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Data Fusion Reconstruction of Spatially Embedded Complex Networks
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We introduce a kernel Lasso (kLasso) optimization that simultaneously accounts for spatial regularity and
network sparsity to reconstruct spatial complex networks from data. Through a kernel function, the proposed
approach exploits spatial embedding distances to penalize overabundance of spatially long-distance connections.
Examples of both synthetic and real-world spatial networks show that the proposed method improves signifi-
cantly upon existing network reconstruction techniques that mainly concerns sparsity but not spatial regularity.
Our results highlight the promise of data fusion in the reconstruction of complex networks, by utilizing both mi-
croscopic node-level dynamics (e.g., time series data) and macroscopic network-level information (metadata).

PACS numbers: 89.75.Hc, 05.45.Tp, 02.50.Tt

Reconstructing a complex network from observational data
is an outstanding problem. Successful network reconstruc-
tion can reveal important topological and dynamical features
of a complex system and facilitate system design, prediction,
and control, as demonstrated in several recent studies across
multiple disciplines [1-7]. In many applications, such as ma-
terial science, infrastructure engineering, neural sensing and
processing, and transportation, the underlying complex net-
works are often spatially embedded (see [8] for an excellent
review). The spatial embedding adds yet another dimension
to the problem of complex network reconstruction.

A common property of spatially embedded networks is spa-
tial regularity, which manifests itself as an inverse depen-
dence of connection probability on spatial distance: generally,
the larger the spatial distance is between two nodes, the less
likely there exists an edge connecting these nodes [8]. This
feature of spatial networks, which can be attributed to physi-
cal, financial, or other constraints, has been observed in var-
ious types of spatial networks from several different studies,
including street patterns [9], mobile communication [10], and
social networks [11]. Indeed, the interdependence between
network structure and spatial distance is a key ingredient in
many widely used models and important studies of spatially
embedded networks [12-22].

In this Letter, we show that spatial regularity can be ex-
ploited to significantly enhance the accuracy of network re-
construction. In particular, in view of the often limited amount
of data available for the inference of large complex networks,
the central challenge has always been to better utilize infor-
mation that potentially arise from distinct sources. To this
end, we propose data fusion reconstruction (DFR) as a prin-
cipal framework to infer networks in the presence of both mi-
croscopic dynamic data (e.g., time series) and metadata (i.e.,
spatial embedding information). See Fig. 1. To demonstrate
the concept of DFR, we developed kernel Lasso (kLasso) as a
generalization of the Lasso, the latter is widely used for sparse
regression [23]. Using examples of both synthetic and real-

world spatial networks, we show that due to the integration
of sparsity and spatial regularity effects, kLLasso reconstructs
spatial networks significantly better than Lasso.
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FIG. 1. (color online.) Data fusion reconstruction involves the ap-
propriate “fusion” of information from various sources. For example,
such information can arise from both microscopic node-level dynam-
ics (such as the time series of the individual nodes) and macroscopic
network-level meta data (e.g., spatial embedding of the nodes).

Mathematically, a spatially embedded network can be rep-
resented by a triplet of sets, G = (V; E;®), where V =
{1,2,...,n} isthe set of nodes, E = {(iy, ji) 1} C VXV
is the set of (directed) edges, and ® = [®1, P, ..., P,] en-
codes the spatial embedding of the nodes: for example, for a
g-dimensional Euclidean embedding, ®, € R9.

Problem setup. Given time series data as well as spatial
location of the nodes, the problem is to reconstruct the under-
lying network structure. We represent the time series data as
{z;(t)}j=1,... nt=0,1,... 1, Where x;(t) denotes the observed
state of node j at the ¢-th time instance. The sample size T’
is the number of times each node is observed. In addition,
the spatial coordinates of the nodes give rise to an embedded
distance d;; = d(®;, ®;) defined for each pair of nodes (4, 5).

To represent the interactions among the nodes, we employ
a standard time series modeling approach [24], by seeking a



(stochastic) linear dependence of the state of each node ¢ at
time t on the state of all nodes at time ¢t — 1:

zi(t) =Y Azt —1) + &(t), fori=1,2,...,n. (1)
j=1

The network structure is encoded in the adjacency matrix
A = [A;j]nxn, Where A;; # 0 if the state of node ¢ depends
on the state of node j, and A;; = 0 otherwise. The extra
term &, (t) denotes (dynamical) noise. In the case where both
2;(0) and &;(t) are Gaussian, then so is z;(t), and the vector
x(t) = [z1(t),...,7,(t)]T follows a multivariate Gaussian
distribution. Hidden behind the deceptively simple form of
Eq. (1) is complexity encoded by the network structure as rep-
resented by matrix A, a key factor that enables such standard
model to be applicable to broad research topics such as infor-
mation coding and communication [25], linearization of non-
linear dynamics [26], statistical learning [27], and as a fun-
damental model form underlying dynamic mode decomposi-
tion [28] and Koopman analysis of nonlinear systems [29, 30].
Kernel Lasso. We breakdown the reconstruction problem
into the inference of each node’s set of neighbors, N; = {; :
A;j # 0}. Giveni, we defineb = [z;(1), 7;(2), ..., 2:(T)] ",
M = [M]rxn, where My; = z;(t — 1), and z =
[Ai1, ..., A T. We collect the spatial distance between ¢ and
the other nodes into a vector s = [s;],,x1 With s; = d;;. We
propose the kernel Lasso (kLasso) optimization problem

min (|| Mz — bl + Xx(s), |2])) , )
where |z| = [|z1],...,]2a]] ", (-, -) denotes inner product, and
k(s) = [k(s1),...,k(s,)] T is obtained by applying a scalar-

valued kernel function x(-) to the spatial distances to facil-
itate preference of spatially short-distance edges over long-
distance ones. Finally, the regularization parameter A > 0
controls the tradeoff between model fit and model regularity.
kLasso generalizes the classical Lasso formulation: when the
kernel function is a constant, kLLasso reduces to Lasso. As we
demonstrate later using both synthetic and real-world spatial
networks, by explicitly account for spatial embedding infor-
mation, kLasso generally achieves better reconstruction.

Next we show how to solve kLasso problems. Consider
an arbitrary kernel function x : R — R¥. Define matrix
M = [Mtj]Txn and vector z = [Z1,...,2,] " as follows:

{Mtj = My;/k(sj),

2j = H(Sj)Zj.

3)
Applying these transformations to Eq. (2) converts a kLasso
problem into a Lasso problem: min (||MZ — bl + /\||i||1),
which can be efficiently solved using standard algorithms
(such as sequential least squares) found in the literature of
computational inverse problems and statistics [27].

Here we focus on a general class of kernel functions of the
shifted power-law form

K(d) = (d+do)", “4)

where the parameter dy > 0 ensures that x(d) > 0 for all d >
0 whenever v > 0. On the other hand, the kernel exponent
~ > 0 s used to tune the preference toward spatial regularity:
the choice of v = 0 recovers the Lasso solution, while the
other extreme of 7 — oo “selects” only the edges that have
shortest spatial distance to each node. Intermediate values of
~ typically result in a more balanced mix of short-distance
edges and long-distance edges appearing in the reconstructed
network. Unless otherwise noted, we set the parameters at the
default values v = 1 and dy = min;«; d;; > 0.

Synthetic network example: data-enabled inference of ran-
dom spatial networks. To benchmark the proposed kLasso
method, we consider random spatial networks generated by
the Waxman model [12]. In particular, for each node pair (3, j)
whose spatial distance is d;;, the probability of having an edge
between ¢ and j follows

P(di;) = ce” %, (5)

where ¢ > 0, and a > 0 (the special case of o = 0 produces
a classical Erd6s-Rényi random network embedded in space)
with larger values of « lead to relatively more short-distance
edges as compared to long-distance edges. For fixed «, larger
values of ¢ generally result in denser networks.
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FIG. 2. (color online.) (a) Layout of a random spatial network of
n = 100 nodes. (b) Typical time series obtained by the stochastic
dynamics on the network (see main text for details). (c) Quality of
network reconstruction as shown by ROC curves using Lasso ver-
sus using kLasso, for two sample sizes. (d) Additional comparison
between Lasso and kLasso in network reconstruction based on AUC
values across a range of sample sizes. Each data point in (c) and (d)
represents an average over 10 independent numerical experiments.

We show an example spatial network in Fig. 2(a). The net-
work contains n = 100 nodes that are randomly placed in the
2D spatial domain (0, v/n)2. The structure of the network is



generated according to Eq. (5) with @ = 2 and ¢ = 10, result-
ing in a total of m = 774 edges. In addition, we generate a
self-loop at each node to resemble short-term memory effects.
For each edge (i,7) (including the self loops), the weights
A;; and Aj; are independently drawn from the uniform dis-
tribution in [—1,1]. After that, the entire matrix A is scaled
A — cA with some constant ¢ such that p(A), the spectral ra-
dius of A, is smaller than 1 to ensure stability of the stochastic
process. We select ¢ to yield p(A) = 0.9. Stochastic time
series data is obtained from the network dynamics (1) using
iid Gaussian noise &;(t) ~ N(0,1). After discarding initial
transient, data from 7" time steps is used for reconstruction.
Typical time series of the network is shown in Fig. 2(b).

We compare the results of network reconstruction using
kLasso [Eq. (2) with v = 3] versus Lasso. To measure the
quality of reconstruction, we compute, for each estimate A of
A, the true positive rate (TPR) and false positive rate (FPR) as

{TPR = [{(i,3) : Aij # 0 & Ayy # O}/I{(0. ) : Aij # 0},
FPR = [{(i,) : A;j # 0& Ay = 0}|/[{(i, ) : Ayj = 0}].

In Fig. 2(c) we plot the receiver operating characteristic
(ROC) curves resulted from klLasso versus Lasso. An ROC
curve shows the relationship between TPR and FPR as the
regularization parameter \ is varied. Exact, error-free re-
construction corresponds to the upper-left corner of the unit
square [0,1]2 (TPR = 1, FPR = (), whereas reconstruction
by random guesses would yield a diagonal line connecting
(0,0) (empty network) to (1,1) (complete network). Each
ROC curve can be summarized by a scalar defined as the area
under the curve (AUC). AUC values are bounded between 0
and 1, with the larger the AUC, generally the closer the ROC
curve is to the upper-left error-free corner and the better the
reconstruction (AUC value of 1 corresponds to exact recon-
struction). As shown in Fig. 2(d) for a wide range of sample
sizes, klLasso yields significant improvement over Lasso for
network reconstruction. The key reason behind kLasso’s suc-
cess in reconstructing spatial networks lies in its unique capa-
bility to incorporate spatial embedding information to “penal-
ize” formation of edges that span over larger spatial distances.

Application: reconstruction from hidden individual dynam-
ics. We now turn to an application of reconstructing a trans-
portation network from observable population-level dynamics
data that result from hidden individual trajectories.

The network here is a continent-scale transportation net-
work of Europe, referred to as the E-Road network [31], visu-
alized in Fig. 3(a). A node represents a city of Europe whereas
an edge between two nodes represents a highway segment that
directly connects the corresponding cities. We compute the
embedding distance between each pair of nodes as the short-
est distance along the Earth’s surface using the corresponding
cities’ latitude and longitude information.

The dynamical system here describes hidden dynamics on a
hidden network, and can be conceptually understood by con-
sidering two layers, as illustrated in Fig. 3(b). On the hid-
den, dynamical layer, there is a total of N individuals, each
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FIG. 3. (color online.) (a) Visualization of the E-Road network,
where nodes (marked by light yellow dots) correspond to cities in
the Europe and edges (marked by dark gray lines) represent highway
segments connecting the cities (water crossings are excluded). This
spatial network contains n = 955 nodes and m = 1255 edges. (b)
Two-layer illustration of the hidden dynamics on hidden network,
where both the network structure and the dynamics of individuals on
the network are hidden (hidden dynamical layer), only the aggregated
population dynamics is measured (observational layer).

moving around independently in the spatial network by fol-
lowing a discrete-time random walk [32]. At each time step,
an individual at node 7 moves along one of the edges (i, ) in
the network at random to reach node j. On the observational
layer, the aggregated number of individuals at each node is
observed, producing a time series {z;(t)}, where z;(t) is the
aggregated number of individual walkers occupying node 7 at
time ¢. The problem is to reconstruct the hidden spatial net-
work from the observed time series of the population dynam-
ics in the absence of individual trajectories.

Figure 4 shows network reconstruction results using kLLasso
across a range of kernel exponents v and sample size 7. Ex-
cellent reconstruction is generally achieved, with AUC value
starts to increase above 0.99 for sample size as low as T' =~ 80,
a number that is surprisingly small compared to the size of the
network (n = 955 nodes, m = 1255 edges). kLasso better
reconstructs the network than Lasso (corresponds to v = 0)
in all parameter combinations, with most significant increase
of AUC occurring for 1 < + < 3. For fixed +, improve-
ment is more significant for smaller 7". In addition to further
validating the effectiveness of kLasso, the example demon-
strates the possibility to reconstruct a hidden spatial network
by merely observing aggregated population-level dynamics
instead of having to following detailed individual trajectories.
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FIG. 4. (color online.) Data fusion reconstruction of the E-Road net-
work using kLasso, shown as a contour plot of AUC values in the
(T',~) plane. Note that for fixed sample size T', Lasso corresponds
to choosing v = 0, which always yields lower AUC (worse recon-
struction) than using kLasso (y > 0). Here the optimal choice of v
lies somewhere between 2 and 3.

To summarize, we here developed a kLasso approach for
data fusion reconstruction of spatially embedded complex net-
works. We show that under appropriate linear transforma-
tions, klLasso can be converted into a corresponding Lasso
problem and thus be efficiently solved using standard Lasso
algorithms. We benchmark the effectiveness of kLasso us-
ing data from stochastic dynamics on a random spatial net-
work. Furthermore, we consider hidden individual dynam-
ics on E-Road network (a real-world transportation network)
where the only observables are the aggregated population dy-
namics over spatially embedded node locations. kLasso at-
tains excellent reconstruction of the network without the need
to fine-tune parameters even for very short time series. These
results demonstrates the power of data fusion in the inference
in complex systems, in particular the utility of kLasso in the
efficient and effective reconstruction of spatially embedded
complex networks, when there is both microscopic (e.g., time
series data on the nodes) and macroscopic (e.g., metadata of
the network) information. Given the flexibility of designing
the kernel, it will be interesting to explore other types of meta-
data for enhanced network resonstruction, such as occupation
in social networks. Reconstruction of the E-Road network de-
spite unobservable individual dynamics suggests the possibil-
ity of inferring transportation channels from population-level
observations without the necessity to trace detailed individual
trajectories. This makes kLasso a potentially useful tool for
uncovering hidden spatial mobility patterns in practice.
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