
-- --

ODD EVEN SHIFTS IN SIMD HYPERCUBES1

Sanjay Ranka2 and Sartaj Sahni3

Abstract

We develop a linear time algorithm to perform all odd (even) length circular shifts of data

in an SIMD hypercube. As an application, the algorithm is used to obtain an Ο(M 2 + logN) time

and Ο(1) memory per processor algorithm to compute the two dimensional convolution of an

N ×N image and an M ×M template on an N2 processor SIMD hypercube. This improves the previ-

ous best complexity of Ο(M 2logM + logN).

Keywords and Phrases

SIMD hypercube, odd and even shifts, image template matching, one and two dimensional

convolution

1This research was supported in part by the National Science Foundation under grants DCR84-20935 and MIP 86-17374
2Professor Ranka’s address is: School of CIS, 4-116 Center for Science & Technology, Syracuse University, Syracuse, NY
13244. 3Professor Sahni’s address is: Computer Science Department, 4-
192 EE/CSci Bulding, University of Minnesota, Minneapolis, MN 55455.

1

-- --

2

1 INTRODUCTION

Data routing is a fundamental operation in parallel computers. Several researchers have

developed algorithms for various data routing patterns in hypercubes. For example, the general

one-to-one data routing problem may be solved by sorting on the destination tags ([NASS82a]).

Efficient algorithms for random access reads and writes are developed in [NASS81] and an

optimal algorithm to perform all data routes that fit into the class of bit-permute-complement per-

mutations is developed in [NASS82b]. Broadcasting and personalized communication are con-

sidered in [JOHN87b]. Hypercube algorithms for data routing problems that arise in Gaussian

elimination are developed in [SAAD89]. Efficient mappings for linear algebra problems are con-

sidered in [JOHN87a]. Dekel et al. [DEKE81] develop an optimal hypercube routing algorithm

that begins with one data in each processor and circulates the collection of data through every

processor such that each processor has only one data at any time. This is applied to the matrix

multiplication problem in [DEKE81] and to the image template matching problem in [RANK88].

In this paper we consider the odd/even data shifting problem in SIMD hypercubes. Here

we start with data in (say) the A register of each hypercube processor. This data is to be shifted

clockwise circularly by all odd (even) amounts in the range [1 .. P −1] where P is the number of

processors in the hypercube. There is no restriction placed on the order in which the odd (even)

shifts are performed. So, in the case of odd shifts and P = 16 we need to accomplish shifts of 1, 3,

5, 7, 9, 11, 13, and 15. These could be accomplished in the order 11, 3, 7, 1, 5, 15, 13, 9. In Sec-

tion 3, we develop an Ο(P) time algorithm for this.

We note that all odd and all even shifts are easily performed in Ο(P) time on an MIMD

hypercube using the gray code mapping scheme ([JOHN87a]). The resulting routing algorithm

requires that in one time unit different processors be able to route on different dimensions of the

hypercube. Our hypercube model (Section 2.1) does not permit this. In any given time unit all

processors that are routing data are required to do this along the same hypercube dimension.

In Section 4, we use our algorithm for even shifting to obtain an improved algorithm to

compute two dimensional convolutions on SIMD hypercubes with Ο(1) memory per processor.

-- --

3

The inputs to this problem are an N×N image matrix I [0..N − 1, 0..N − 1] and an M×M template

T [0..M − 1, 0..M − 1]. The output is an N×N matrix C2D where

 C 2D [i, j] =
u =0
Σ

M −1

v =0
Σ

M −1

I [(i + u) mod N, (j + v) mod N] ∗ T [u,v]

C 2D is called the two dimensional convolution of I and T. Computing C 2D, is a fundamental

operation in computer vision and image processing. It is often used for edge and object detection;

filtering; and image registration ([BALL85], [ROSE82]). PrassanaKumar and Krishnan

[PRAS87] have developed an SIMD hypercube algorithm for this problem that has time com-

plexity Ο(M 2logM + logN). This algorithm assumes an Ο(1) data broadcast capability between

the control unit and the hypercube processors and requires N2 processors and Ο(1) memory per

processor. Using our data shifting algorithm we are able to compute C 2D in Ο(M 2 + logN) time.

Computing C2D on SIMD hypercubes has also been considered in [FANG85] and [FANG86].

2 PRELIMINARIES

2.1 Hypercube Multicomputer

The important features of an SIMD hypercube and the programming notation we use are:

1. There are P = 2p processing elements connected together via a hypercube interconnection

network (Figure 1). Each PE has a unique index in the range [0, 2p − 1]. We shall use

parentheses(’()’) to index PEs. Thus A(i) refers to the A register of PE i. The local memory

in each PE holds data only (i.e., no executable instructions). Hence PEs need to be able to

perform only the basic arithmetic operations (i.e., no instruction fetch or decode is needed).

2. There is a separate program memory and control unit. The control unit performs instruction

sequencing, fetching, and decoding. In addition, instructions and masks are broadcast by

the control unit to the PEs for execution. An instruction mask is a boolean function used to

select certain PEs to execute an instruction. For example, in the instruction

 A (i) := A (i) + 1, (i 0 = 1)

(i0 = 1) is a mask that selects only those PEs whose index has bit 0 equal to 1. I.e., odd

-- --

4

indexed PEs increment their A registers by 1. Sometimes, we shall omit the PE indexing of

registers. So, the above statement is equivalent to the statement:

 A := A + 1, (i0 = 1)

Figure 1: A 4 dimensional hypercube (16 PEs)

3. The topology of a 16 node hypercube interconnection network is shown in Figure 1. A p

dimensional hypercube network connects 2p PEs. Let ip −1ip −2i0 be the binary representa-

tion of the PE index i. Let ik

__
be the complement of bit ik. A hypercube network directly con-

nects pairs of processors whose indices differ in exactly one bit. I.e., processor ip −1 ip −2 ...i0 is

connected to processors ip −1
 . . . ik

__
....i0, 0≤k ≤p −1. We use the notation i (b) to represent the

number that differs from i in exactly bit b.

4. Interprocessor assignments are denoted using the symbol ← , while intraprocessor assign-

ments are denoted using the symbol :=. Thus the assignment statement:

 B (i (2)) ← B (i), (i2 = 0)

is executed only by the processors with bit 2 equal to 0. These processors transmit their B

register data to the corresponding processors with bit 2 equal to 1.

5. In a unit route, data may be transmitted from one processor to another if it is directly con-

nected. If the interprocessor connections are unidirectional, then an exchange of data

between two hypercube neighbors takes two unit routes. If the connections are bidirec-

-- --

5

tional, this exchange takes a single unit route. Our further discussion assumes unidirec-

tional connections. Since the asymptotic complexity of all our algorithms is determined by

the number of unit routes, our complexity analysis will count only these.

2.2 Arbitrary Circular Shifts

SHIFT (A,i,W) shifts the A register data circularly counter-clockwise by i in windows of size

W (W is a power of 2). I.e, A (qW +j) is replaced by A (qW + (j −i) mod W), 0≤ q <(P /W).

SHIFT (A, i, W) can be performed in 2logW unit routes [PRAS87]. A minor modification of the

algorithm given in [PRAS87] performs i = 2m shifts in 2 log(W /i) unit routes.

The strategy is to reduce a shift in a window of size W into two independent shifts in win-

dows of size W /2. By using this repeatedly we end up with shifts in windows of size one. Shifts

in windows of this size are equivalent to null shifts. Let the current window size be denoted by

2*M (W is the initial window size, initially M = W /2). For the reduction, we consider two cases:

(a) 0 < i ≤ M and (b) M < i <2*M.

(a) First consider an example. Suppose that M = 4 and i = 3. Then the initial configuration of

line 1 of Figure 2 is to be transformed into that of line 2. The 8 processors may be parti-

tioned into two windows of size 4 each. The left window consists of processors 0 through 3

and processors 4 through 7 make up the right window. Examining the initial and final

configurations, we notice that b, c, and d are initially in the left window and they are in the

right window after the shift. Also, f, g, and h are initially in the right window and are in the

left window following the shift. If we exchange b, c, and d with f, g, and h, respectively,

then we obtain the configuration of line 3. Now each of the two windows of size 4 has the

data it needs for its final configuration. Furthermore, a shift of 3 in each window will result

in the final configuration.

In general, we need to exchange the data in the processors first through last (first =

M − i, last = M − 1) of the left window with that of the corresponding processors in the right

window. Following this, a shift of i mod M is to be made in each size M window.

-- --

6

line 0 1 2 3 4 5 6 7

PE

1 a b c d e f g h

2 f g h a b c d e

3 a f g h e b c d

4 c d e f g h a b

5 e f c d a b g h

Figure 2 SIMD shift example

(b) Consider the initial configuration of line 1 of Figure 2. This time assume that i = 6. The

final configuration is shown in line 4. This time a, b, e, and f change windows between the

initial and final configurations. When i > M, first = 0 and last = 2M − i − 1. The data in pro-

cessors first through last of the left and right windows need to be exchanged. Following

this, the final configuration can be obtained by performing a shift of i mod M in each win-

dow of size M.

The preceding discussion results in the procedure of Figure 3. Here RightmostOne (i) is a

function that returns the least significant bit of i that is one. So, RightmostOne (12) = 2 and Right-

mostOne (9) = 0. The complexity of SIMDShift is Ο(logW). In case the shift amount i is a power of

2, the complexity becomes Ο(log(M /i)).

3 ODD/EVEN SHIFTS

We explicitly consider only the case of even shifts. There are exactly (P/2)− 1 such shifts

(recall that P = 2p is a power of 2). A shift distance sequence, Ek, is a sequence d1d2
 . . . d2k −1− 1 of

positive integers such that a clockwise shift of d1, followed by one of d2, followed by one of d3 ,

etc. covers all even length shifts.

-- --

7

procedure SIMDShift (A, i, W);
{Counterclockwise shift of A by i in windows of size W.}
{SIMD version.}

i := i mod W;
b := RightmostOne (i);
M := W; k := log2M;
for j := k −1 downto b do
begin

M := M div 2;
if i <= M then begin

first := M − i;
last := M − 1;

end
else begin

first := 0;
last := 2*M − i − 1;

end;
a := p mod M; {p is this processor’s index, a is position in size M window}
A (p (j)) ← A (p), (first <= a <= last);
i := i mod M; {remaining shift}

end; {of for loop}
end; {of SIMDShift}

Figure 3 SIMD hypercube shift

Note that E0 = E1 = null as there are no even length shifts in the range [1, 2m−1] when m = 0

and 1. E2 = 2. This transforms the length P = 22 sequence abcd into the sequence cdab. In general,

the choice Ek = 2, 2, 2, . . . will serve to obtain all even length shifts. From the complexity

standpoint this choice is poor as each shift requires 2log(P /2) unit routes. Better performance is

obtained by defining

E0 = E1 = null, E2 = 2

Ek = InterLeave (Ek −1 , 2k −1), k>2

where InterLeave is an operation that inserts a 2k −1 in front of Ek −1, at the end of Ek −1, and

between every pair of adjacent distances in Ek −1. Thus,

E3 = Interleave (E2 , 4)

= 4 2 4

E4 = Interleave (E3 , 8)

= 8 4 8 2 8 4 8

When a shift sequence Ek is used, the effective shift following di is (
j =1
Σ

i

dj) mod 2k. Thus

-- --

8

when E3 is used on the sequence abcdefgh, we get

d sequence effective shift

4 efghabcd 4

2 ghabcdef 6

4 cdefghab 2 = 10 mod 8

Intutively, Ek can be expected to have a low cost as more than half the shifts are of size

2k −1. Each of these has a cost of 2. Further, more than half of the remaining shifts are of size 2k −2

and each of these has a cost of 4; etc. So the shift sequence is biased towards the inexpensive

shifts.

Theorem 1: Let E [k, i] be di in the sequence Ek, k≥2. Let ESUM [k, i] = (
j =1
Σ

i

E [k, j]) mod 2k.

Then {ESUM [k, i]
�
1≤i ≤2k −1−1} = {2, 4, 6, 8, ..., 2k− 2}.

Proof: The proof is by induction on k. The theorem is clearly true for k = 2. Let it be true for

k = l ≥ 2. We prove that it will be true for k = l + 1. Hence by induction it will be true for all

values of k, k ≥ 2.

We prove the following statements which prove the required result.

(1) ESUM [l + 1, i] < 2l +1.

(2) ESUM [l + 1, i] is even.

(3) ESUM [l + 1, i] ≠ 0

(4) ESUM [l + 1, i] ≠ ESUM [l + 1, k] if i ≠ k

(1) and (2) follow directly from the definitions of ESUM [l + 1, i] and El +1. We prove (3)

and (4) by contradiction. Suppose ESUM [l + 1, i] = 0 for some value of i, say a > 1 (The case of

a = 1 is obvious as E [l + 1, 1] ≠ 0). Then,

(
j =1
Σ
a

E [l + 1, j]) mod 2l +1 = 0

(≡)(
j =1
Σ

�
a /2�

E [l, j] + � a /2 � 2l) mod 2l +1 = 0

(=>)(
j =1
Σ

�
a /2�

E [l, j]) mod 2l = 0

-- --

9

(≡)ESUM [l, � a /2 �] = 0

Contradiction (as � a /2 � > 0 and ESUM [l, i] > 0 for i > 0).

If k = i +__ 1 then (4) is true by the definition of ESUM. Suppose

ESUM [l + 1, i] = ESUM [l + 1, k] , i ≠ k, k ≠ i +__ 1. So,

(
j =1
Σ

i

E [l + 1, j]) mod 2l +1 = (
j =1
Σ
k

E [l + 1, j]) mod 2l +1

(≡)(
j=1
Σ

�
i /2�

E [l, j] + � i /2) � 2l) mod 2l +1 =(
j =1
Σ

�
k /2�

E [l, j] + � k /2 � 2l) mod 2l +1

(=>)(
j =1
Σ

�
i /2�

E [l, j]) mod 2l = (
j=1
Σ

�
k /2�

E [l, j]) mod 2l

(≡)ESUM [l, � i /2 �] = ESUM [l, � k /2 �]

Contradiction (as � i /2 � ≠ � k /2 �).

Theorem 2: The shift sequence Ek can be done in 2(2k− k −1) unit routes, k≥2.

Proof: In Section 2, we presented a shift algorithm that performs a power of 2 shift 2i in a

window of size 2k using only 2log(2k/2i) = 2(k − i) unit routes. Let cost(Ek) be the number of unit

routes required by the sequence Ek. The 2k −2 , 2k −1’s in Ek take 2 routes each. The cost of the

remaining shifts in Ek is cost(Ek −1) + 2(2k −2−1). The additive term 2(2k −2−1) accounts for the fact

that each of the remaining 2k −2−1 routes is done in a window of size 2k rather than 2k −1 (as

assumed for Ek −1). Hence,

cost (Ek) =

�� �
2
cost (Ek −1) + 2(2k −2− 1) + 2*2k −2

, k =2
, k >2

So, cost (Ek) = 2(2k − k − 1), k≥2. .

The result of the preceding theorem is important as it says that the average cost of rotation

in Ek is
2k −1−1

2(2k − k − 1)___________ < 4. So, we can perform even length rotations with O (1) average cost.

Let Fk be the sequence obtained by dividing each distance in Ek by 2. So,

F0= F1= null, F2= 1,F3= 2, 1, 2, etc.

Theorem 3: Let FSUM [k, i] = (
j =1
Σ

i

F [k, j]) mod 2k −1 where F [k, j] is the j’th distance in Fk

-- --

10

(a) {FSUM [k, i] � 1≤i≤2k −1−1} = {1, 2, 3, ..., 2k −1−1}

(b) All the shifts in Fk can be done in a window of size 2k −1 in 2(2k − k −1) unit routes.

Proof: Similar to the proof of Theorems 1 and 2.

4 CONVOLUTIONS

4.1 One Dimensional Convolution

The inputs to the one dimensional convolution problem are vectors I [0..N − 1] and

T [0..M − 1]. The output is the vector C1D where:

C 1D [i] =
v =0
Σ

M −1

I [(i + v) mod N]*T [v] , 0 ≤ v <N

Our algorithm assumes that there are P = N processors and that the vector I is mapped onto

the hypercube using the identity mapping (i.e., I [i] on PE i). The N processors may be divided

into N /M blocks with each block containing M processors. Further, we assume that there are

(N /M) copies of T in the hypercube with one copy in each block of M processors. Within a block,

the mapping of T is the same as that of I (i.e., PE i contains T [imodM]).

Each PE will compute two quantities A and B. For any PE, A is the sum of all the C1D

terms that are in the M block containing the PE. B is the sum of all C1D terms that are needed by

the corresponding PE in the previous M block. The terms contributing to A and B are shown in

Figure 4. The AB values are computed in two stages. In the first, we compute the contribution to

A and B by all I terms Ij for j even. In the next stage, we do this for the case j odd.

Consider the case M =8. If we begin by computing the terms on the major diagonal of Fig-

ure 4 , then PEs (0, 1, 2, ,,, 7) compute (I0T0 , I2T1 , I4T2 , I6T3 , I 0T4 , I2T5 ,I4T6 , I6T7). The I and T

values required by each of the 8 PEs are shown in the first two rows of Figure 5. Notice that if

we rotate the I values in windows of size 4 by some amount j, then the T values need to be

rotated by 2j so that each PE has a pair (I, T) whose product is needed in the computating of its A

or B value. For this rotation we use the sequences F3 and E3. Rotating I by F [3, 0] in size 4 win-

dows and T by E [3,0] in a size 8 window gives the next two rows of Figure 5. The result of per-

-- --

11

P0 I0T0 + I 1T1 + I2T2 + I3T3 + I4T4 + I5T5 + I 6T6 + I7T7

P1 I1T0 + I 2T1 + I3T2 + I4T3 + I5T4 + I6T5 + I 7T6 . I0T7

P2 I2T0 + I 3T1 + I4T2 + I5T3 + I6T4 + I7T5 . I0T6 + I1T7

P3 I3T0 + I 4T1 + I5T2 + I6T3 + I7T4 . I0T5 + I1T6 + I2T7

P4 I4T0 + I 5T1 + I6T2 + I7T3 . I0T4 + I1T5 + I2T6 + I3T7

P5 I5T0 + I 6T1 + I7T2 . I 0T3 + I1T4 + I2T5 + I3T6 + I4T7

P6 I6T0 + I 7T1 . I0T2 + I 1T3 + I2T4 + I3T5 + I4T6 + I5T7

P7 I7T0 . I0T1 + I1T2 + I 2T3 + I3T4 + I4T5 + I5T6 + I6T7

Sums above and including the off diagonal are A
Sums below the off diagonal are B

Figure 4: A and B values to be completed by each PE

PE 0 1 2 3 4 5 6 7
I I0 I 2 I4 I6 I0 I2 I 4 I6

T T0 T1 T2 T3 T4 T5 T6 T7

I I4 I 6 I0 I2 I4 I6 I 0 I2

T T4 T5 T6 T7 T0 T1 T2 T3

I I6 I 0 I2 I4 I6 I0 I 2 I4

T T6 T7 T0 T1 T2 T3 T4 T5

I I2 I 4 I6 I0 I2 I4 I 6 I0

T T2 T3 T4 T5 T6 T7 T0 T1

Figure 5: Computing the even terms

forming the remaining rotations is also given in Figure 5. Figure 6 gives the computation of the

odd terms.

The initial configuration for the I’s can be obtained by concentrating the even I’s using the

strategy described in Figure 7 for the case of M = 16. This requires logM unit routes. Let

CONCENTRATE(I, M) be the algorithm that does this. The algorithm for one dimensional con-

volution now takes the form given in Figure 8. Note that the E’s and F’s are known only to the

control unit. These may be computed, on the fly, in linear time using a stack of height m = logM.

The memory required in each hypercube PE is only O (1). Lines 5 through 15 handle the even

terms. Lines 20-27 of the odd terms computation are identical to lines 8-15 of the even terms

computation. Notice that (CShift + 2p) mod M gives the index of the I value currently in C (p). So,

-- --

12

PE 0 1 2 3 4 5 6 7
I I1 I 3 I5 I7 I1 I3 I 5 I7

T T1 T2 T3 T4 T5 T6 T7 T0

I I5 I 7 I1 I3 I5 I7 I 1 I3

T T5 T6 T7 T0 T1 T2 T3 T4

I I7 I 1 I3 I5 I7 I1 I 3 I5

T T7 T0 T1 T2 T3 T4 T5 T6

I I3 I 5 I7 I1 I3 I5 I 7 I1

T T3 T4 T5 T6 T7 T0 T1 T2

Figure 6: Computing the odd terms

Route
0 I0 I1 I 2 I3 I4 I5 I6 I7 I8 I 9 I 10 I 11 I 12 I 13 I 14 I 15

1 I0 - - I2 I4 - - I6 I8 - - I 10 I 12 - - I 14

2 I0 I2 - - - - I4 I6 I8 I 10 - - - - I 12 I 14

3 I0 I2 I 4 I6 - - - - - - - - I 8 I 10 I 12 I 14

4 I0 I2 I 4 I6 I8 I10 I12 I14 I0 I 2 I 4 I 6 I 8 I 10 I 12 I 14

Figure 7: Initial configuration for even terms

if this index is less than p the term CD corresponds to the previous block. Otherwise the term CD

is for this PE. The fact that each PE always has a C and a D whose product contributes to either

A or B follows from the observations that this is so initially and on each iteration, D rotates twice

as much as C. The total number of unit routes is 8M + O (logN) + O (logM).

In the next section we shall make M invocations of one dimensional convolution with the

same I values. We describe how these can be done in 12M 2 + O (logN) +O (MlogM) unit routes.

First perform a SHIFT(I, -M, P), followed by lines 7, 18, and 19 on the old and new I values and

store these results for the later invocations. Now by defining C = {Iold, Inew} and modifying steps

11 and 23 so that they calculate terms for this block, we can show that M invocations can be

completed in 12M2 + O (logN) + O (M logM) unit routes.

-- --

13

line procedure C1D (M)

1 {C1D algorithm}

2 begin

3 A := 0; B := 0; m = log M;

4 {even terms}

5 C := I; D:= T;

6 Cshift := 0;

7 CONCENTRATE (C, M);

8 for j := 1 to M/2 do

9 begin

10 A := A + C * D; ((CShift + 2p) mod M ≥ p)

11 B := B + C * D; ((CShift + 2p) mod M < p)

12 SHIFT(C, F[m, j - 1], M/2);

13 CShift := (CShift + F[m, j - 1]) mod (M/2);

14 SHIFT(D, E[m, j - 1], M);

15 end

16 {odd terms}

17 C := I; D := T;

18 SHIFT(C, -1, M); CShift := 1; SHIFT(D, -1, M);

19 CONCENTRATE(C, M);

20 for j := 1 to M/2 do

21 begin

22 A := A + C * D; ((CShift + 2p) mod M ≥ p)

23 B := B + C * D; ((CShift + 2p) mod M < p)

24 SHIFT(C, F[m, j - 1], M/2);

25 CShift := (CShift + F[m, j - 1]) mod (M/2);

26 SHIFT(D, E[m, j - 1], M);

27 end

28 SHIFT(B, -M, P);

29 C1D := A + B;

30 end; {of C1D}

Figure 8: Computing a one dimensional convolution

4.2 Two Dimensional Convolution

Assume that P = N2 PEs are available. These may be viewed as an N × N array (Figure 9).

We assume that I (i, j) is initially in the I register of PE(i, j). Further since N and M are assumed

to be powers of 2, the N × N array may further be viewed as composed of (N2/M2) arrays of size

-- --

14

M × M (Figure 10). We assume that T is initially in the top left such array.

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Figure 9: A 16 PE hypercube viewed as a 4 × 4 array

N

M

M

PE[0, 0]

Figure 10: An N × N array viewed as N2/M2 M × M arrays

The strategy is similar to that used in computing C1D. We may rewrite the definition of

-- --

15

C2D as

C 2D [i, j] =
r =0
Σ

M −1

CXD [i, r, j]

where

CXD [i, r, j] =
a =0
Σ

M −1

I [(i + r) mod N, (j + a) mod N]*T [r, a]

Since each CXD is a one dimensional convolution, it can be computed using algorithm

C1D. PE(i, j) computes E =
r =0
Σ

M −i mod M −1

CXD [i, r j] and F =
r = M − i mod M

Σ
M −1

CXD [(i −M) mod N, r, j].

Thus each PE computes a value for itself (i.e., E) and a value for the corresponding PE in the

adjacent upper M × M block (i.e., F). The F values are then shifted M units along the columns

and added to the E values to get the C2D values. A high level description of the algorithm is pro-

vided in Figure 11. In iteration k of Step 3, the PEs in column j of an M × M PE block compute

the CXD terms needed for the E and F of PE(� i /M � M + k, j). Then in Step 4, these terms are

added together to get the E and F for this PE. Figure 12 gives the complexity analysis. The total

number of unit routes taken is 12M 2 + O (M logM) + O (logN). A slightly more efficient algorithm

results if we interpret C2D as:

C 2D [i, j] =
r =0
Σ

M −1

X [i, j, r] ∗ Y [r]

where X [i, j, r] is the 1 × M vector I [(i +r) mod N, j .. (j +M −1) mod N] and Y [r] is the 1 × M vec-

tor T [r, 0 .. M −1]. Thus C2D is viewed as the one dimensional convolution of X and Y where X

and Y are vectors. We can extend algorithm C1D to obtain an algorithm that requires

12M2 + O (M) + O (logN) unit routes and computes this one dimensional convolution. This algo-

rithm is quite a bit more complex than Figure 11 and is omitted.

5 CONCLUSION

In this paper, we have developed an efficient algorithm to accomplish all odd length as well

as all even length circular shifts in an SIMD hypercube. We have applied this algorithm to the

image template matching problem and obtained an improved algorithm for the case when the

number of processors is N2 and each processor has Ο(1) memory.

-- --

16

procedure C2D(N, M)

Step1: Broadcast T to all M × M blocks in the N × N PE array

Step2: Repeat Steps 3 and 4 for k := 0 to M-1

Step3: Compute CXD[(

�
��

M
i___

�
�

� M + k) mod N, i mod M− k, j] if i mod M ≥ k using C1D(M)

and put the result in A, otherwise A = 0;

Compute CXD [(

�
��

M
i___

�
�� M + k−M) mod N, i mod M − k + M, j] if i mod M < k using

C1D(M) and put the result in B, otherwise B = 0;

Step4: Use the data sum operation, described in Section 2, to sum the results for the

adjacent upper block and itself, by summing up B’s and A’s in PE (

���
M
i___

�
�

� M + k, j)

in F and E respectively. Shift the T values along columns by 1, using the algorithm
of Section 2.

Step5: Shift(F, -M, N) along columns . E := E + F .

Figure 11: High level description of two dimensional convolution

Step1: log(N2 /M 2)
Step2: M(Step3 + Step4) + O (logN)
Step3: 12M + O (logM)
Step4: 3logM
Step5: 2log(N/M)

Figure 12: Unit routes for each step of Figure 11

6 REFERENCES

[BALL85] D. H. Ballard and C. M. Brown, "Computer Vision", 1985, Prentice Hall, New Jer-

sey.

[DEKE81] E. Dekel, D. Nassimi and S. Sahni, " Parallel matrix and graph algorithms", SIAM

Journal on computing, 1981, pp. 657-675.

[FANG85] Z. Fang, X. Li and L. M. Ni, "Parallel Algorithms for Image Template Matching on

Hypercube SIMD Computers", IEEE CAPAMI workshop, 1985, pp 33-40.

[FANG86] Z. Fang and L. M. Ni, "Parallel Algorithms for 2-D convolution", International

Conference on Parallel Processing, 1986, pp 262-269.

[JOHN87a] S. L. Johnsson, "Communication efficient basic linear algebra computations on

-- --

17

hypercube architectures", Journal of Parallel and Distributed Computing, 4, 1987,

133-172.

[JOHN87b] S. L. Johnsson and C. Ho, "Optimum broadcasting and personalized communica-

tion in hypercubes", Yale University Technical Report, DCS-TR-610, 1987.

[NASS81] D. Nassimi and S. Sahni, "Data broadcasting in SIMD computers", IEEE Transac-

tions on Computers, C-30, No 2, Feb 1981, pp 101-107.

[NASS82a] D. Nassimi and S. Sahni, "Parallel permutation and sorting algorithms and a new

generalized connection network", JACM, vol 29, no 3, pp 642-667, 1982.

[NASS82b] D. Nassimi and S. Sahni, "Optimal BPC permutations on a cube connected com-

puter", IEEE Transactions on Computers, C-31, no 4, pp 338-341, 1982.

[PRAS87] V. K. Prasanna Kumar and V. Krishnan, "Efficient Image Template Matching on

SIMD Hypercube Machines", International Conference on Parallel Processing,

1987, pp 765-771.

[RANK88] S. Ranka and S. Sahni, "Image Template Matching on SIMD hypercube multicom-

puters", Proceedings 1988 International Conference on Parallel Processing, Vol

III, Algorithms and Applications, pp 84-91, Penn State University Press.

[ROSE82] A. Rosenfeld and A. C. Kak, "Digital Picture Processing", Academic Press, 1982

[SAAD89] Y. Saad and M. Schultz, "Data communication in hypercubes", JPDC, 6, 115-135,

1989.

-- --

