisfies the following least-squares 
(or H 2 )  criterion: 

2 

Fig 1. Model for adaptive filtenng W p - l ~ w  - Wl-l12 + ld, - h,w12 
3 =O 

solution. We show, however, that for the adaptive problem at 
hand, the optimum solution can be determined. 

The remainder of the paper is organized as follows. In 
Section 11, we introduce the problem of adaptive filtering 
and motivate the question of the robustness of estimators. 
In order to address the robustness question, we introduce the 
H” approach in Section I11 and formulate the H” estimation 
problem as one that minimizes the maximum energy gain from 
the disturbances to the estimation errors. Section IV studies 
the general problem of state-space H” estimation and, in 
particular, gives expressions for the H” a posteriori and a 
priori filters, as well as their full parameterization. The main 
result is given in Section V, where we formulate the H” 
adaptive filtering problem as a state-space problem and use 
the results of Section IV to show that the normalized LMS 
algorithm is the central aposteriori H”” optimal adaptive filter 
and that if the learning rate is chosen appropriately, LMS is 
the central a priori H” optimal adaptive filter. In both cases, 
the LMS and normalized LMS algorithms guarantee that the 
energy of the estimation errors never exceeds the energy of the 
disturbances. Section VI then considers a simple example that 
demonstrates the robustness of LMS compared with RLS and 
briefly discusses the merits of being H”-optimal. In Section 
VII, the full parameterization of all Hm optimal adaptive 
filters is given, and in Section VIII, we show that LMS and 
normalized LMS have the additional property of being risk- 
sensitive optimal. Section IX mentions some further results 
using the approach and ideas of this paper, and Section X 
provides the conclusion. 

11. ADAPTIVE FILTERING 

As shown in Fig. 1, suppose we observe an output sequence 
{ d,} that obeys the following model: 

where h, = [h,l h22 . . .  h,,] is a known 1 x n input 
vector, w = [w1 w2 . . .  w,lT is an unknown n x I 
weight vector that we intend to estimate, and v, is an unknown 
disturbance, which may also include modeling errors. We shall 
not make any assumptions on the noise sequence {v,} (such as 
stationarity, whiteness, Gaussian distributed, etc.). We denote 
the estimate of the weight vector using all the information 
available up to time i by 

where W I - ~  is the initial estimate of w, and p > 0 represents 
the relative weight that we give to our initial estimate com- 
pared with the “sum of squared-error’’ term =o I d, - h, w I 2. 

The exact solution to the above criterion is the IUS algo- 
rithm 

61, $1,-i + k p , , ( 4  - htwlE-i),wl-i (3) 

P, h: with kp,, = l+h,P,h; and P, satisfying the Riccati recursion 

The RLS algorithm is used because under suitable stochastic 

a) If w - W I - ~  and the {v,} are assumed to be zero-mean, 
uncorrelated, and, in the case of the {v3}, temporally 
white random variables with variances p1 and 1, respec- 
tively, then the RLS algorithm minimizes the expected 
prediction error energy 

assumptions, it has the following two properties: 

i =O 

If, in addition to the assumptions of part a), w - Wl-1 

and the { v ~ }  are assumed to be jointly Gaussian, then 
the cost function in (2) becomes the negative of the 
log-Iikelihood function, and RLS yields the maximum- 
likelihood estimate of the weight vector w.  

B. Gradient-Based Methods 

In gradient-based algorithms, instead of exactly solving the 
least-squares problem (2) ,  the estimates of the weight vector 
are updated along the negative direction of the instantaneous 
gradient of the cost function appearing in (2). Two examples 
are the LMS [l] 

= Glz-i + ph:(& - k ~ l z - i ) , G l - i  (5 )  

and the normalized LMS 

algorithms. Note that in the case of LMS, the gain vector kp, ,  
in RLS (which had to be computed by propagating a Riccati 
equation) has been simply replaced by ph:. Likewise, if we 
compare normalized LMS with the IUS algorithm, we see 
that the difference is that instead of propagating the matrix P, 
via the Riccati recursion, we have simply set P, = p I  for all 
i. For this reason, the LMS and normalized LMS algorithms 
have long been considered to be approximate least-squares 
solutions and were thought to lack a rigorous basis. 
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We should note here that although we have introduced the 
LMS algorithm as an approximate deterministic least-squares 
solution, it is also possible to motivate it as an approximate 
stochastic least-squares solution (see [2] and [3]). 

C. The Question of Robustness 
We saw that under suitable stochastic assumptions, the RLS 

algorithm has certain desirable optimality properties, namely, 
it minimizes the expected prediction error energy and yields 
maximum-likelihood estimates. However, the question that 
begs itself is what the performance of such an estimator will 
be if the assumptions on the disturbances are violated or if 
there are modeling errors in our model so that the disturbances 
must include the modeling errors? In other words is it possible 
that small disturbances and modeling errors may lead to large 
estimation errors? 

Obviously, a nonrobust algorithm would be one for which 
the above is true, and a robust algorithm would be one for 
which small disturbances lead to small estimation errors. More 
explicitly, in the adaptive filtering problem, where we assume 
an FIR model, the true model may be IIR, but we neglect 
the tail of the filter response since its components are small. 
However, unless one uses a robust estimation algorithm, it is 
conceivable that this small modeling error may result in large 
estimation errors. 

The problem of robust estimation is thus an important one. 
As we shall see in the next section, the H" estimation 
formulation is an attempt at addressing this question. The 
idea is to come up with estimators that minimize (or in the 
suboptimal case, bound) the maximum energy gain from the 
disturbances to the estimation errors. This will guarantee that 
if the disturbances are small (in energy), then the estimation 
errors will be as small as possible (in energy), no matter what 
the disturbances are. In other words, the maximum energy gain 
is minimized over all possible disturbances. The robustness of 
the H" estimators arises from this fact. Since they make no 
assumption about the disturbances, they have to accommodate 
for all conceivable disturbances and are thus overconservative. 

111. THE H" APPROACH 

We begin with the definition of the H" norm of a transfer 
operator. As will presently become apparent, the motivation 
for introducing the H" norm is to capture the worst case 
behavior of a system. 

Definition 1-The H" Norm: Let h2 denote the vector 
space of square-summable, complex-valued causal sequences 
with inner product < { f k } , { g k }  > = ~ ~ = o f ~ g k ,  where 
* denotes complex conjugation. Let T be a transfer operator 
that maps an input sequence {U,}  to an output sequence {y,}. 
Then, the H" norm of T is defined as 

where the notation I I u ~ ~ ~  denotes the h2-norm of the causal 
sequence (uI.1, viz., 1 1 ~ 1 1 ;  = C ~ = ~ U U . , U ~ .  

Note that the H" norm may thus be regarded as the 
maximum energy gain from the input U to the output y. 

Fig. 2. Transfer operator from the unknown disturbances 
{p-l/*(w - t i , - l ) ,  { u , } ~ , }  to the prediction errors {e,,,},"=,. 
Likewise for Tf  (F) . 

A. Formulation of the H" Adaptive Filtering Problem 

Recall that 81; = F(d0,. . . d;; ho,. . . h;) denotes the esti- 
*mate of the weight vector using all the information available 
from time 0 to time i. In this paper, we shall be interested in the 
following two estimation errors: the jiltered (or a posteriori) 
error 

and the predicted (or a priori) error 

eP,, = h,w - h,wla-l. (8) 

(Note that in the above errors, we compare the estimates h,Ol, 
and h,w1,-1 with the uncorrupted output h,w of model (1) 
and not with the observation d,.) 

Any choice of estimation strategy 3(,) will induce transfer 
operators T f ( 3 )  and Tp(.T) that map the unknown distur- 
bances { ~ - ' / ~ ( w  - W I - ~ ) !  {w3}Eo} to the estimation errors 
{ e f , J } ~ O  and {ep,3},00=0, respectively; see Fig. 2. 

In the H" framework, robustness is ensured by minimiz- 
ing the maximum energy gain from the disturbances to the 
estimation errors. This leads to the following problem. 

Problem 1 - H" Adaptive Filtering Problem: Find an 
Ha-optimal estimation strategy 81% = Ff(do, * * , d,; 
ho, + .  . ! h a )  that minimizes llTf(.T)II, and an H"-optimal 
strategy 81% = Fp(do,. - .  ! d,; ho,. . . ! h,) that minimizes 
IITp(F)llm. In addition, obtain the resulting 

(9) 

and 

where Iw - 81-11~ = (w - 81-1) T (w - 81-1)- 

In order to solve the above H" adaptive filtering problem, 
we shall begin by reviewing some basic results from state- 
space H" estimation theory. Although it is possible to give 
a "first principles" derivation of the solution to the above 
H" adaptive filtering problem (and we shall indeed do so 
in the Appendix), some study of the more general state-space 
estimation problem has its own merits and, moreover, allows 
for various generalizations of the results presented here. 



270 JEEE 

Fig. 3. 
tion errors. 

Transfer matrices from disturbances to filtered and predicted estima- 

IV. STATE-SPACE H" ESTIMATION 
We first give a brief review of some of the results in H" 

estimation theory using the notation of the companion papers 
[lS], [19]. Refer to [6]-[13] and the references therein for 
earlier results and alternative approaches. 

A. Formulation of the State-Space H" Problem 
Consider the time-variant state-space model 

where F, E CnXn, G, E CnXm,  and H, E Cpxn are known 
matrices, ICO, {U,} ,  and {U,} are unknown quantities, and y, 
is the measured output. We can regard U, as a measurement 
noise and U ,  as a process noise or driving disturbance. Let z, be 
linearly related to the state x,  via a given matrix L, E CQXn, 
viz. 

z; = LiXi. 

We are interested in the following two cases. Let 2+ = 
Ff(y0, y1, . . . , y,) denote an estimate of z, given observa- 
tions {y,} from time 0 up to and including time i, and let 
2% = FP(yo, y1, . . . , y,-1) denote an estimate of z, given 
observations {y,} from time 0 to time i - 1. We then have 
the $filtered error 

and the predicted error 

eP,% = 2, - L,x,. (13) 

Let Tf,%(F') (TP,,(Fp)) denote the transfer operator 
that maps the unknown disturbances {II,1'2(~o - 
&), { ~ ~ } 3 = ~ ,  { u , } ; = ~ }  to the filtered (predicted) errors 
{ef,,};=o ( {e,,,};=,), where 00 denotes an initial guess 
of $0, and IIo is a given positive definite matrix reflecting 
a priori knowledge of how close xo is to the initial guess 
P O ;  see Fig. 3. The (so-called finite-horizon) H" estimation 
problem can now be stated as follows. 
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Problem 2 - Optimal H" Problem: Find Hm-optimal 
estimation strategies 2,1, = F f ( y o  , y l ,  . . . , y,) and 
zz = Fp(yo,  91, ..., y,-l) that, respectively, minimize 
llTf,~(Ff>llc~ and IITP,,(Fp)ll,, and obtain the resulting 

and 

(20 - 20)*no-l(20 - 20) +E;=, IU, 12 + c;=o IU, 12 . 
(15) 

Note that the infimum in (15) is taken over all strictly causal 
estimators F,, whereas in (14), the estimators Ff are causal 
since they have additional access to y,. This is relevant since 
the solution to the H" problem, as we shall see, depends on 
the structure of the information available to the estimator. 

The above problem formulation shows that H" optimal 
estimators guarantee the smallest estimation error energy over 
all possible disturbances of fixed energy. H" estimators 
are thus overconservative, which reflects in a better robust 
behavior to disturbance variation. 

A closed-form solution of the optimal H" problem is 
available only for some special cases (one of which is the 
adaptive filtering problem as we show here), and a simpler 
problem results if one relaxes the minimization condition and 
settles for a suboptimal solution. 

scalars 
yf > 0 and yp > 0, find estimation strategies 

that, respectively, achieve )I  Tf, , (Ff)  I lm< yf and 
[I TP,,(Fp) Ilm< 7,. This clearly requires checking whether 

The above two problem formulations are for the finite 
horizon case. In the infinite horizon case, to guarantee that 
/lTf(F)llm 5 7f and IITp(F)lloo I rP, we need to ensure 

Problem 3Suboptimal H" Problem: Given 

i;/, = Ff (Yo, Yl,. . . ,Id and 2 2  

rf  2 Yf,o and 7 P  L Y p , o .  

= &(Yo, Y1,. .. , Yz-1) 

I I T f , Z ( - T ) I I "  < 7f and I I ~ P , Z ( - q l l "  < rp for all i. 

A. The H" Filters 
We now briefly review the solutions of the H" filtering 

problems using the notation of [18] and [19]. 
Theorem 1-The H" a posteriori Filter: For a given y > 

0, if the F, are nonsingular, then an estimator with IITf,,II, < 
y exists if and only if 

PF1 +H,*H, - Y - ~ L , * L ~  > 0 , j  = O,...,i (16) 

where PO = no, and P, satisfies the Riccati recursion 

pj+l 1 F,PjF,* + G,G,* 



HASSIBI et al.: ff- OPTIMALITY OF THE LMS ALGORITHM 27 1 

with Theorem 3-All H" a posteriori Estimators: All H" a 
posteriori estimators that achieve a level yf (assuming they 
exist) are given by 

i313 = L32313 + [$I - L,(P3-l + H,*H3)-'L,*]; 

-y2I 0 
R e , 3 =  [ 0 I ]  + [ 2 ] ~ 3 [ ~ ;  H,*I. 

If this is the case, then one possible H ,  filter with level y 
is given by 

(25) s 3  ( ( I  + H,P,H,* 13 (YJ - 13 ) , * , 
2313 = LA13 ( I  + HOPOH,*)+ (YO - Ho&qo)) 

where 2,1, is recursively computed as 
where 2,13 satisfies the recursion 

%+113+1 = F32,13 + Kf,J+l(Y3+1 - H3+1FJg313), 3-11-1 

(1 8) %+1l3+1 = 42313 + Kf,3+1(%+1 - HJ+lF32.313) 
- Kc93(i3l3 - W , 1 3 )  (26) 

and 
with Kf,3+1 the same as in Theorem 1 

Kf,3+1 = pj+~H,*+i(I  + Hj+lPj+~H;+i) - ' .  (19) 

Theorem 2-The H" a priori Filter: For a given y > 0, if 
the Fa are nonsingular, then an estimator with IITp,aII, < y 
exists if and only if 

Kc,3 = ( I  + p3+1H3+1H;+1)-1 
F3(Pj-' + H,H,* - ̂ /f2L,L,*)-1L,* (27) 

and 
= P;' - y - 2 ~ * ~  > 0 , j  = 0, .  . . , i  (20) [ Sl(a1,  so; ao) ] 3 3 3  

S(a,,..~,ao) = where P3 is the same as in Theorem 1. If this is the case, then 
one possible H ,  filter with level y is given by 

S3(a,, . . . ,  a0) i3 = L,O, (21) 
23+i = F33.3 + Kp,3(y3 - H323) ,  io = initial guess (22) is any (possibly nonlinear) contractive causal mapping, i.e., 

Note that the above two estimators bear a striking resem- Theorem 4-All H" a priori Estimators: All H" a priori 
estimators that achieve a level yp (assuming they exist) are 
given by 

blance to the celebrated Kalman filter: 

2 3 + 1  = F333+F3P3H3*(l+H3P3H3*)-l(Y3 -H32 j )  
= F3 P3 F; + G, G; - F3 P3 ( I  + H3 P3 H,*)-' P3 F* s3 = L,O, + (T;I - L,P,L:); L + l  ($4) 

and that the only difference is that the P3 of (19) and P3 of 
(23) satisfy Riccati recursions that differ with that of (24). 
However, as y -+ CO, the Riccati recursion (17) collapses to 
the Kalman filter recursion (24). This suggests that the H" 
norm of the Kalman filter may be quite large, indicating that 

S, ( ( I  + H3-1p3-1H,* -1 ) -~ (~3-1  - H3-1Z3-1), 

+ . . , (  I + H o P o H , * ) - ~ ( ~ o  - H o ? ~ ) )  (28) 

where 
it may have poor robustness properties. 

?k = OI, + PkL;(-'$I + LkPkL:)-l(ik - LkiI , )  (29) It is also interesting that the structure of the H" estima- 
tors depends, via the Riccati recursion (17), on the linear 
combination of the states that we intend to estimate (i.e., 
the La) .  This is as opposed to the Kalman filter, where the 
estimate of any linear combination of the state is given by 
that linear combination of the state estimate. Intuitively, this 
means that the H" filters are specifically tuned toward the 
linear combination Liz , .  

Note also that (20) is more stringent than (16), indicating 
that the existence of an a priori filter of level y implies the 
existence of an a posteriori filter of level y but not necessarily 
vice versa. 

We further remark that the filter of Theorem 1 (and Theorem 
2) is one of many possible filters with level y. A full 
parameterization of all estimators of level y are given by the 
following theorems. (For proofs, see [19]). 

3j satisfies the recursion 

with P3,  P j ,  and R,,j given by Theorem 2, and S is any 
(possibly nonlinear) contractive causal mapping. 

Note that although the filters obtained in Theorems 1 and 2 
are linear, the full parameterization of all H" filters with level 
y is given by a nonlinear causal contractive mapping S. The 
filters of Theorems 1 and 2 are known as the central filters 
and correspond to S = 0. These central filters have a number 
of other interesting properties. They correspond, as we shall 
see in a subsequent section, to the risk-sensitive optimal filter 
[16] and can be shown to be the maximum entropy filter [21]. 
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v. MAIN RESULT and the ratio in (9) becomes 

11412 
p- l (w - w1-112 + 11v))2 

- llhz(w - G1-1)ll2 

Let us first note that the basic equation of the adaptive 
filtering model (1) can be rewritten in the following state-space 
form: 

- ,x, = w. (31) p-llw - W\-1(2  + ((h,(w - w l - 1 ) \ \ 2 ~  
G+1 = X a  c da hzxz + va 

This is a relevant step since it reduces the adaptive filtering 
problem to an equivalent state-space estimation problem. This 

unified square-root-based derivation of exponentially-weighted 
RLS adaptive algorithms is obtained by reformulating the 

When the {h,} are exciting, for any E > 0, we can find a 
weight vector w and an integer N such that E,"=, 1 h, (w - 

. With these choices, we have point of view has been recently proposed in [4], where a 

original adaptive problem as a state-space linear least-squares 
estimation problem and then applying various algorithms 

,+1)1 2 
I W - ~ I - l l  t/l 

> l - €  E,"=, Iha(w - w1-1)12 
N 

p-1Iw - 81-112 + [h,(w - 81-1)12 - 

from Kalmk filter theory. Here, we shal l  instead apply 
H" theory to the state-space model (31) and show that 
optimum a priori and a posteriori H" filters reduce to 
LMS and normalized LMS algorithms, respectively. 

At this point, we need one more definition. 
Dejinition 2-Exciting Inputs: The input vectors ha are 

called exciting if and only if 
N 

lim h,h,* = 00 
N'" 

z=o 

A. The Normalized LMS Algorithm 

the 
the 
the 

We first consider the a posteriori filter and show that it 
collapses to the normalized LMS algorithm. 

Theorem 5 - Normalized LMS Algorithm: Consider the 
state-space model (31), and suppose we want to minimize the 
H" norm of the transfer operator Tf(F) from the unknowns 

- W I - ~ )  and {v3}Eo to the filtered error {ef ,J  = 
Z3l3 - h,w},"=,. If the input data { h J }  is exciting, then the 
minimum H" norm is 

Y f , o p t  = 1. 

In this case, the central optimal H" a posteriori filter is 

so that the ratio in (9) can be made arbitrarily close to one. 
The surprising fact, however, is that Tf ,op t  is exactly one 

and that the normalized LMS algorithm achieves it. What this 
means is that normalized LMS guarantees that the energy 
of the filtered error will never exceed the energy of the 
disturbances. This is not true for other estimators. For example, 
in the case of the'RLS algorithm, one can come up with a 
disturbance of small energy that will yield a filtered error of 
large energy [20]. 

Proof of Theorem 5: We apply the a posteriori filter of 
Theorem 1 to the state-space model (31), where Fa = I ,  G, = 
0, Hi = h,, and L, = ha. Thus, the Riccati equation simplifies 
to 

which, using the matrix inversion lemma [23], implies that 

-21 0 
Pa;; = P,- + [ h: h : p 0  

I ]  [;:I 
= p,-l + (1 - y-2)hpha. 

4 1 3  = h413 Consequently, starting with P&' = p - ' I ,  we get 
where W13 is given by the normalized LMS algorithm with 
parameter p 

(32) 

Intuitively, it is not hard to convince oneself that yfiOPt 
cannot be less than one. To this end, suppose that the estimator 
has chosen some initial guess 81-1. Then, one may conceive 
of a disturbance that yields an observation that coincides with 
the output expected from i.e., 

hzWl-l = h,w + W, 1 d,. 

In this case, one expects that the estimator will not change its 
estimate of w so that 81, = W I - ~  for all i .  Thus, the filtered 
error is 

e f , ,  = h,w - haWlz = h,w - hZti-1 = -v, 

(33) 
3 =O 

Now, we need to check the existence condition (16) and find 
the optimum T f , o p t .  It follows from the above expression for 
Pa;; that we have 

PG: +Ha>, Ha+lT-2L,*+1 La+1= p-'I+ (1 h,* h,. 

(34) 
Suppose y < 1 so that 1 - yP2 < 0. Since the {h3} are 
exciting, we conclude that for some k ,  and for large enough 
i, we must have 

3=0 
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This implies that the kth diagonal entry of the matrix on the 
right-hand side of (34) is negative, viz. 

i+l 

j=0 
p-' + (1 - T - ~ )  lhjkl2 < 0. 

Consequently, P;: + H;I;,H,+l - Y-~L:++,L;+~ cannot be 
positive definite. Therefore, yf,opt 2 1. We now verify that 
yf,opt is indeed 1. For this purpose, we note that if we consider 
y = 1, then from (33), we have Pi = p1 > 0 for all i ,  and 
the existence condition is satisfied. If we now write the a 
posteriori filter for yf,opt = 1, with Pi = p1, we get the 
desired so-called normalized LMS algorithm (32). 

B. The LMS Algorithm 
We now apply the a priori H" filter and show that it 

collapses to the LMS algorithm. 
Theorem 6-LMS Algorithm: Consider the state-space 

model (31), and suppose we want to minimize the H" 
norm of the transfer operator Tp(F) from the unknowns 
pL-lI2(w - 81-1)  and { ~ j } , o O , ~  to the predicted error 
{e, , j  = 2j  - h j w } g o .  If the input data { h j }  is exciting, 
and 

1 
0 < p < inf - 

z hihf (35) 

then the minimum H" norm is 

Yp,opt = 1. 

i3 = h,WIj-l 

In this case, the central optimal apriori H" filter is 

where 313-1 is given by the LMS algorithm with learning 
rate p, viz. 

813 = &13-1 + phl(d3 - hj&13-i),Gl-i. (36) 

Proofi The proof is similar to that for the normalized 
LMS case. For y < 1, the matrix P, of Theorem 2 cannot be 
positive definite. For y = 1, we get P, = p1 > 0 for all 2, and 

P,-1 = p,-l - L: L, 
= p - ' I  - h:h,. 

It is straightforward to see that the eigenvalues of p,-' are 
{p- ' ,p- ' ,  ... , p  -1 ,pe l  - h,h:}. 

Thus, P,-' is positive definite if, and only if, (35) is satisfied, 
which leads to yp,opt = 1. Writing the H" a priori filter 
equations for y = 1 yields 

GI, = G1,-1 + P,h:(I + h,P,h:)-'(d, - hzGl,-l) 
= W1,-1 + P,(I + h:h,P,)-'h:(d, - hz2i)l,-1) 
= 81,-1 + (F,-' + h:h,)-'h:(d, - h,&I,-l) 
= 81,-1 + ph:(d, - h,Wl,-i). 

The above result indicates that if the learning rate p is 
chosen according to (35), then LMS ensures that the ehergy of 

the predicted error will never exceed the energy of the distur- 
bances. It is interesting that we have obtained an upper bound 
on the learning rate p that guarantees this H" optimality since 
it is a well-known fact that LMS behaves poorly if the learning 
rate is chosen too large. It is also interesting to compare the 
bound in (35) with the bounds studied in [2] and [24]. 

We further note that if the input data is not exciting, then 
CEO hfh; will have a finite limit, and the minimum H"" 
norm of the a posteriori and a priori filters will be the smallest 
y that ensures 

CO 

i=O 

This will in general yield yopt < 1, and Theorems 1 and 2 can 
be used to write the optimal filters for this yopt. In this case, 
the LMS and normalized LMS algorithms will still correspond 
to y = 1 but will now be suboptimal. 

VI. AN ILLUSTRATIVE EXAMPLE 

To illustrate the robustness of the LMS algorithm, we 
consider a special case of model (31), where h, is now a 
scalar that randomly takes on the values +1 and -1. 

Using the LMS algorithm, we can write the following state- 
space model for the predicted error eP,, = h,x, - h,?,: 

,ZO = w - 3-1 (37) 
&+I = (1 - plh,12)& - ph:V, 

= (1 - /A)& - ph,u, { eP,, = h,& 

where 5, = x ,  - P,, and where we have used the fact that 
the h, have magnitude one. Assuming we have observed N 
points of data, we can then use (37) to write the operator 
x m s , ~ ( p )  that maps the disturbances {p-420,  { u , } ~ ~ ' }  to 
the {ep,,}::' (see (38), which appears at the bottom of the 
next page). 

Suppose now we use the RLS algorithm (viz., the Kalman 
filter) to estimate the states in (31), i.e., 

&+I = 2% + kp ,Z (& - h,&) 

where kp,,  = & and 

Then, we may write t p  following state-space model for the 
IUS predicted error ep,i = hixi - hi&: 

Now, solving (39) yields 

(41) CL. 
pi = IfiCL 

and 
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RLS with mu=.9 

(4 
LMS with mu79 

@) 

RLS with mu=1.5 

(c )  

LMS with mu=] .5 

(d) 

Fig, 4. 
T r l s , ~ ( p )  as a function of N for the values p = 0.9 and p = 1.5. 

Maximum singular value of transfer operators T l m s , ~ ( p )  and 

Using (41), (42), and the state-space model (40), we can 
also write the transfer operator T r l s , ~ ( p )  that maps the dis- 
turbances to the predicted errors as in (43), which appears at 
the bottom of the page. 

We now study the maximum singular values of T l m s , ~ ( p )  
and T r l s , ~ ( p )  as a function of p and N .  Note that in this 
special problem, (35) implies that p must be less than one to 

guarantee the H" optimality of LMS. Therefore, we chose 
the two values p = .9 and p = 1.5 (one greater and one 
less than p = 1). The results are illustrated in Fig. 4, where 
the maximum singular values of E m s , ~ ( p )  and T r l s , ~ ( p )  are 
plotted against the number of observations N .  As expected, 
for p = 0.9, the maximum singular value of E m s , ~ ( p )  
remains constant at one, whereas the maximum singular value 
of T r l s , ~ ( p )  is greater than one and increases with N .  For 
1-1 = 1.5, both RLS and LMS display maximum singular 
values greater than one, with the performance of LMS being 
significantly worse. 

Fig. 5 shows the worst-case disturbance signals for the RLS 
and LMS algorithms in the p = 0.9 case and the corresponding 
predicted errors. These worst-case disturbances are found by 
computing the maximum singular vectors of Tr~s,s0(0.9) and 
Tlms,50(0.9). respectively. The worst-case RLS disturbance, 
and the uncorrupted output hZxx, are depicted in Fig. 5(a). As 
can be seen from Fig. 5(b), the corresponding RLS predicted 
error does not go to zero (it is actually biased), whereas the 
LMS predicted error does. The worst-case LMS disturbance 
signal is given in Fig. 5(c), and as before, the LMS predicted 
error tends to zero, whereas the RLS predicted error does not. 
The form of the worst-case disturbances (especially for RLS) 
are quite interesting; they compete with the true output early 
on and then go to zero. 

The disturbance signals considered in this example are 
rather contrived and may not happen in practice. However, 
they serve to illustrate the fact that the R I S  algorithm may 
have poor performance even if the disturbance signals have 
small energy. On the other hand, LMS will have robust 
performance over a wide range of disturbance signals. 

p-3x0 
W O  

U N - 2  

(43) 
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1 
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(c) 

1 

0.5 
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(d) 
Fig. 5. Worst-case disturbances and the corresponding predicted errors for 
RLS and LMS: (a) Solid line represents the uncorrupted output h,z,, and 
the dashed line represents the worst-case RLS disturbance; (b) dashed line 
and the dotted line represent the RLS and LMS predicted errors, respectively, 
for the worst-case RLS disturbance; (c) solid line represents the uncorrupted 
output h,z,, and the dashed line represents the worst-case LMS disturbance; 
(d) dashed line and the dotted line represent the RLS and LMS predicted 
errors, respectively, for the worst-case LMS disturbance. 

A. Discussion 
In Section V-A, we motivated the Tf ,opt  = 1 result for 

normalized LMS by considering a disturbance strategy that 
made the observed output d ,  coincide with the expected output 
h,wlVl. It is now illuminating to consider the dual strategy 
for the estimator. 

Recall that in the a posteriori adaptive filtering problem, 
the estimator has access to observations do,  d l  , . + . , d, and is 
required to construct an estimate of i,~; of the uncorrupted 
output x, = hixi. The dual to the above-mentioned disturbance 
strategy would be to construct an estimate that coincides with 
the observed output, viz. 

f,p = d,. (44) 

The corresponding filtered error is 

ef,z = fzl, - h,xi = d ,  - h,x, = v,. 

Thus, the ratio in (9) can be made arbitrarily close to one, and 
the estimator (44) will achieve the same TfroPt = 1 that the 
normalized LMS algorithm does. 

The fact that the simplistic estimator (44) (which is obvi- 
ously of no practical use) is an optimal H" a posteriori filter 
seems to question the very merit of being H" optimal. A 
first indication toward this direction may be the fact that the 
HO" estimators that achieve a certain level y are nonunique. 
In our opinion, the property of being H m  optimal (i.e., of 
minimizing the energy gain from the disturbances to the errors) 
is a desirable property in itself. The high sensitivity of the 
RLS algorithm to different disturbance signals, as illustrated 
in the example of Section VI, clearly indicates the desirability 
of the H" optimality property. However, different estimators 

in the set of all H" optimal estimators may have drastically 
different behavior with respect to other desirable performance 
measures. 

In Section VII, we develop the full parameterization of all 
H" optimal a posteriori and a priori adaptive filters and show 
how to obtain (44) as a special case of this parameterization. 
Moreover, it can be shown (see [22]) that among all H"- 
optimal a posteriori filters, the filter (44) has the worst H2 (or, 
roughly speaking, average) performance. Thus, it is the least 
desirable H"-optimal filter with respect to an H2 criterion. 
On the other hand, as indicated in Theorems 5 and 6, the 
LMS and normalized LMS algorithms correspond to the so- 
called central filters. These central filters have other desirable 
properties that we discuss in Section VIII; they are risk- 
sensitive optimal and can also be shown to be maximum 
entropy. 

The main problem with the estimator (44) is that it makes 
absolutely no use of the state-space model (31). We should 
note that it is not possible to come up with such a simple 
minded estimator in the a priori case. Indeed, as we shall see 
in the next section, the a priori estimator corresponding to 
(44) is highly nontrivial. The reason seems to be that since 
in the a priori case, one deals with predicted error energy, it 
is inevitable that one must make use of the state-space model 
(31) in order to construct an optimal prediction of the next 
output. Thus, in the a priori case, the problems arising from 
such unreasonable estimators such as (44) are avoided. 

VII. ALL H" ADAPTIVE FILTERS 

In Section VI-A, we came up with an alternative optimal 
H" a posteriori filter. We now use the results of Theorems 3 
and 4 to parameterize all optimal H" a priori and a posteriori 
filters. 

Theorem 7-All H" a posteriori Adaptive Filters: If the 
input date {h,} is exciting, all H" optimal a posteriori 
adaptive filters that achieve Tf ,op t  = 1 are given by 

f, 1, = h, 81, + ( 1 + ph, h,*)-i S, (( 1 + ph, hj* ) 3 (d, - h, Cl,), 

. - a ,  (l+phoh;;)~(do-howiO)) (45) 

where 61, satisfies the recursion 

and S is any (possibly nonlinear) contractive causal mapping. 
Pro08 Simply restating the result of Theorem 3 for the 

special case F, = I, G, = 0, H, = h, and L, = h, and 
using the identity 

I - h,(PF1 + h,*h,)-lh,* = (I + h,P,h,*)-l 

along with the fact that for the HO"-optimal a posteriori 
adaptive filters we have Tf,opt  = 1 and P, = p I  yields the 
desired result. 
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We can now note the significance of some special choices 
for the causal contraction S.  

i) S = 0: This yields the normalized LMS algorithm. 
ii) S = I :  This yields 

2, 1, = h, Wl, + ( 1 + ph, h,* )-+ ( 1 + ph, h,* ) ( d, - h, W1, ) 
= d, 

which is the simple minded estimator of Section VI-A. 
iii) S = - I :  This yields 

2 3  13 

= h,81, - (1 + ph, h;)-% (1 +ph, hg) 3 (d, - h,Gj,) 
= 2h,Wlj - d,, 

so that the recursion for wl, becomes 

Theorem 8-All H" a priori Adaptive Filters: If the input 
data {h,} is exciting, and 0 < p < inf, &, then all H" 
optimal a priori adaptive filters are given by 

2, = h3w1,-1 + (I - ph,h;)$ 

S, ((1 - ph,-ih,*-l)4 (d3-i - h3-1f313-2), 

. e s ,  (I - phoh:)fr(do - hof8-1)) (47) 

where 

where wl, satisfies the recursion 

81, = w/,-i +phg(dj -h,W13-i)-~h3*(2,-h,w13-i),wl-i 
(49) 

and S is any (possibly nonlinear) contractive causal mapping. 
Pro08 Simply restating the result of Theorem 4 for the 

special case F, = I ,  G, = 0 ,  H, = h, and L, = h, and 
using the fact that for the H"-optimal a priori filter we have 
Y ~ , ~ ~ ~  = 1, P, = p I  and Pa = p I  - h;h, yields the desired 
result. Indeed, (47)-(49) are the corresponding specializations 

We once more note the consequences of some special 
of equations (28)-(30), respectively. H 

choices of the causal contraction S. 
i) 
ii) 

S = 0: This yields the LMS algorithm. 
S = I :  This yields 

2, = h,Gl,-l + (I - ph,h;)?(l - ph,-1hS-1); 

(d,-1 - h,-1fq3-2) 

where and satisfy (48) and (49). The above 
filter is the a priori adaptive filter that corresponds to the 
simple minded estimator of Section VI-A. Note that in 
this case the filter is highly nontrivial. 

iii) S = -I: This yields 

2, = hjwl,-l - (1 - ph,h;):(l - ph,-ih;-l)h 

(dJ-i - h3-iWI3-2). 

priori estimator that achieves optimal performance. 
Note that it does not seem possible to obtain a simplistic a 

VIII. RISK-SENSITIVE OPTIMALITY 

In this section, we focus on a certain property of the 
central H" filters, namely, the fact that they are risk-sensitive 
optimal filters. This will give further insight into the LMS and 
normalized LMS algorithms and, in particular, will provide a 
stochastic interpretation in the special case of disturbances that 
are independent Gaussian random variables. 

The risk-sensitive (or exponential cost) criterion was intro- 
duced in 1141 and further studied in [15]-1171. We begin with 
a brief introduction to the risk-sensitive criterion. For much 
more on this subject consult [16]. 

A. The Exponential Cost Function 

Although it is straightforward to consider the risk-sensitive 
criterion in the full generality of the state-space model of 
Section IV, here, we only deal with the special case of 
our interest. To this end, consider the state-space model 
corresponding to the adaptive filtering problem we have been 
studying 

(50) 

where we now assume that w and the {wa} are independent 
Gaussian random variables with means 61-1 and zero and co- 
variances l l o  and I ,  respectively. As before, we are interested 
in the filtered and predicted estimates ? . l a  = Ff(d0, dl, . . . , d,) 
and 2, = Fp(d0,dl,...,d,-l) of the uncorrupted output 
.r; = h2x,. The corresponding filtered and predicted errors are 
given by ef,, = f,lz - x, and ep,, = 2, - 2,. The conventional 
Kalman filter is an estimator that performs the following 
minimization (see e.g., [25] and [26]): 

where the expectation is taken over the Gaussian random 
variables 20, and { w , } ~ ~ ,  whose joint conditional dstribution 
is gven by the expression at the bottom of the next page, 
and where the symbol cx stands for "proportional to." In the 
terminology of [16], the filter that minimizes (51) is known 
as the risk-neutral filter. 

An alternative criterion that is risk sensitive has been exten- 
sively studied in [14]-[17] and corresponds to the following 
minimization problem: 

0 
min pf,,(O) = min b e x p ( - - ~ C f , , ) ] )  (52a) 

{"313} {2i313} 

or 
0 

min pp,,(@) = min Eexp( - zCp , , ) ] )  (52b) 
("3 1 (53 } 
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where Cf,i = E&, ej,;ef,i, and Cp,i = E;=, e;riep,i. The 
criteria in (52) and (52) are known as the a posteriori and a 
priori exponential costfunctions, and any filters that minimize 
p,,i(O) and p,,i(O) are referred to as aposteriori and a priori 
risk-sensitive filters, respectively. The scalar parameter I9 is 
correspondingly called the risk-sensitivity parameter. Some 
intuition conceming the nature of this modified criterion is 
obtained by expanding pi(6') (where we have dropped the 
subscripts f and p since the argument follows for both filtered 
and predicted estimates) in terms of 6' and writing 

0 
4 pi(@ = E(Ci) - -Var(Ci) + 0 ( O 2 ) .  

The above equation shows that for 0 = 0, we have the risk- 
neutral case (i.e., the conventional Kalman filter). When 0 > 0, 
we seek to maximize Eexp(-gC,), which is convex and 
decreasing in C,. Such a criterion is termed risk seeking (or 
optimistic) since larger weights are on small values of C,, and 
hence, we are more concerned with the frequent occurrence of 
moderate values of Ca than with the occasional occurrence of 
large values. When I9 < 0, we seek to minimize Eexp( -gC,), 
which is convex and increasing in Ca .  Such a criterion is 
termed risk averse (or pessimistic) since large weights are on 
large values of C,, and hence, we are more concerned with the 
occasional occurrence of large values than with the frequent 
occurence of moderate ones. 

The relationship between the risk-sensitive criterion and the 
H" criterion was first noted in [27] and has been further 
discussed in [16] and [19]. It may be formally stated as 
follows: In the risk-averse case 0 < 0, the risk-sensitive 
optimal filter with parameter 0 is given by the central H" filter 
with level y = -0-4 .  In particular, there is a certain smallest 
value of the risk-sensitivity parameter e, after which the 
minimizing property of pz (0) breaks down, and it is this value 
that yields the optimal central H" filter with Topt = -0-1/2. 

B. Risk-Sensitive Adaptive Filtering 
Using the discussion of Section VIII-A, we are now in 

a position to state the risk-sensitive results for LMS and 
normalized LMS. 

Theorem 9-Normalized LMS and Risk Sensitivity: Consider 
the state-space model (50), where the w and { v j  } are indepen- 
dent Gaussian random variables with means wl-1 and 0, and 
variances p I  and I, respectively. The solution to the following 
minimization problem 

min pf (0) = min 
(2313 1 ( 4 1 3  1 

where Cf = e;,,ef,i, and the expectation is taken over 
w and { v j }  subject to observing {do,  d l  , . . , d i } ,  is given by 

3'5J 
3 -  

2.5 - 

7 2- 

1 -  

0 0 5  1 1 5  2 2.5 3 
CP 

Fig. 6. Criterion (55) is termed risk averse (or pessimistic) since the cost 
function e a p ( C , / 2 )  is very large for large values of C,. Hence, we are 
more concerned with the occasional occurence of large values of C, than 
with the frequent occurrence of moderate ones. This fact corresponds well 
with the intuition gained from the Hm optimality of the LMS algorithm. We 
have also plotted C,/2 (the dashed line) to compare the two cost functions 
since the RLS algorithm minimizes the expected value of C,/2. 

the normalized LMS algorithm 

,Qi = hizirl; 

and 

Theorem IO-LMS and Risk Sensitivity: Consider the state- 
space model (50), where the w and { v j }  are independent 
Gaussian random variables with means &l-l and 0 and vari- 
ances p I  and I, respectively. Suppose, moreover, that the {h i}  
are exciting and that 

1 
a h,hb' 0 < p < inf ~ 

Then, the solution to the following minimization problem 

where C, = E,"=, e;,,e,,, and the expectation is taken over 
w and { v 3 }  subject to observing {do, d l , .  . . , da-l) ,  is given 
by the LMS algorithm 

2, = h,8,-1 

and 



278 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 2, FEBRUARY 1996 

Before closing this section, we should remark that the 
central H" filters possess other properties in addition to the 
one described above. In the game theoretic formulation of H" 
estimation, the central filter corresponds to the solution of the 
game [28]. Moreover, among all H" estimators that achieve 
a certain level y, the central solution can be shown to be 
the maximum entropy [21] solution. However, we shall not 
pursue these directions here. 

IX. FURTHER REMARKS 
In addition to yielding a new interpretation for the LMS 

algorithm and providing it with a rigorous basis, the results 
described in this paper have lent themselves to various gener- 
alizations and have allowed the authors to obtain several new 
results. We close this paper by listing some of these ideas 
and results here. We should also mention that we believe 
the framework presented in this paper provides a new way 
of looking at adaptive algorithms and should be worthy of 
further scrutiny. 
LMS with Time-Varying Leaming Rate: In many applica- 

tions, one uses the LMS algorithm with time-varying stepsize 
(or learning rate), viz. 

WIZ = 6l,-1 + pzh,*(dz - h%6lZ-1),W,-1. (57) 

In this case, it is straightforward to show that if the vectors 
{p.,"2hz} are exciting, and if pzh,h: 5 1 for all i, then 
the LMS algorithm with time-varying stepsize solves the 
following minimax problem: 

H" Adaptive Filtering: In this paper, we have shown that 
if adaptive filtering for output prediction error is considered, 
then the central Hm-optimal adaptive filter is LMS. It is also 
possible to consider prediction of the filter weight vector itself 
and, for the purpose of coping with time variations, to con- 
sider exponentially weighted, finite-memory, and time-varying 
adaptive filtering. This results in some new adaptive filtering 
algorithms that may be useful in uncertain and nonstationary 
environments (see [29]). 

H" N o m  Bounds for the RLS Algorithm: In order to 
compare the robustness of H2-optimal algorithms (such as 
RLS) with H"-optimal algorithms (such as LMS), it is useful 
to obtain H" norm bounds for these algorithms. This has 
been done for the RLS algorithm in [20], where it is shown 
that unlike LMS, the H" norm of the RLS algorithm depends 
on the input data { h,} and, roughly speaking, grows linearly 
in the parameter p. 

A Time-Domain Feedback Analysis: Using some of the 
ideas presented here, a time-domain feedback analysis of 
recursive adaptive schemes, including gradient-based and 
Gauss-Newton filters, has been developed [30], [31] for both 
the FIR and IIR contexts. The analysis highlights an intrinsic 
feedback structure in terms of a feedforward lossless or 
contractive map and a feedback memoryless or dynamic map. 
The structure lends itself to analysis via energy 'conservation 
arguments and via standard tools in system theory such as the 

small gain theorem [32]. It further suggests choices for the 
adaptation gains (or step sizes) in order to enforce a robust 
performance in the presence of disturbances (along the lines 
of H"theory), as well as improve the convergence speed of 
the adaptive algorithms. 

NonEinear Problems: The results presented in this paper are 
for linear adaptive filters and can be somewhat generalized 
to nonlinear adaptive filters (such as neural networks) if one 
linearizes these nonlinear models around some suitable point. 
Using this approach, it can be shown (see [34]) that, for 
nonlinear problems, instantaneous-gradient-based algorithms 
(such as backpropagation [33]) are locally H" optimal. This 
means that if the initial estimate of the weight vector is close 
enough to its true value and if the disturbances are small 
enough, then the maximum energy gain from the disturbances 
to the output prediction errors is arbitrarily close to one. Global 
H"-optimal filters can also be found in the nonlinear case, 
but they have the drawback of being infinite dimensional [35]. 

X. CONCLUSION 

We have demonstrated that the LMS algorithm is H" 
optimal. This result solves a long-standing issue of finding a 
rigorous basis for the LMS algorithm and confirms its robust- 
ness. We find it quite interesting that despite the fact that there 
has only been recent interest in the field of H" estimation, 
there has existed an H" optimal estimation algorithm that has 
been widely used in practice for the past three decades. 

APPENDIX A 
FIRST PRINCPLES PROOF OF THE H" OPTIMALITY OF LMS 

In this appendix, we shall outline a first principles proof 
of the H" optimality of the LMS and normalized LMS 
algorithms that does not require the results of Theorems 1 and 
2 on H" filtering. The proofs rely on some easily verified 
inequalities. We begin with normalized LMS. (See also the 
last section in [41 and [301.) 

1 )  The Normalized LMS Algorithm: Recall that in Section 
V-A, after the statement of Theorem 5, we constructed a 
disturbance signal such that for any E > 0 

Since this was just one special disturbance signal, we conclude 
that if the input vectors are exciting, we have 

We shall now show that the normalized LMS algorithm 
achieves one in the above inequality. This, of course, also 
shows that Yf,oPt = 1. To this end, note that the normalized 
LMS algorithm 

can, after some rearrangement, be written as 

61J-l = 613 - ph:(d, - hj61J). 



HASSIBI et al.: H“ OPTIMALITY OF THE LMS ALGORITHM 219 

If we now define 61, = w - wl,, the above expression allows Now, since we have the bound p 5 &, the third term on 
us to write the RHS is negative, and we can write 

p-1/2[Glj-1] = pu-1/2[G1~ +ph:(d, - hjwlj)]* (60) pu-11Gl,-112 + lvjI2 2 p-11Gl,12 + I h3G2,-1 1 2 .  (70) - 
ep.3 (The reason for multiplying both sides by p-lI2 will become 

clear in a moment.) On the other hand, we may write v, = 
d ,  - h,w as The remainder of the proof is now identical to the normalized 

LMS case. 
U, = (d, - h,81,) - h,6l,. (61) 

ACKNOWLEDGMENT Squaring both sides of (60) and (61) and adding the results 
yields The first author would like to thank Prof. L. Ljung for 

contributing to the discussion in Section VI-A. 
p-11G,,-112 + lw,12 = p-1161,12 

+ lh,GlJ12 + (1 + ph,h;)(d, - h,81,)2. (62) 

Now, since the third term on the right-hand side (RHS) of 
the above expression is positive and since h,61, = ef,, ,  we 
may write 

P-116,,-112 + b,I2 2 p-11q,12 + lq,,I2. (63) 

If we now add all inequalities of the form (63) from time 
j = 0 to time j = i, we have 

2 2 

d l w  - 8,-1l2 + b,I2 L d l G , 2 l 2  + kf,,I2 
,=O , =O 

which in turn implies 

Thus, for normalized LMS, in the limit as i + m, we have 

which is the desired result. 
2)  The LMS Algorithm: The proof for the LMS algorithm 

follows the exact same lines as the one above. Equation (60) 
is now replaced by 

p-1/2 [Glj] = p-1/2 [Glj-l - phl(dj - hjtijlj-l)] (67) 

and (61) by 

This time, we square both sides of (67) and (68) and subtract 
the results to obtain 
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