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ABSTRACT

Motivation: Identification of genes coding for ribosomal RNA (rRNA)
is considered an important goal in the analysis of data from
metagenomics projects. Here, we report the development of a
software program designed for the identification of rRNA genes from
metagenomic fragments based on hidden Markov models (HMMs).
This program provides rRNA gene predictions with high sensitivity
and specificity on artificially fragmented genomic DNAs.
Availability: Supplementary files, scripts and sample data are
available at http://tools.camera.calit2.net/camera/meta_rna.
Contact: liwz@sdsc.edu

Supplementary information: Supplementary Data are available at
Bioinformatics online.

1 INTRODUCTION

The emerging field of metagenomics promises a more compre-
hensive and complete understanding of the microbial world. Many
projects have been reported with metagenomic approaches to study
microbes and microbial communities that live in many different
environmental conditions (Tringe and Rubin, 2005). Analyzing the
sequence data generated by these projects is far from easy and
requires accessible and user-friendly tools (Raes et al., 2007). An
essential step in any metagenomics project is the identification of
genes encoding for ribosomal RNAs (rRNAs), which are widely
used for phylogenetic analysis and quantification of microbial
diversity. Several methods haven been proposed for predicting
non-coding RNA genes (Meyer, 2007), but a recent benchmark
study by Freyhult et al. (2007) indicated that the most commonly
used methods yield less than encouraging results. Lagesen et al.
(2007) proposed RNAmmer, a program based on hidden Markov
models (HMMs) for annotation of tfRNA genes. Their algorithm
predicts rRNAs in complete genomics sequences with high accuracy.
However, a major concern for their predictions is the inability to
deal with fragments of rRNAs. Compared with assembled genomic
sequences from single species, the raw sequence reads from a typical
metagenomic study often remain unassembled due to insufficient
coverage. For a typical metagenome dataset, the length of sequence
read is ~100-450bp using 454 pyrosequencing, or ~700 bp long
if using Sanger sequencing. Meanwhile, the full lengths of most
of 16S and 23S rRNAs are >1200bp. Therefore, most of rRNA
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genes in metagenomic sequencing reads are fragmentary, and will
be overlooked by RNAmmer that focus on full length rRNAs.
To overcome this limitation, we used HMMs that can discover
incomplete TRNA gene fragments for predictions. In this article,
we apply our algorithm on simulated sets of sequence reads
of various lengths. Our method provides rRNA predictions with
high-sensitivities and specificities on the benchmark dataset.

2 ALGORITHM DEVELOPMENT

As an important molecular machine in all living organisms, the
ribosome can be broken down into two subunits, the small and
the large subunit. In prokaryotes, the large subunit of the ribosome
contains 5S and 23S rRNAs, while the small subunit contains 16S
rRNAs. Therefore, we will try to build predictors for 5S, 16S and
23S rRNAs. To obtain a reliable multiple sequence alignment (MSA)
for HMM building, we retrieved MSAs of 5S rRNAs from the 5S
Ribosomal Database (Szymanski et al., 2002), and MSAs of 16S
and 23S rRNAs from the European rRNA database (Wuyts et al.,
2004). These databases provide high-quality alignment that combine
sequence and structural information. The MSAs were then divided
into bacterial and archaeal domains. All sequences with more than
five ambiguous nucleotides in either end were removed from the
alignment, and then sequences were further clustered at 98 % identity
threshold to reduce bias. We then used software package HMMER
(Eddy, 1998) version 2.3.2 to create HMMs from these alignments.
We used ‘fs’ mode in HMMER package for HMM building instead
of ‘ls’ mode implemented in RNAmmer. In HMMER package,
‘IS’ mode is suitable for identification of a complete sequence
domain, while ‘fs’ mode is capable of finding domain fragments and
maybe useful to detect incomplete rRNA genes. In addition, domain
information for sequences is not available in metagenomic projects,
so HMMs from bacterial and archaeal rRNA alignments were both
used to search input sequences. Each sequence was classified to
the domain that reported the most significant E-value, and results
obtained from corresponding HMMs were used as final result.

3 EVALUATION

Performance of our rRNA prediction algorithm was evaluated
using artificial DNA fragments generated from fully sequenced
archaea and bacteria genomes. GenBank files for all fully sequenced
genomes were retrieved from the ENTREZ Genome Project
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Table 1. Prediction sensitivities for different fragment lengths

Table 2. Prediction specificities for different fragment lengths

Prediction method hmm_fs BLASTN Prediction method hmm_fs BLASTN

Length of reads 58 16S 23S 58 16S 23S Length of reads 5S 16S 23S 5S 16S 23S
100 91.9 98.2 96.2 79.4 89.9 94.8 100 88.6 92.7 94.5 92.8 91.5 94.8
200 95.8 97.9 98.6 85.7 96.7 97.8 200 90.4 91.2 94.0 93.0 88.1 94.6
300 96.8 99.3 99.0 88.3 99.0 98.2 300 91.7 93.5 94.4 94.9 86.9 94.8
400 97.6 98.3 99.2 89.1 97.5 98.5 400 92.3 95.4 94.3 94.2 88.6 94.9
500 98.2 99.2 99.1 89.2 99.2 98.4 500 93.7 91.9 93.3 95.0 84.4 94.1
600 98.0 98.8 99.1 89.5 98.4 98.5 600 92.0 91.4 94.2 94.1 86.5 94.6
700 98.7 99.5 99.3 90.3 99.5 98.7 700 93.9 91.0 94.9 95.6 85.5 95.6
800 98.2 99.2 99.6 90.8 99.2 99.1 800 92.6 89.6 94.5 94.1 82.3 94.9

Here, hmm_fs represents our algorithm. Sensitivities are represented in percentage (%).

(downloaded on September 30, 2008). To reduce the impact of
sequence redundancy, we removed species related to training set (see
Supplementary Tables for remaining species used for evaluation).
To simulate the current sequencing techniques, fragments of the
lengths 100-800 bp (in intervals of 100 bp) were randomly sampled
from each genome to 1 x genome coverage for each length. These
fragments were used to investigate prediction performance of both
our method and RNAmmer, they were also analyzed by BLASTN
against 5S Ribosomal Database and SILVA database (Pruesse
et al., 2007) to identify rRNA genes (with E-value of 1073 or
less). In current analysis, sampling of fragments was done without
considering the sequencing errors, therefore estimated performances
are optimistic. The annotation information of rRNA genes was
also retrieved from GenBank files. Sequence fragments that had
an overlap (>40 nt) with a known rRNA gene in the same strand
were considered as a positive sample. The ratios of true-positives
relative to all annotated fragments (sensitivity) and to all predicted
fragments (specificity) were used as a performance measure. Both
exactly matching predictions and partially matching predictions with
correct strand were counted as true-positives.

Tables 1 and 2 show the prediction sensitivities and specificities
for all fragment lengths. The result for RNAmmer is shown
in Supplementary Table S5. The sequence length of most 16S
and 23S rRNA genes substantially exceeds 800 bp, therefore can
not be detected by a full domain model like RNAmmer. It can
be shown that our algorithm can predict sequence reads with
rRNAs with a high sensitivity and specificity (>90% in almost
all configurations). More important, the prediction performance
does not vary much on different read lengths. One commonly used
method for predicting rRNAs in metagenomic projects is based on
BLAST (Altschul et al., 1997, Frias-Lopez et al., 2008). However,
Lagesen et al. (2007) indicated that results based on BLAST can
be problematic due to its inconsistency. Compared with BLASTN,
our algorithm achieves much better sensitivities (average 10.2%
improvement) while the specificities are around 2.3% less for 5S
RNA. The performances for 23S rRNA are almost the same for our
algorithm and BLASTN. The biggest improvement comes from 16S
rRNA prediction, it demonstrates that our algorithm improves the
specificities significantly and keeps the sensitivities slightly better.

The average running time of our algorithm was 744 ms per 800 bp
read, and 145 ms per 200 bp read for a single 2.33G Xeon® CPU.
The running time for BLASTN was 239 ms per 800bp read, and

Here, hmm_fs represents our algorithm. Specificities are represented in percentage (%).

123 ms per 200bp read. Additional analyses were performed on
Sargasso Sea metagenomic project (Venter et al., 2004) consisted of
811 372 entries totaling over 800 Mbp. On this set the search speed
was 1088 s per Mbp, and our algorithm identified 660 5S, 1337 16S
and 2300 23S rRNA genes or fragments of genes.

4 CONCLUSION

With the continued growth of metagenomic sequencing projects,
identification of rRNA genes within sequence fragments from
these projects continues to be a very important task. Here, we
reported a HMM based algorithm to detect rRNA genes in short
metagenomic fragments with high accuracies. Our algorithm is
written in Python, and runs well on Linux/Unix and Windows XP
systems with the installation of Python and HMMER package. The
scripts, sample dataset and usage instruction are available online
at http://tools.camera.calit2.net/camera/meta_rna as a downloadable
application.
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