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Abstract

The human brain can be modeled as a network, whose structure can be revealed by either anatomical or functional
connectivity analyses. Little is known, so far, about the topological features of the large-scale interregional functional
covariance network (FCN) in the brain. Further, the relationship between the FCN and the structural covariance
network (SCN) has not been characterized yet, in the intact as well as in the diseased brain. Here, we studied 59
patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 59 healthy controls. We es-
timated the FCN and the SCN by measuring amplitude of low-frequency fluctuations (ALFF) and gray matter vol-
ume (GMV), respectively, and then we conducted graph theoretical analyses. Our ALFF-based FCN and GMV-
based results revealed that the normal human brain is characterized by specific topological properties such as
small worldness and highly-connected hub regions. The patients had an altered overall topology compared to
the controls, suggesting that epilepsy is primarily a disorder of the cerebral network organization. Further, the pa-
tients had altered nodal characteristics in the subcortical and medial temporal regions and default-mode regions, for
both the FCN and SCN. Importantly, the correspondence between the FCN and SCN was significantly larger in pa-
tients than in the controls. These results support the hypothesis that the SCN reflects shared long-term trophic mech-
anisms within functionally synchronous systems. They can also provide crucial information for understanding the
interactions between the whole-brain network organization and pathology in generalized tonic–clonic seizures.

Key words: functional covariance network; graph theoretical analysis; idiopathic generalized epilepsy; structural
covariance network

Introduction

The human brain can be represented, both in the ana-
tomical and functional domains, as a large-scale complex

network characterized by fragmental and coalescent organi-
zations (Bullmore and Sporns, 2009; Hagmann et al., 2008).
In this context, anatomical and functional brain connections
reflect axonal pathways and long-range synchronizations of
neural activity, respectively (Sporns, 2011). Notably, anatomi-
cal connectivity constrains, and can be used to predict func-
tional connectivity (Greicius et al., 2009; Honey et al., 2009).
These two modalities are complementary. Accordingly,
combined analyses of anatomical and functional connectivity

can provide novel tools to examine complex network proper-
ties of the intact and the diseased brain.

Analyzing covariance of imaging measurements is one of
the prevalent methods for constructing functional and struc-
tural brain networks (He and Evans, 2010; Horwitz, 2003),
which is carried out by correlating the inter-regional interde-
pendencies across subjects. Recent studies proposed specific
approaches to examine that morphological (e.g., gray matter
volume [GMV], surface area, and cortical thickness) changes
in one brain region are significantly correlated with changes
in other brain regions (Horwitz et al., 1984; Lerch et al., 2006;
Mechelli et al., 2005). Covariations in the GMV across subjects
may relate to the mutually trophic effects on connected regions
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(Bassett et al., 2008; Mechelli et al., 2005). Using cortical thick-
ness and graph theoretic analysis, He et al. (2007) revealed that
the structural covariance network (SCN) of the human brain
has small-world properties. Inter-regional coordination in the
SCN has been interpreted as the phenotype of brain develop-
ment and/or plasticity (He et al., 2007; Sanabria-Diaz et al.,
2010; Seeley et al., 2009; Zielinski et al., 2010). In parallel,
other studies have focused on functional covariance network
(FCN) measures using hemodynamic (Melie-Garcia et al.,
2013), metabolic (Di and Biswal, 2012), and amplitude of
low-frequency fluctuation (ALFF) descriptors (Taylor et al.,
2012; Zhang et al., 2011c). For instance, ALFF in blood oxygen-
ation level-dependent functional MRI can be used to measure
the covariance between activity levels among distributed re-
gions during short periods of time (Taylor et al., 2012; Zhang
et al., 2011c). Importantly, structural and functional connectiv-
ity measures were proposed to be linked (Taylor et al., 2012;
Zhang et al., 2011c). The topology of the SCN was related to
that of the canonical intrinsic connectivity network (ICN)
(Biswal et al., 2010), obtained by seed-based temporal correla-
tion (Seeley et al., 2009; Zielinski et al., 2010). Notably, in one of
our previous studies, we compared structural and functional
networks, and revealed convergence and divergence in their
topological patterns (Zhang et al., 2011c). Further, analysis of
the structural and FCNs in cross-sectional group studies
proved useful for assessing overall network integrity rather
than the local brain structure or function (Seeley et al., 2009;
Zhang et al., 2011c; Zielinski et al., 2010).

Epilepsy is typically viewed as a brain network disorder
(Richardson, 2012). Recent network analyses have docu-
mented that widespread brain regions and extensive net-
works are involved in temporal lobe epilepsy (Bernhardt
et al., 2011; Liao et al., 2010), in chronic epilepsy (Vaessen
et al., 2012; Vlooswijk et al., 2011), and in idiopathic general-
ized epilepsy (IGE) (Bernhardt et al., 2009). Generalized
tonic–clonic seizure (GTCS) epilepsy is a common phenotype
of IGE (Chang and Lowenstein, 2003). We have previously
suggested that patients with GTCS have altered topological
organization in both anatomical and functional connectivity
networks (Zhang et al., 2011b). Little attention has been de-
voted to the relationship between networks revealed by the
across-subject covariance in brain function (i.e., FCN) and
morphology (i.e., SCN).

In the present study, we test the following three hypothe-
ses: (1) Large-scale SCNs were widely investigated in healthy
populations (He et al., 2007), and in normal development
(Zielinski et al., 2010). Further, they were found to be altered

in various neurological and psychiatric diseases. Accord-
ingly, we hypothesize that SCN will reveal specific altered
features of brain network architecture in patients with
GTCS. We expect that FCN will also possess topological
properties such as small worldness and core hub regions,
and will be altered in patients. (2) We hypothesize that the to-
pological abnormalities in the patients will be reflected in
both the FCN and the SCN based on across-subject covari-
ance. This would extend our previous findings with regard
to a disrupted topological organization (Zhang et al.,
2011c). (3) The correlation of the intrinsic and anatomical con-
nectivity networks (ACN) were found to be disrupted in pa-
tients (Zhang et al., 2011b). However, the relationship
between functional- and structural-related networks may
vary across measurements (even for data of the same modal-
ity) and computational method used (Gong et al., 2012; Sana-
bria-Diaz et al., 2010; Zhang et al., 2011c). Here, we aim to
investigate whether the relationship between the ALFF-
based FCN and GMV-based SCN was altered in the patients.

Materials and Methods

Participants

We recruited 59 patients with GTCS (21 women, all right-
handed; age [mean – SD]: 24.9 – 7.07 years; age at first seizure
onset: 18.08 – 5.98 years; duration: 7.83 – 7.51 years), under
treatment at the Jinling Hospital from June 2009 to October
2011. A part of this patient population (n = 26) participated
in one of our previous studies (Zhang et al., 2011b). The pa-
tients met the following inclusion criteria: (1) presence of typ-
ical clinical symptoms of GTCS, including tic of limbs, loss of
consciousness, and no partial seizures; (2) presence of gener-
alized spike-and-wave or polyspike-wave discharges in their
scalp EEG; (3) no focal abnormality in routine structural MRI
examinations; and (4) no obvious history of etiology. All pa-
tients were found with IGE with GTCS only according to the
International League against Epilepsy (ILAE) classification.
Forty-six patients were treated with antiepileptic drugs, in-
cluding valproate, phenytoin, carbamazepine, lamotrigine,
and topiramate.

Healthy controls (22 women, all right-handed; age:
24.79 – 6.38 years) were recruited from the staff of the Jinling
Hospital. They had no history of neurological disorder or
psychiatric illness and no gross abnormalities in the brain
MRI images. There was no significant difference in age
(two-sample two-tailed t-test, p = 0.9240) and sex (Kruskal-
Wallis test, p = 0.6653) between the two groups (Table 1).

Table 1. Demographic Data of IGE-GTCS Patients and Healthy Controls

IGE-GTCS (n = 59) HC (n = 59) IGE-GTCS vs. HC

Characteristics Mean – SD Mean – SD T value p-Value

Sex (male/female) 38/21 37/22 — 0.6653a

Age (years) 24.90 – 7.07 24.79 – 6.38 1.04 0.9240b

Handedness (right/left) 59/0 59/0 — —
Onset (years) 18.08 – 5.98 — — —
Duration (years) 7.83 – 7.51 — — —
Mean FD 0.17 – 0.07 0.16 – 0.10 0.83 0.4109b

aThe p-value was obtained by Kruskal–Wallis test. bThe p-value was obtained by two-sample two-tailed t-test.
IGE-GTCS, Idiopathic generalized epilepsy-generalized tonic–clonic seizures; HC, healthy controls; FD, framewise displacement.
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Written informed consent was obtained from all participants.
The study was approved by the local medical ethics committee
at Jinling Hospital, Nanjing University School of Medicine.

MRI acquisition

We performed functional and structural neuroimaging ac-
quisitions in patients and healthy controls using a Siemens
Trio 3T scanner at Jinling Hospital. We used foam padding
to minimize head motion. We acquired resting-state func-
tional images using a single-shot, gradient-recalled echo pla-
nar imaging sequence (250 volumes, repetition time = 2000 ms,
echo time = 30 ms, flip angle = 90�, field of view = 240 · 240 mm2,
interslice gap = 0.4 mm, voxel size = 3.75 · 3.75 · 4 mm3, 30
transverse slices aligned along the anterior–posterior com-
missure). Subjects were instructed simply to rest with their
eyes closed, not to think of anything in particular, and not
to fall asleep. Subsequently, we acquired high-resolution T1-
weighed anatomical images in sagittal orientation using a
magnetization-prepared rapid gradient-echo sequence (repeti-
tion time = 2300 ms, echo time = 2.98 ms, flip angle = 9�, field of
view = 256 · 256 mm2, voxel size = 0.5 · 0.5 · 1 mm3, 176 slices
without interslice gap).

Data preprocessing

Functional images were preprocessed using the DPARSF
(www.restfmri.net) and SPM8 (www.fil.ion.ucl.ac.uk/spm)
toolkit. We excluded the first 10 images to ensure steady-
state longitudinal magnetization, and then we corrected the
remaining images for temporal differences and head motion.
No translation or rotation parameters in any given data set
exceeded – 1 mm or – 1�. Moreover, the mean framewise dis-
placement (FD) was computed by averaging FDi from every
time point for each subject (Power et al., 2012). There were
no differences for the mean FD between groups (two-sample
two-tailed t-test, p = 0.4109) (Table 1). We warped the func-
tional images to the Montreal Neurological Institute (MNI)
space using a 12-parameter affine transformation and the
MNI echo planar imaging template. The normalized images
were resliced at a resolution of 3 · 3 · 3 mm3. Finally, we
spatially smoothed them with an 8-mm full-width half-
maximum isotropic Gaussian kernel.

Anatomical parcellation

To determine the nodes of functional and SCNs, we used
the automated anatomical labeling (AAL) template
(Tzourio-Mazoyer et al., 2002). Accordingly, we parcellated
the whole brain into 90 (45 for each hemisphere) noncerebel-
lar anatomical regions of interest (ROIs). This parcellation
scheme will be referred to as AAL-90. A list of anatomical la-
bels for the AAL-90 nodes is in Table 2. For each subject, we
obtained representative descriptors (ALFF and GMV) of each
ROI by simply averaging the values over all voxels in the
ROI. Considering that the range of nodal scale and the differ-
ence in template parcellations may impact on the results of
network analysis (Wang et al., 2009), we also used a high-
resolution parcellation scheme with 1024 ROIs (Fornito
et al., 2010; Wang et al., 2013; Zalesky et al., 2010). Specifi-
cally, we generated 1024 ROIs of approximately identical
size (1.2 cm3) across both hemispheres (512 ROIs for each
hemisphere) by subdividing each region in the low-resolution

AAL-90 template into a set of subregions. This parcellation
scheme will be referred to as AAL-1024 (Zhang et al., 2011b).

FCN construction

Amplitude of low-frequency fluctuation. The ALFF was
defined as the averaged square root of activity in the low-
frequency band (0.01–0.08 Hz), which was estimated voxel-
by-voxel by using Fast Fourier Transform (Zang et al., 2007).

ALFF-based FCN. We extracted the average regional
ALFF value within each ROI of each subject. Then, we com-
puted an inter-regional correlation matrix rij (i, j = 1, 2, . . . , N,
where N is the number of ROIs) for each group separately,
by calculating partial correlation coefficients across individuals
between the averaged ALFF values of each pair of ROIs. Before
the correlation analysis, we regressed out from the ALFF val-
ues in each ROI the effects of age, sex, global brain ALFF val-
ues, mean FD, and interindividual variability of registration
errors from individual ALFF maps (Fig. 1, top). Specifically,
the six head-motion parameters were estimated from the sub-
ject’s ALFF maps using a rigid-body realignment procedure,
and we measured registration errors (in terms of frame dis-
placement, FD) for each subject based on those parameters.
For each pair of regions i and j, we computed the across-subject
partial correlation rij, using the ALFF from all other regions as
controlling variables. When using the AAL-90 parcellation
scheme, this resulted in a two 90 · 90 partial correlation matri-
ces, one for each group.

SCN construction

Voxel-based morphometry analysis. We performed
voxel-based morphometry analysis using SPM8. First, we
reoriented all T1-weighed anatomical image position, the an-
terior commissure midline at the origin of the three-dimen-
sional MNI space. The images were then segmented into
gray matter, white matter (WM), and cerebrospinal fluid
(CSF). A diffeomorphic nonlinear registration algorithm (dif-
feomorphic anatomical registration through exponentiated lie
algebra [DARTEL]) (Ashburner, 2007) was used to warp the
segmented images to a common space, which was represen-
tative of a group of individuals. The resulting images were
then spatially normalized to the MNI space. An additional
processing step consisted of multiplying each spatially nor-
malized gray matter image by its relative volume before
and after normalization, to preserve the total amount of
gray matter in each voxel. Finally, we smoothed the resulting
gray matter images with an 8-mm full-width half-maximum
isotropic Gaussian kernel.

GMV-based SCN. Similarly to the procedure used to cal-
culate the ALFF-based FCN, we estimated a GMV-based SCN
using the inter-regional covariance of GMV across subjects
(Bassett et al., 2008). First, we regressed out from the GMV
in each ROI the effects of age, sex, the total intracranial vol-
ume (sum of the volume of gray matter, WM, and CSF),
and interindividual variability of registration errors from in-
dividual GMV maps. The six head-motion parameters were
estimated from the subject’s GMV maps using a rigid-body
realignment procedure, and we measured registration errors
for each subject based on those parameters. For each pair of
regions i and j, we computed the across-subject partial
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correlation rij, using the GMV from all other regions as con-
trolling variables. The partial correlation coefficients between
GMV across individuals were used to construct the SCN for
each group (Fig. 1, bottom).

Network analysis

The analysis of weighed networks is aimed to investigate
the connectivity strength on a continuous scale. This can en-
able a more comprehensive understanding brain organiza-
tion. To construct weighed functional and SCNs, we
defined as weighed edges as the absolute functional and
structural covariance connectivity strengths between ROIs;
for example, wij = jrijj, where rij is the partial correlation coef-
ficient between nodes i and j. Subsequently, we applied graph
theoretical analyses on the functional and SCNs of patients

with IGE-GTCS and healthy controls. To this end, we used
the Brain Connectivity Toolbox (www.brain-connectivity-
toolbox.net) (Rubinov and Sporns, 2010).

Threshold selection. A previous study suggested that the
brain network of each normal subject differs in both the num-
ber of significant edges and their weights (Wen et al., 2011).
Accordingly, we applied a matching strategy before the com-
parison between patients and healthy controls, defining a net-
work cost threshold for which each graph had the same
number of edges. Since there is currently no formal consensus
regarding selection of cost thresholds, here we selected a
range of cost thresholds for the functional and SCNs accord-
ing to the following criteria: (1) the averaged degree (the de-
gree of a node is the number of connections linked to the

Table 2. Regions of Interest in the Automated Anatomical Labeling Template

Region name Abbr. Region name Abbr.

Frontal Occipital
Superior frontal gyrus

(dorsolateral)
SFGdor Calcarine fissure CAL

Superior frontal gyrus
(orbital part)

ORBsup Cuneus CUN

Middle frontal gyrus MFG Lingual gyrus LING
Middle frontal gyrus

(orbital part)
ORBmid Superior occipital gyrus SOG

Inferior frontal gyrus
(opercular part)

IFGoperc Middle occipital gyrus MOG

Inferior frontal gyrus
(triangular part)

IFGtriang Inferior occipital gyrus IOG

Inferior frontal gyrus
(orbital part)

ORBinf Fusiform gyrus FFG

Superior frontal gyrus
(medial)

SFGmed Medial Temporal

Superior frontal gyrus
(medial orbital)

ORBsupmed Hippocampus HIP

Rectus gyrus REC Parahippocampal gyrus PHG
Anterior cingulate

cortex
ACC Amygdala AMYG

Parietal–premotor Superior temporal gyrus,
temporal pole

TPOsup

Precentral PreCG Middle temporal gyrus,
temporal pole

TPOmid

Rolandic operculum ROL Subcortical
Supplementary

motor area
SMA Olfactroy cortex OLF

Median cingulate
cortex

MCC Caudate nucleus CAU

Posterior cingulate
cortex

PCC Putamen PUT

Postcentral gyrus PoCG Pallidum PAL
Superior parietal

gyrus
SPG Thalamus THA

Inferior parietal
gyrus

IPG Temporal

Supramarginal
gyrus

SMG Insula INS

Angular gyrus ANG Heschl gyrus HES
Precuneus PCUN Superior temporal gyrus STG
Paracentral lobule PCL Middle temporal gyrus MTG

Inferior temporal gyrus ITG

Abbreviations used in the study differing slightly from the original abbreviations by Tzourio-Mazoyer et al. (2002). The six main systems
were derived from Salvador et al. (2005).
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node) over all nodes of each thresholded network was larger
than log(N), where N is the number of ROIs (He et al., 2007).
The selected cost was further adjusted to assure the each
thresholded network was fully connected; and (2) the small
worldness of the thresholded networks was larger than 1.1
for all participants and for two types networks (Zhang
et al., 2011a). Based on the criteria above, we defined thresh-
olds ranging from 0.14 to 0.30, with step = 0.01.

Network metrics. We calculated both overall topology
and nodal characteristics for both functional and SCNs, at
each cost threshold (Rubinov and Sporns, 2010). The overall
topologies included (1) small-world properties (r) related to
weighed clustering coefficient (Cnet), weighed characteristic
shortest path length (Lnet), normalized weight clustering coef-
ficient (c), and normalized weight characteristic shortest path
length (k); (2) the total connection strength (Snet); and (3) the
network efficiency involving local efficiency (Eloc) and global
efficiency (Eglob). The nodal characteristics included the nodal
degree (Si), which quantifies the extent to which a node is rel-
evant to the graph, and the nodal efficiency (Ei), which quan-
tifies the importance of the nodes for the communication
within the network (Bassett and Bullmore, 2006). Further,
we calculated the area under the curve (AUC) for the
above-mentioned network metric, providing an overall
value for the topological characterization of brain networks
independent of the selection of the cost threshold.

Overall topologies. The weighed clustering coefficient
of a node i, Ci, which expresses the likelihood that node i is
connected to other nodes (Onnela et al., 2005), is defined as
follows:

Ci =
2

ki(ki� 1)
+

i, h2G

(wijwihwjh)1=3

where wij is the weight between nodes i and j in the net-
work, and ki is the degree of node i. The clustering coefficient
is zero, Ci = 0, if the nodes are isolated or with just one connec-

tion. The overall weighed clustering coefficient, namely, Cnet,
was computed as the average of Ci across all nodes in the
network:

Cnet =
1

N
+
i2G

Ci:

The overall weighed clustering coefficient Cnet is measure
of the local interconnectivity or cliquishness of the network
(Watts and Strogatz, 1998).

The path length between nodes i and j was defined as the
sum of the edge lengths along the path, where each edge’s
length was quantified as the reciprocal of the edge weight,
1/wij. The shortest weighed path length Lij between nodes i
and j was defined as the length of the path with the shortest
length between the two nodes. The overall weighed charac-
teristic path length Lnet of a network was measured by a har-
monic mean length between pairs (Newman, 2003), to
overcome the problem of possibly disconnected network
components. Formally, Lnet is the reciprocal of the average
of the reciprocals of the shortest weighed path lengths:

Lnet =
1

1
N(N� 1) +

N
i = 1+

N
j 6¼i

1
Lij

:

The overall weighed characteristic path length quantifies
the ability for information propagation in parallel.

Small-world properties were originally proposed by Watts
and Strogatz (1998). Here, to examine small-world properties,
we compared the value of Cnet and Lnet of the brain network
with those of the random networks ( Crandom and Lrandom). A
small-world network has a similar path length, but higher
clustering coefficient than a random network, that is,
c = Cnet=Crandom > 1, k = Lnet=Lrandom � 1 (Watts and Strogatz,
1998). These two conditions can also be summarized into a
scalar quantitative measurement, the small worldness,
r = c/k, which is larger than 1 in the case of the small-world
organization (Humphries et al., 2006). For both the FCN
and SCN, a set of 100 comparable random networks with
an equal (or at least similar) degree sequence and a symmetric

FIG. 1. Flowchart of the construction of the functional and structural covariance networks. First, we extracted amplitude of
low-frequency fluctuations (ALFF) and gray matter volume (GMV) values of each regions of interest (ROIs) defined on an au-
tomated anatomical labeling (AAL) template (step 1). Then, we calculated the partial correlation coefficients across individuals
between the averaged ALFF values (or the averaged GMV values) of each pair of ROI (step 2). This yielded the construction of
two connectivity matrices, based on the ALFF and GMV values, respectively (step 3). Finally, we thresholded the ALFF and
GMV correlation matrices with a cost threshold, thereby constructing a weighed functional covariance network (FCN) and
weighed structural covariance network (SCN), respectively (step 4).
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adjacency matrix were formed by a Markov-chain algorithm
(Maslov and Sneppen, 2002). This procedure can be described
as follows: In a real connectivity matrix, two connections be-
tween the vertices (i1, j1) and (i2, j2) were randomly selected.
These two connections are then modified to create edges be-
tween vertices (i1, j1) and (i2, j2). However, if one or both of
these new edges already existed in the network, this step
was aborted, and a new pair of edges was selected. The
above rewiring procedure was repeated until the topological
structure of the original matrix was completely random, and
then, Crandom and Lrandom were obtained by averaging across
100 generated random networks for each cost threshold.

Network efficiency. Efficiency is a biologically plausible
metric to describe the brain networks from the point of
view of information flow across nodes (Latora and Marchiori,
2001). For a given weighed network G with N nodes, the
weighed global efficiency can be expressed as follows:

Eglob =
1

N(N� 1)
+

i 6¼j2G

1

Lij
,

where Lij is the shortest weighed path length between the
nodes i and j in G (see above definition).
The weighed local efficiency of graph G is measured as
follows:

Eloc =
1

N
+i2GEglob(Gi),

where Eglob(Gi) is the global efficiency of subgraph (Gi), which
is composed by the neighbors of node i. Global and local effi-
ciencies measure the capacity of information flow of a net-
work at the global and local level, respectively.

Nodal characteristics. The nodal weighed degree (Si) was
computed as the sum of the weights of all the connections of
node i, that is, Si = +j2Gwij. The nodal weighed degree (Si)
quantifies the extent to which a node is relevant to the
graph (Rubinov and Sporns, 2010). The total connection
strength (Snet) of a weighed network was computed as the
sum of Si for all node N in the network G: Snet = 1

N Si2GSi.
Accordingly, we defined a node as a network hub when the
nodal degree value was at least one standard deviation larger
than the average nodal degree of the whole network (He
et al., 2009b).

The nodal weighed efficiency of a given node i (Ei) is de-
fined as the inverse of the man harmonic shortest path length
(Lij) (see above) between this node and all other nodes in the
network G (Achard and Bullmore, 2007), according to the fol-
lowing formula:

Ei =
1

N� 1
+i 6¼j2G

1

Lij
:

Nodal weighed efficiency (Ei) quantifies the importance of
the nodes for the communication within the network (Bassett
and Bullmore, 2006).

Correlation between the FCN and SCN. For each group,
we quantified the correlation between the FCN and SCN.
After calculating the functional and structural covariance ma-
trices, we converted them to Z-scores using the Fisher’s r-to-z
transformation. We measured the spatial correlation between

the resulting Z-score matrices (considering only the values in
upper triangular matrix) to quantify their similarity (Zhang
et al., 2011b).

Statistical analysis

We first compared the regional ALFF and GMV between
patients and healthy controls. We used two-sample t-tests
on each regressed ALFF (or GMV) values in each ROI of
the AAL-90 parcellation. We corrected the statistical signifi-
cance for multiple comparisons using a false-positive adjust-
ment. Specifically, we set p < (1/N) = 0.011, where N = 90
corresponds to the number of comparisons. This implies
accepting less than one false-positive per analysis (Fornito
et al., 2011; Lynall et al., 2010).

In addition, we delineated six specific brain systems (fron-
tal, parietal–premotor, occipital, medial temporal, subcorti-
cal, and temporal systems), and we examined the
relationship between their network costs, estimated on the
ALFF and GMV inter-regional correlations of patients and
healthy controls. Further, between-group differences were
compared to a null distribution of differences, which were
recalculated on the correlation matrices obtained by random-
izing all participants, and splitting them into two groups nu-
merically equivalent to the original patient and healthy
control groups. This procedure was repeated for 1000 itera-
tions. We assigned a p-value to the between-group difference
(patients vs. healthy controls) by computing the proportion of
differences exceeding the null distribution values. A thresh-
old of a = 0.05 was used.

We then compared the overall graph topology of the FCN
and SCN between patients and healthy controls. To this end,
we used nonparametric permutation tests (He et al., 2008) on
network metrics for each cost threshold, as well as on its
AUC. A threshold of a = 0.05 was used for testing all graph
characteristics.

Using the above nonparametric permutation framework,
we also compared the nodal properties (Si and Ei) between
patients and healthy controls. Statistical significance was cor-
rected for multiple comparisons using a false-positive adjust-
ment (Fornito et al., 2011; Lynall et al., 2010).

Finally, we compared the correlation of the FCN and SCN
between patients and healthy controls by using permutation
testing (1000 iterations).

Relationship between ALFF and GMV
and clinical variables

To investigate the clinical relevance of ALFF and GMV in
patients, we correlated the clinical variables, duration of epi-
lepsy, and seizure frequency, with ALFF and GMV measure-
ments. We used a Pearson’s correlation analysis, controlling
for sex, and mean FD for FCN, a as confounding variable
( p < 0.05).

Results

Regional ALFF and GMV changes

We examined altered regional GMV changes in patients
relative to healthy controls by between-group comparisons
(Fig. 2). We observed an increased regional GMV in the bilat-
eral hippocampus (T = 3.84 and T = 4.32 for left and right, re-
spectively) and the right middle temporal pole (T = 3.99). We
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also found a decreased regional GMV in the left orbital part of
the inferior frontal gyrus (T =�3.88), medial superior frontal
gyrus (T =�4.03), rectus gyrus (T =�4.85) and right Rolandic
operculum (T =�4.74), anterior cingulate cortex (T =�4.40),
and medial orbital part of the superior frontal gyrus
(T =�5.03) (all p < 0.05, corrected). There were no significant
changes in the regional ALFF.

Network constructions in inter-regional covariance
of ALFF and GMV

We created an AAL-90 FCN and SCN by measuring the
inter-regional ALFF and GMV correlations in patients and
healthy controls, separately (Fig. 3). In addition, we com-
pared the network cost within and between six anatomically

defined brain systems (frontal, parietal–premotor, occipital,
medial temporal, subcortical, and temporal systems) defined
on the AAL-90 FCN and SCN (Fig. 4). We found relatively
high cost values within systems and low cost values between
systems. Further, the patients showed increased cost between
the medial temporal system and occipital system ( p = 0.039)
and decreased cost within the frontal system ( p = 0.043) of
the AAL-90 FCN. Moreover, we observed increased cost be-
tween the subcortical and the frontal systems ( p = 0.028) of
the AAL-90 SCN in the patients.

Overall topology of the FCN and SCN

Since the overall topological properties of the brain net-
work rely on the choice of the threshold, we used multiple

FIG. 2. Between-group comparison of
regional GMV. Three-dimensional represen-
tations (Left: lateral view of left hemisphere;
Right: lateral view of right hemisphere) of
regional GMV changes in patients (two sam-
ple two-tailed t-test, p < 0.05, corrected). The
warm and cold colors indicate the brain
regions with significantly increased and de-
creased regional GMV in patients, respec-
tively. A list of anatomical labels of the nodes
is in Table 2. Results were visualized using
the BrainNet viewer (NKLCNL, Beijing Nor-
mal University).

FIG. 3. ALFF-based FCN and GMV-based structural covariance network. Three-dimensional representations (Left: lateral view
of left hemisphere; Center: dorsal view; Right: lateral view of right hemisphere) of ALFF-based FCN (A) and GMV-based struc-
tural covariance network (SCN) of healthy controls (HC) (B) and patients with IGE-GTCS (C, D) at a fixed cost (cost = 0.14).
Nodes are positioned according to their centroid stereotaxic coordinates and differently colored according to the six anatomical
systems (frontal, parietal–premotor, occipital, medial temporal, subcortical, and temporal systems). Larger-size nodes are hub
nodes. Edges are coded according to their connection weights. Results were visualized using the BrainNet viewer (NKLCNL,
Beijing Normal University). IGE-GTCS, idiopathic generalized epilepsy-generalized tonic–clonic seizures.
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cost thresholds (0.14 to 0.30, step = 0.01) to evaluate the stabil-
ity of the topological organization at specific small-world re-
gimes for both the AAL-90 FCN and SCN (Fig. 5).

Between-group comparisons showed altered overall net-
work characteristics in patients relative to healthy controls.
Among the topological properties in the AAL-90 FCN, we ob-
served the total connection strength (Snet) to be significantly
increased in patients across multiple (10 out of 17) cost thresh-
olds ( p < 0.05) (Fig. 5B, arrows). The AUC of the Snet was de-
creased in patients ( p = 0.049) (Fig. 5B, inset barplot). The
AUC of the sigma, Cnet and Eloc showed no significant differ-
ence between groups.

Among the topological properties in the AAL-90 SCN,
weighed local efficiency (Eloc) and weighed clustering coeffi-
cient (Cnet) were increased in patients for all cost thresholds
( p < 0.05) (Fig. 5D, arrows). Conversely, the AUC of both
Eloc ( p = 0.046) and Cnet ( p = 0.042) were decreased in patients
(Fig. 5D, inset barplot).

Other topological properties, that is, small-world properties
(r), normalized weighed clustering coefficient (c), normalized
weighed characteristic path length (c), and weighed character-
istic path length (k), did not show between-group differences
in the AAL-90 FCN and SCN (Fig. 5).

The overall topological properties of FCN and SCN were
also compared between groups using the high-resolution
AAL-1024 parcellation. In this case, a fixed cost (cost = 0.0115)
was used (Fig. 6). This ensured that the averaged degree (the
degree of a node is the number of connections linked to the
node) over all nodes of each FCN and SCN network was
larger than log(N), with N = 1024 in this case. We observed
the small-world property (r) to be significantly increased in
patients for the AAL-1024 FCN ( p = 0.001) (Fig. 6).

Nodal characteristics of the FCN and SCN

Between-group comparisons on the nodal weighed effi-
ciency (Ei) and degree (Si) revealed alterations in both the
FCN and SCN of patients (Fig. 7). In the AAL-90 FCN, pa-
tients had an increased Ei in the right hippocampus
( p = 0.005) and amygdala ( p = 0.031, uncorrected) (Fig. 7A).
Similar alterations in patients were found for Si, with in-
creases in the right hippocampus ( p = 0.007) and amygdala
( p = 0.033, uncorrected) (Fig. 7A).

In the AAL-90 SCN, we found increased Ei in patients in
the right putamen ( p = 0.005) and pallidum ( p = 0.005) (Fig.
7C). These increases in patients were also mirrored in the Si

FIG. 4. Inter-regional correlation changes between brain systems in patients and healthy controls. We examined the cost val-
ues within systems (matrix diagonal) and between systems (upper triangular matrix) of the AAL-90 FCN and SCN of controls
(A, B, respectively) and patients (C, D, respectively). Arrows indicate significantly increased or decreased (permutation test-
ing, p < 0.05) cost values in patients compared with healthy controls.
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measure. Further, we observed decreased Si in the bilateral su-
perior parietal gyrus ( p = 0.008 and p = 0.009 for left and right,
respectively), right supramarginal gyrus ( p = 0.006), and oper-
cular part of the inferior frontal gyrus ( p = 0.007) (Fig. 7D).

The epilepsy duration was negatively correlated with the
ALFF in the bilateral parietal (superior parietal gyrus, precu-
neus, and supplementary motor area) and temporal (middle
temporal gyrus and inferior temporal gyrus) regions. Further,
we found positive correlations between epilepsy duration
and ALFF in the bilateral subcortical and medial temporal re-
gions (Fig. 8A). GMV in the bilateral frontal and parietal re-
gions (e.g., posterior cingulate cortex, precuneus, inferior
parietal gyrus, superior inferior parietal gyrus, and medial or-
bital part of the superior frontal gyrus) was negatively corre-

lated in patients, and there were no significant positive
correlations (Fig. 8C). In addition, the seizure frequency
was positively correlated with ALFF in the left posterior cin-
gulate cortex and inferior parietal gyrus (Fig. 8B), and with
GMV in the bilateral anterior cingulate gyrus (Fig. 8D).

Altered correlation of the functional and SCNs

We found significant positive correlations between the
FCN and SCN matrix in patients (r = 0.5275 and r = 0.2989
for AAL-90 and AAL-1024 parcellation, respectively) as
well as in healthy controls (r = 0.4271 and r = 0.2343 for
AAL-90 and AAL-1024 parcellation, respectively), for
both low- and high-resolution parcellations. Strikingly, the

FIG. 5. Overall topologies of the AAL-90 FCN and SCN. We examined small-world topology (Sigma), weighed clustering
coefficient (Cnet), weighed local efficiency (Eloc), and total connection strength (Snet) (left to right, respectively) of the FCN
(A) and SCN (C), as well as between-group difference (B, D) as a function of cost threshold (0.14 to 0.30, step = 0.01). The dif-
ferences between patients and healthy controls are indicated by red circles. The black line represents the mean value (open
circles), and the gray shade denotes the 95% confidence interval of the between-group difference obtained by permutation test-
ing (1000 iterations). The upper arrows indicate significant ( p < 0.05) increased overall topologies in patients compared to
healthy controls for the AAL-90 FCN and SCN. The inset barplots indicate the between-group differences in AUC for each
topological measure.
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FIG. 6. Overall topologies of AAL-1024
FCN and SCN. We examined the differences
(red circles) between the FCN (A) and SCN
(B) of patients and healthy controls at a fixed
cost threshold (cost = 0.0115). The black line
represents the mean value (open circles), and
the gray shade denotes the 95% confidence
interval of the between-group difference
obtained by permutation testing (1000 itera-
tions).

FIG. 7. Alterations of nodal weighed efficiency and degree of AAL-90 FCN and SCN in patients. Results were produced using
permutation testing, and visualized using the BrainNet viewer (NKLCNL, Beijing Normal University). Three-dimensional rep-
resentations (Left: lateral and medial view of left hemisphere; Center: dorsal view; Right: lateral and medial view of right hemi-
sphere) show the between-group difference of nodal weighed efficiency (Ei) of FCN (A) and SCN (C); and group differences of
nodal weighed degree (Si) of FCN (B) and SCN (D). Red/blue spheres denote regions with increased/decreased nodal charac-
teristic in patients relative to healthy controls. Gray dots denote regions with no difference between groups. Nodes are positioned
according to their centroid stereotaxic coordinates. A list of anatomical labels for the nodes is in Table 2.
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FIG. 8. Relationship between functional and structural descriptors and clinical variables. Three-dimensional representations
(Left: lateral and medial view of left hemisphere; Center: dorsal view; Right: lateral and medial view of right hemisphere) show-
ing correlations between epilepsy duration and functional (ALFF) descriptor (A), between seizure frequency and functional
(ALFF) descriptor (B), epilepsy duration and structural (GMV) descriptor (C), and between seizure frequency and structural
(GMV) descriptor (D). Red/blue spheres denote regions with a positive/negative effect in patients. Gray dots denote regions
with no significant correlations. Nodes are positioned according to their centroid stereotaxic coordinate. A list of anatomical
labels for the nodes is in Table 2.

FIG. 9. Disrupted correlation of functional and structural covariance networks. The correlation of the functional and struc-
tural covariance matrix (Fisher z-transformed) of the patients and healthy controls of AAL-90 (A) and AAL-1024 (B) parcella-
tions are shown. The between-group difference in functional–structural covariance network correlation is indicated by red
dots. The black lines represent the mean values (open circles) and 95% confidence intervals of the between-group differences
obtained by permutation testing (1000 iterations).
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FCN-SCN correspondence in patients was significantly larger
( p = 0.0109 and p = 0.0103 for AAL-90 and AAL-1024 parcella-
tion, respectively) than that in the healthy controls (Fig. 9).

Discussion

In this study, we examined the topological organization
of the brain in IGE patients, through the ALFF-based FCN
and GMV-based SCN. Our investigation led to four main
findings: (1) the FCN revealed that the brain has network to-
pological characteristics, including small worldness and
highly connected hub regions, as previously observed in
the SCN; (2) small worldness in both the FCN and SCN
were not altered in patients, whereas other overall network
characteristics (Snet, Cnet, and Eloc) showed alterations for
both the FCN and SCN. (3) Alterations of nodal characteris-
tics in the FCN and SCN of the patients were concentrated in
the subcortical and medial temporal regions, as well as in
the default-mode regions; and (4) there was a correlation be-
tween the functional and SCNs in both groups of patients
and controls, but this correlation was significantly larger
in patients.

Interpreting variations in the regional ALFF

ALFF has proven to be a reliable measure of intrinsic or
spontaneous brain activity (Zang et al., 2007; Zuo et al.,
2010). ALFF partly quantifies resting brain’s metabolism,
exhibiting highly consistent spatial patterns (Biswal et al.,
2010). On the other hand, interindividual differences are
thought to be at the basis of human behavior (Kanai and
Rees, 2011). Interindividual variability (i.e., across-subject co-
variance) of ALFF has been associated with that in neural ac-
tivation and in behavior (Mennes et al., 2010; Wei et al., 2012).
In this regard, one can directly use such concurrent fluctua-
tions to describe the distribution of different populations,
suggesting a neurophysiological origin for the ALFF (Taylor
et al., 2012; Zhang et al., 2011c).

Based on graph theoretical analysis, the present report for
the first time mapped the neuroanatomic patterns of the
ALFF-based FCN. The covariance of ALFF among different
brain regions indicates synchronization in changes of local in-
trinsic brain activity. Although the precise neurobiological
mechanism underlying them remains unclear, it has been
posited that brain regions covary as a result of mutually tro-
phic effects (Ferrer et al., 1995) or soft-wiring (Lee et al., 2008)
on a functional aspect. Thus, the FCN may offer the possibil-
ity of characterizing individuals in terms of global network
organization, in addition to the study of local ALFF in rela-
tion to brain function and dysfunction.

Large-scale SCN in IGE-GTCS

This study revealed important information about the large-
scale SCN organization in patients as compared to healthy
controls. In our previous study, we performed univariate
mapping of GMV in IGE patients (Huang et al., 2011),
while here we specifically investigated the whole-brain patho-
logical interactions. The SCN, which reflects the inter-regionally
coordinated structural variances, has been suggested to reveal
long-term effects of the brain physiological (Zhang et al.,
2011c; Zielinski et al., 2010) or pathological phenomena (Bassett
et al., 2008; He et al., 2008, 2009a; Seeley et al., 2009). Moreover, a

recent study has found partial convergence between the SCN
and ACN measured by diffusion tractography, suggesting
that the SCN may partly relate to anatomical connections
(Gong et al., 2012). Bernhardt et al. (2009) have studied the tha-
lamocortical networks by correlating thalamic volumes with
cortical thickness in patients with GTCS. Specifically, they re-
lated the observed alterations of thalamocortical structural cor-
relations to remodeling, following a generalized seizure activity
(Bernhardt et al., 2009). Our study employed a graph theory-
based network analysis on a relatively larger patient popula-
tion, and found alterations in both overall and nodal properties
of SCN in patients, independent of a prior selection of specific
networks. The superior parietal gyrus and opercular part of in-
ferior frontal gyrus showed increased Ei and Si. This might un-
derlie an impairment of the default-mode network in patients
(Gotman et al., 2005; McGill et al., 2012; Song et al., 2011; Wang
et al., 2011).

Large-scale FCN in IGE-GTCS

By combining graph theoretic analysis with an ALFF-
based FCN approach, we provided in this study a novel anal-
ysis tool to investigate the pathophysiology of IGE-GTCS.
Since the FCN measures covariance of ALFF across subjects,
it may capture inter-regional correlations of brain activity
within relatively short periods (Zhang et al., 2011c). In our
previous study on the FCN, we revealed a novel pattern of
brain network organization with an anticorrelated high-
level cognitive system and a low-level perceptive system
(Zhang et al., 2011c). Here we mapped for the first time the
FCN in patients, and we compared it to that in healthy con-
trols. Both subject groups showed small-world topology in
the FCN, indicating simultaneous global and local parallel in-
formation processing (Bassett and Bullmore, 2006). This find-
ing is consistent with the results revealed by other network
approaches, and corroborates the ubiquitous small-world-
ness property of the human brain (Achard and Bullmore,
2007; Gong et al., 2009; Hagmann et al., 2008; Salvador
et al., 2005). Moreover, when we carried out the same in a
larger population (Beijing dataset, publicly available in the
1000 Functional Connectomes Project: http://fcon_1000.pro-
jects.nitrc.org), we observed concordant results (data not
shown). This finding related to the small-worldness property
of the ALFF-based FCN expands our insight into the organi-
zation of the human brain connectome.

The total connection strength (Snet) in patients was in-
creased in AAL-90 FCN, whereas the same parameter was
not altered in SCN. This may suggest a relative stable organi-
zation of the brain structural network in patients (Bullmore
and Sporns, 2009; Park et al., 2008; Zhang et al., 2011b),
which would also be in line with the findings of our previous
study (Zhang et al., 2011b).

Correlation between the structural and FCNs

We observed significant spatial correlations between the
FCN and SCN in patients and healthy controls, with both
low- and high-resolution parcellations. This result confirms
that correspondence between the structural and FCNs is a
general property of the human brain. A similar correspon-
dence has been also revealed between the ICN estimated by
temporal activity correlations and the ACN estimated via
WM tractography (Hagmann et al., 2008, 2010; Honey et al.,
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2009; van den Heuvel et al., 2009). Structural–functional net-
work correlations may indicate a degree of topological iso-
morphism (Bassett et al., 2008). Anatomic fiber connection
has been considered to constrain and be highly predictive
of intrinsic functional connections (Honey et al., 2010).
Although a little is known about the biological relationships
between the FCN and SCN architectures, the FCN-SCN cor-
respondence lends support to the hypothesis that the SCN re-
flects shared long-term trophic influences within functionally
synchronous systems (i.e., FCN) (Zielinski et al., 2010).

Our study demonstrated an increased SCN-FCN correla-
tion in patients, following an opposite trend compared the re-
duction of ICN-ACN correspondence found in our previous
study (Zhang et al., 2011b). It is conceivable that this discrep-
ancy may originate from differences of imaging modalities
and computational methods. It is also worth noting that the
function–structure relationship mainly depends on the time
scale (Honey et al., 2007). Long-term and progressive remod-
eling of FCN on the SCN architecture may induce increase in
the FCN-SCN correlation in epileptic patients. Decreased
ICN-ACN correlation, in contrast, may result from impair-
ments of epileptic activity (Zhang et al., 2011b).

Methodological considerations and limitations

Our findings should be evaluated in the light of some
methodological aspects. First, we found convergences and di-
vergences between the structure of the FCN and SCN. Diver-
gences may be explained by several factors, such as different
epilepsy phenotypes and modalities of connectivity measure-
ment (Gong et al., 2012; Sanabria-Diaz et al., 2010), as well as
the different mechanisms underlying functional or structural
connectivity changes. Secondly, our analyses were based on
weighed networks, which contain information about hetero-
geneity in the capacity and intensity of connections. Previous
studies suggested the use of weighed networks to be a valid
approach for brain modeling (Rubinov and Sporns, 2010).
Thirdly, there are many other functional descriptors that
may be utilized for constructing FCN across populations, as
for example, fractional ALFF (Zou et al., 2008). The fractional
ALFF having higher specificity can rule out cardiac and respi-
ratory contributions (Zuo et al., 2010). However, we used the
ALFF-based FCN in both groups, so that our approach is un-
likely to biased by between-group differences related to respi-
ratory and cardiac artifacts. Finally, recent studies have
shown significant effects of head motion on ICN (Power
et al., 2012; Van Dijk et al., 2012), which were quantified
and controlled in our study. The solution of the head motion
issue still requires systematic methodological work.

Besides the methodological issues mentioned above, a
number of potential limitations should be considered. First,
we could not investigate the effects of antiepileptic drugs,
which can however affect the normal neuronal function and
in some cases produce cognitive impairments (Ortinski and
Meador, 2004). Secondly, we did not comprehensively assess
the cognitive state of the patients; however, previous studies
have suggested that an impaired ICN and ACN architecture
was associated with cognitive deficits in chronic epilepsy
(Vaessen et al., 2012; Vlooswijk et al., 2011). It therefore re-
mains to be elucidated how altered FCN and SCN are linked
to cognitive deficits. Thirdly, we did not evaluate the effects
of interictal epileptiform discharges on the brain networks,

since no simultaneous EEG data were acquired. Finally, we
measured the inter-regional correlations of ALFF and GMV
of brain regions across subjects, resulting in a single func-
tional or SCN (at a given cost threshold). Accordingly, we
could not directly examine the relationship between the net-
work metrics and individual clinical variables.

Conclusion

We mapped for the first time the ALFF-based FCN of the
human brain, indicating ubiquitous topological properties,
including small worldness and highly connected core hub re-
gions in a short-duration functional network. Moreover, both
overall topologies and nodal characteristics of the large-scale
inter-regional FCN and SCN were altered in IGE-GTCS pa-
tients, providing additional evidence that IGE-GTCS is a dis-
order of cortical network organization. Importantly, the
correlation between the functional and SCNs was signifi-
cantly increased in patients. Combined functional and struc-
tural measures of connectivity can potentially lead us to a
better understanding of the pathophysiological mechanisms
of IGE-GTCS.
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