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ABSTRACT
Nonlinear model predictive control (NMPC) generally requires the solution of a
non-convex optimization problem at each sampling instant under strict timing con-
straints, based on a set of differential equations that can often be stiff and/or
that may include implicit algebraic equations. This paper provides a local con-
vergence analysis for the recently proposed adjoint-based sequential quadratic pro-
gramming (SQP) algorithm that is based on a block-structured variant of the two-
sided rank-one (TR1) quasi-Newton update formula to efficiently compute Jacobian
matrix approximations in a sparsity preserving fashion. A particularly efficient al-
gorithm implementation is proposed in case an implicit integration scheme is used
for discretization of the optimal control problem, in which matrix factorization and
matrix-matrix operations can be avoided entirely. The convergence analysis results
as well as the computational performance of the proposed optimization algorithm
are illustrated for two simulation case studies of nonlinear MPC.
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1. Introduction

Optimization based control and estimation techniques have attracted an increasing
attention over the past decades. They allow a model-based design framework, in which
the system dynamics, performance metrics and constraints can directly be taken into
account. Receding horizon techniques such as model predictive control (MPC) and
moving horizon estimation (MHE) have been studied extensively because of their
desirable properties [30] and these optimization-based techniques have already been
applied in a wide range of applications [21]. One of the main practical challenges in
implementing such an optimization-based predictive control or estimation scheme, lies
in the ability to solve the corresponding nonlinear and generally non-convex optimal
control problem (OCP) under strict timing constraints and typically on embedded
hardware with limited computational capabilities and available memory.
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Let us consider the following continuous-time formulation of the optimal control
problem that needs to be solved at each sampling instant

min
x(·),u(·)

∫ T

0
`(x(t), u(t)) dt (1a)

s.t. x0 − x̂0 = 0, (1b)

0 = f(ẋ(t), x(t), u(t)), ∀t ∈ [0, T ], (1c)

p(x(t), u(t)) ≤ 0, ∀t ∈ [0, T ], (1d)

where T denotes the control horizon length, x(t) ∈ Rnx denotes the differential states
and u(t) ∈ Rnu are the control inputs. The function `(·) defines the stage cost and the
nonlinear system dynamics are formulated as an implicit system of ordinary differential
equations (ODE) in (1c), which could additionally be extended with implicit algebraic
equations. A common assumption is that the resulting system of differential-algebraic
equations (DAE) is of index 1 [7]. The optimization problem is parametric, since
it depends on the state estimate x̂0 at the current sampling instant, through the
initial value condition in (1b). The path constraints are defined by the function p(·)
in Eq. (1d) and, for simplicity of notation, they are further assumed to be affine. Note
that a similar problem as in (1) needs to be solved for optimization-based state and
parameter estimation, without the given initial state value.

In direct optimal control methods, one forms a discrete-time approximation of the
continuous-time OCP in (1) based on an appropriate parameterization of the state and
control trajectories over the time horizon t ∈ [0, T ], resulting in a tractable nonlinear
program (NLP) that needs to be solved. Popular examples of this approach include
the direct multiple shooting method [8] and direct collocation [3, 5]. Note that these
techniques often need to rely on implicit integration methods in order to deal with
stiff and/or implicit systems of differential or differential-algebraic equations [36]. The
resulting constrained optimization problem can be handled by standard Newton-type
algorithms such as interior point methods [38] and sequential quadratic program-
ming (SQP) [10] techniques for nonlinear optimization [31].

Quasi-Newton optimization methods are generally popular for solving such a con-
strained NLP. They result in computationally efficient Newton-type methods that solve
the first order necessary conditions of optimality, i.e., the Karush-Kuhn-Tucker (KKT)
conditions, without evaluating the complete Hessian of the Lagrangian and/or even
without evaluating the Jacobian of the constraints [31]. Instead, quasi-Newton meth-
ods are based on low-rank update formulas for the Hessian and Jacobian matrix ap-
proximations [14]. Popular examples of this approach include the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [11] and the symmetric rank-one (SR1) update formula [13]
for approximating the Hessian of the Lagrangian. Similarly, quasi-Newton methods
can be used for approximating Jacobian matrices, e.g., of the constraint functions,
such as the good and bad Broyden methods [12] as well as the more recently proposed
two-sided rank-one (TR1) update formula [25].

For the purpose of real-time predictive control and estimation, continuation-based
online algorithms have been proposed that aim at further reducing the computational
effort by exploiting the fact that a sequence of closely related parametric optimiza-
tion problems is solved [7, 17]. One popular technique consists of the real-time iter-
ation (RTI) algorithm that performs a single SQP iteration per time step, in combi-
nation with a sufficiently high sampling rate and a prediction-based warm starting in
order to allow for closed-loop stability of the system [16]. The RTI algorithm can be
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implemented efficiently based on (fixed-step) integration schemes with tailored sen-
sitivity propagation for discretization and linearization of the system dynamics [36]
in combination with structure-exploiting quadratic programming solvers [21]. In addi-
tion, a lifted algorithm implementation has been proposed in [37] to directly embed the
iterative procedure of implicit integration schemes, e.g., collocation methods, within
a Newton-type optimization framework for optimal control.

Unlike standard inequality constrained optimization, nonlinear optimal control
problems typically result in a particular sparsity structure in the Hessian of the La-
grangian and in the Jacobian matrix for the equality constraints. In direct optimal con-
trol methods, the objective function is typically separable resulting in a block-diagonal
Hessian matrix. This property has been exploited in partitioned quasi-Newton meth-
ods that approximate and update each of the Hessian block matrices separately, as
proposed and studied in [23, 24, 29]. On the other hand, the Jacobian matrix corre-
sponding to the discretized system dynamics has a block bidiagonal sparsity structure,
because of the stage wise coupling of the optimization variables at subsequent time
steps of the control horizon. For this purpose, the present article analyzes a novel tai-
lored quasi-Newton method for optimal control using a partitioned or block-structured
TR1-based Jacobian update formula. This adjoint-based SQP method for nonlinear
optimal control, based on a Gauss-Newton Hessian approximation in combination with
inexact Jacobian matrices, was proposed recently in [28].

1.1. Contributions and outline

This paper provides a complete presentation of the block-TR1 based SQP method
for nonlinear optimal control, including a detailed discussion of the lifted collocation
type implementation, extending earlier work of the same authors in [28]. Unlike the
latter publication, a convergence analysis of this novel quasi-Newton type optimization
algorithm is provided. More specifically, we prove convergence of the block-structured
quasi-Newton Jacobian approximations to the exact Jacobian matrix within the null
space of the active inequality constraints. Based on this result, under mild conditions,
convergence of the overall inexact SQP method can be guaranteed. Locally linear or
superlinear convergence rates can be shown, respectively, when using a Gauss-Newton
or quasi-Newton based Hessian approximation scheme. In addition, it is shown how this
convergence analysis extends to our lifted collocation implementation that avoids any
matrix factorization or matrix-matrix operations. These convergence analysis results
as well as the computational performance of the optimization algorithms are illustrated
numerically for two simulation case studies of nonlinear MPC.

The paper is organized as follows. Section 2 briefly introduces the direct multiple
shooting based OCP problem formulation as well as the proposed adjoint-based inexact
SQP method that is based on block-wise TR1 Jacobian updates. Section 3 presents
the detailed convergence analysis for the optimization method and contains the main
theoretical results of the present paper. A numerically efficient implementation of the
block-TR1 update formula in combination with a lifted Newton-type method for direct
optimal control with implicit integration schemes such as, e.g., collocation methods, is
then proposed and analyzed in Section 4. Finally, Section 5 presents numerical results
of the NMPC case studies and Section 6 concludes the paper.
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2. Block-wise TR1 based Sequential Quadratic Programming

A popular approach for direct optimal control is based on direct multiple shooting [8]
that performs a time discretization, based on a numerical integration scheme [26] to
solve the following initial value problem

0 = f(ẋ(τ), x(τ), u(τ)), τ ∈ [ti, ti+1], x(ti) = xi, (2)

on each of N shooting intervals that are defined by a grid of consecutive time points ti
for i = 0, . . . , N . For the sake of simplicity, we consider here an equidistant grid over
the control horizon, i.e., ti+1−ti = T

N , and a piecewise constant control parametrization
u(τ) = ui for τ ∈ [ti, ti+1) in (2). An explicit fixed-step integration scheme defines the
discrete-time system dynamics xi+1 = Fi(xi, ui) for the shooting interval [ti, ti+1]. For
example, this can correspond to the popular Runge-Kutta method of order 4 (RK4)
as defined in [26]. Based on the explicit discretization scheme, the resulting block-
structured optimal control problem reads as

min
X,U

N−1∑
i=0

li(xi, ui) + lN (xN ) (3a)

s.t. x̂0 = x0, (3b)

Fi(xi, ui) = xi+1, i = 0, . . . , N − 1, (3c)

Piwi ≤ pi, i = 0, . . . , N, (3d)

where the affine path constraints (3d) have been imposed on each of the shooting
nodes and the compact notation wi := (xi, ui) for i = 0, . . . , N − 1 and wN := xN is
defined. Note that the optimization variables for the problem in (3) are directly the
state X = [x>0 , . . . , x

>
N ]> and control trajectory U = [u>0 , . . . , u

>
N−1]>.

2.1. SQP algorithm with inexact Jacobians

For a local minimum w∗ of the NLP in (3), for which the linear independence constraint
qualification (LICQ) holds, there must exist a unique set of multiplier values λ∗, µ∗

such that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied

∇wL(w∗, λ∗) + P Tµ∗ = 0 (4a)

F (w∗) = X∗ (4b)

P w∗ ≤ p (4c)

µ∗ ≥ 0 (4d)

µ∗j (Pw
∗ − p)j = 0, j = 1, . . . , np, (4e)

where F (·) and P are appropriate block-wise concatenations of the equality and in-
equality constraints, respectively, in (3c) and (3d) and np denotes the total number of
inequality constraints. Here, we also lumped the initial condition constraint as part of
the matrix P since we can represent a linear equality constraint as two linear inequal-
ity constraints. Lastly, L(w, λ) denotes the ‘truncated Lagrangian’, omitting inequality
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constraints, and is therefore given by

L(w, λ) =

N−1∑
i=0

(
li(xi, ui) + λ>i (Fi(wi)− xi+1)

)
+ lN (xN ). (5)

Given the set of indices A for the inequality constraints that are active at the local
minimum, the KKT system reduces to a nonlinear system of equations that can be
solved directly by a Newton-type method. In particular, we are interested in a quasi-
Newton algorithm where we will approximate ∇2

wwL(wk, λk) by a matrix Hk and
∂F
∂w (wk) by a matrix Ak. Namely, we solve the following linearized system Hk Ak

> − E> P>A
Ak − E
PA

∆wk

∆λk

∆µkA

 = −

 g(wk, λk)
F (wk)−Xk

PAw
k − pA

 , (6)

where g(wk, λk) = ∇wL(wk, λk) + µk
>

A (PAw
k − pA) at each Newton-type iteration k.

Note that the matrix PA is defined as the part of P that corresponds to the inequality
constraints (4c) in the active set A, and E denotes the constant matrix corresponding
to the right-hand side of the equality constraints in (4b).

In order to efficiently solve the inequality constrained OCP in (3), let us consider
the adjoint-based SQP algorithm with Gauss-Newton type Hessian approximation and
inexact Jacobian information as introduced originally in [7, 39] for fast nonlinear MPC.
Each SQP iteration solves a convex QP subproblem

min
∆W

N∑
i=0

1

2
∆w>i H

k
i ∆wi + hk

>

i ∆wi (7a)

s.t. ∆x0 = x̂0 − xk0, (7b)

aki +Aki ∆wi = ∆xi+1, i = 0, . . . , N − 1, (7c)

Pi ∆wi ≤ pki , i = 0, . . . , N, (7d)

where notation ∆W = [∆w>0 , . . . ,∆w
>
N ]> is used to denote the deviation variables

∆wi := wi − wki , given the current solution guess Xk, Uk for the state and control
trajectories at iteration k of the adjoint-based SQP method. The function p(·) that
defines the path constraint (1d) was assumed to be affine and pki := pi−Piwki . Note that
tracking formulations for nonlinear MPC typically include a stage cost that is defined
by a (nonlinear) least squares term li(xi, ui) = 1

2‖R(xi, ui)‖22 for i = 0, . . . , N . The
generalized Gauss-Newton (GGN) method from [6] uses the block-structured Hessian
approximation Hk

i := ∇R(wki )∇R(wki )> ≈ ∇2
wiwi
L(·).

The matrix Aki ≈ ∂Fi

∂wi
(wki ) denotes the Jacobian approximation and aki := Fi(w

k
i )−

xki+1 for the discrete-time system dynamics in Eq. (7c). For real-time NMPC, such a
Jacobian approximation can be obtained by reusing information from a previous NLP
solution [7, 39]. The gradient term in the objective (7a) reads as

hki := ∇wi
l(wki ) +

(
∂Fi
∂wi

(wki )−Aki
)>

λki , (8)

for i = 0, . . . , N − 1, in which λki denotes the current value of the Lagrange multi-
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pliers for the nonlinear continuity constraints in (3c). Note that the linearized KKT
conditions in (6) correspond to the KKT optimality conditions for the QP in (7), for
a fixed active set A. In addition, each QP subproblem is convex because Hk � 0, e.g.,
for the Gauss-Newton Hessian approximation. A full-step inexact SQP method will
sequentially solve each QP subproblem (7) and perform the following updates:

wk+1 = wk + ∆wk and λk+1 = λk + ∆λk = λk+1
QP , (9)

where λk+1
QP denote the Lagrange multiplier values for Eq. (7c) at the QP solution. We

do not need to perform explicit updates for the Lagrange multipliers associated with
the inequality constraints, because they are assumed to be affine, hence not impacting
any computation on the QP formulation in (7).

2.2. Dynamic block-wise TR1 Jacobian updates

At each SQP iteration, we perform the block-wise two-sided rank-one (TR1) Jacobian
update, as proposed recently in [28]. Following the work in [25], given current Jacobian
approximations Aki for i = 0, . . . , N−1, we would like that each updated approximation

matrix Ak+1
i satisfies the following two secant conditions

Adjoint Condition (AC): σk
>

i Ak+1
i = γk

>

i

Forward Condition (FC): Ak+1
i ski = yki ,

(10)

where we define the adjoint vector γki = ∂Fi

∂wi
(wk+1

i )>σki , given σk
>

i = (λk+1
i −λki )>, and

the difference in function evaluations yki = F (wk+1
i )− F (wki ). Note that λk+1

i and λki ,
respectively, denote the new and old Lagrange multipliers for the linearized equality
constraints in Eq. (7c). Similarly, wki := (xki , u

k
i ) and wk+1

i := wki + ∆wki denote,

respectively, the old and new primal variables, such that ski := wk+1
i − wki . Note that

the gradient γki = ∂Fi

∂wi
(wk+1

i )>σki can be computed efficiently using the backward or
adjoint mode of algorithmic differentiation (AD), e.g., see [22].

The proposed block-wise TR1 update formula then reads as follows

Ak+1
i = Aki + αki

(
yki −Aki ski

)(
γk
>

i − σk
>

i Aki

)
, (11)

for i = 0, . . . , N−1 and where αki is a scalar that will be defined further. Aside from the
case where the function F (·) is affine, the two conditions in Eq. (10) are not consistent
with each other and they can therefore generally not both be satisfied by the updated
matrix Ak+1

i at each iteration. Thus, similar to the standard TR1 update in [25], the
block-wise update will only be able to satisfy one or the other. In the adjoint variant
of the update, the scaling value is defined as

αkA,i =
1

σk
>

i (yki −Aki ski )
, (12)

such that the adjoint condition in (10) is satisfied exactly and the forward condition

6



holds up to some accuracy. Similarly, this value reads as follows for the forward variant

αkF,i =
1

(γk
>

i − σk
>

i Aki ) s
k
i

, (13)

where the forward condition is satisfied exactly. It is interesting to note that, since we
apply the block-wise TR1 update from (11) for each shooting interval i = 0, . . . , N−1,
the resulting update for the complete constraint Jacobian matrix of the QP in (7)
corresponds to a rank-N update.

As in [25], we impose a skipping condition in order to avoid a potential blow-up of
the block-wise TR1 update when the denominator of the scaling factor becomes small
or even zero. For our purposes, the skipping condition itself depends on the type of
formula that is used. We update the block matrix Aki only if the following holds∣∣∣(γk>i − σk>i Aki )s

k
i

∣∣∣ ≥ c1

∥∥∥σki ∥∥∥ ∥∥∥yki −Aki ski ∥∥∥ , (14)

with c1 ∈ (0, 1) if αki = αkF,i in the forward TR1 update, and∣∣∣σk>i (yki −Aki ski )
∣∣∣ ≥ c1

∥∥∥ski ∥∥∥ ∥∥∥γki −Ak>i σki

∥∥∥ , (15)

with c1 ∈ (0, 1) if αki = αkA,i in the adjoint TR1 update. In addition, in order to
consistently choose either the forward or adjoint Jacobian update formula, we propose
a more dynamic variant of the algorithm that picks either αkF,i or αkA,i for each block
matrix at any given iteration. It may not be clear what is the best approach to select
which type of update is to be executed for each block matrix at a given iteration.
However, in the next section, we prove the local convergence properties of the algorithm
under any arbitrary sequence of updates that satisfy the skipping conditions in (14)
and (15) for each block i at every iteration k.

Algorithm 1 One iteration of SQP method with block-wise TR1 Jacobian updates.

Input: wki = (xki , u
k
i ), λ

k
i and Aki for i = 0, . . . , N − 1.

Problem linearization and QP preparation

1: Formulate the QP in (7) with Jacobian matrices Aki , Gauss-Newton Hessian ap-
proximations Hk

i and vectors aki , p
k
i and hki in (8) for i = 0, . . . , N − 1.

Computation of Newton-type step direction

2: Solve the QP subproblem in Eq. (7) to update optimization variables:
wk+1
i ← wki + ∆wki and λk+1

i ← λki + ∆λki . . full step

Block-wise TR1 Jacobian updates

3: for i = 0, . . . , N − 1 do in parallel
4: Choose αki = αkF,i or αki = αkA,i via some decision rule.

5: Ak+1
i ← Aki + αki

(
yki −Aki ski

) (
γk
>

i − σk
>

i Aki

)
.

6: end for
Output: wk+1

i = (xk+1
i , uk+1

i ), λk+1
i and Ak+1

i for i = 0, . . . , N − 1.

The complete adjoint-based SQP method that uses parallelizable block-wise TR1
Jacobian updates is summarized in Algorithm 1. Note that, for simplicity, the SQP
algorithm is presented as a full-step method without any globalization or step-length
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selection strategies to ensure convergence to a local minimum [31]. This is also further
motivated by the use of online algorithms for real-time nonlinear MPC as discussed
in [17].

3. Convergence Results for Block-wise TR1-based SQP Method

For the convergence analysis of sequential quadratic programming, it is standard to
rely on a result that the active set, i.e., the set of active inequality constraints in
the QP subproblems is stable in a neighbourhood around a local minimizer of the
nonlinear program [31]. This allows us to study the local convergence properties of the
block-TR1 based SQP method under the assumption that the active set has already
been fixed, resulting, locally, in an equality constrained problem.

3.1. Stability of the active set and local convergence

Let us start by briefly repeating the result from [20] on the stability of the active set in
the QP subproblems near the NLP solution and the corresponding conditions on local
convergence properties for an adjoint-based SQP method with inexact Jacobians.

Theorem 3.1. (Stability of active set and local convergence) Let the NLP solution
vectors w∗, λ∗ be given and assume that:

(i) at w∗ LICQ holds, and there exist Lagrange multiplier values µ∗ such that
(w∗, λ∗, µ∗) satisfies the KKT conditions in (4).

(ii) at w∗ strict complementarity holds, i.e., the multipliers µ∗A of the active inequal-
ities PAw

∗ = pA satisfy µ∗A > 0, where PA is a matrix consisting of all rows of
P that correspond to the active inequalities at the NLP solution.

(iii) there are two sequences of uniformly bounded matrices (Ak, Hk), each Hk positive
semidefinite on the null space of Ak, such that the sequence of matrices

Jk :=

N>Hk N>Ak
>

Ak

PA

 ≈ ∂F
∂y

(yk), where F(y) :=

N>∇wL(w, λ)
F (w)−X
PAw − pA

 ,
is uniformly bounded and invertible with a uniformly bounded inverse. Here, N
is a null space matrix with appropriate dimensions with orthonormal column
vectors such that N>N = 1 and PAN = 0.

(iv) there is a sequence of iterates yk := (wk, λk) generated according to

wk+1 = wk + ∆wk and λk+1 = λk + ∆λk = λk+1
QP ,

where ∆wk is the primal solution of the QP subproblem in (7) and λk+1
QP denote

the Lagrange multipliers corresponding to the equality constraints (7c). Each
iteration can be written in compact form as yk+1 = yk − Jk−1F(yk).

(v) there exists κ < 1 such that, for all k ∈ N, it can be guaranteed that∥∥∥∥Jk+1−1

(
Jk − ∂F

∂y
(yk + t∆yk)

)
∆yk

∥∥∥∥ ≤ κ‖∆yk‖, ∀t ∈ [0, 1]. (16)
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Then, there exists a neighbourhood N̄ of (w∗, λ∗) such that for all initial guesses
(w0, λ0) ∈ N̄ the sequence (wk, λk) converges q-linearly towards (w∗, λ∗) with rate
κ, and the solution of each QP (7) has the same active set as w∗.

In addition to the latter result that guarantees a q-linear local convergence rate in
a neighbourhood of the NLP solution, the following theorem states a condition under
which q-superlinear local convergence can be obtained instead.

Theorem 3.2. (Superlinear convergence) If the equality

lim
k→∞

[
N>HkN N>Ak

>

AkN 0

]
=

[
N>∇2

wwL(w?, λ?)N N> ∂F∂w (w?)>
∂F
∂w (w?)N 0

]
, (17)

holds in addition to the assumptions of Theorem 3.1, then the local convergence rate
is q-superlinear instead.

The proofs for both Theorem 3.1 and 3.2 can be found in [20] for an adjoint-based
SQP method with inexact Jacobians that matches our problem formulation.

3.2. Convergence of the block-wise TR1 Jacobian updates

Theorem 3.1 holds for a general class of constraint Jacobian and Hessian approxima-
tion matrices (Ak, Hk). Therefore, we have to show that our block-wise TR1 updates
produce a sequence of block-structured matrices that converge to the exact Jacobian,
which is itself block-structured, projected onto the null space of the active inequality
constraint matrix PA. Namely, defining a null space matrix N as in Theorem 3.1, we
need to prove that the following holds

lim
k→∞

∥∥∥∥(Aki − ∂Fi
∂w

(w∗i )

)
Ni

∥∥∥∥ = 0, ∀i = 0, . . . , N − 1, (18)

where Ni is the projection of the null space matrix N in the variable space correspond-
ing to block i. The only non-zero entries that are inexact in the Jacobian approximation
matrix Ak are those corresponding to the block-TR1 matrices Aki , i = 0, . . . , N − 1.

Assumption 3.3. Let us make the following assumptions:

(AS1) The Lagrangian function is twice continuously differentiable.
(AS2) The function ∇wF (w) is Lipschitz continuous, i.e., there exists a constant c3

such that ‖∇wF (w1)−∇wF (w2)‖ ≤ c3‖w1 − w2‖, for any w1, w2.
(AS3) Let {(wk, λk)} be a sequence of iterates generated by our block-TR1 based SQP

method in Algorithm 1, with a corresponding sequence of update parameters {αki },
while satisfying the skipping criterion in eqs. (14)-(15).

(AS4) The SQP iterates {(wk, λk)} converge to a limit point (w∗, λ∗).
(AS5) There is k0 such that the active set is stable for all iterates k ≥ k0.
(AS6) For each block i, the sequence of projections of {sk} on the subspace associated

with block i, namely {ski } is uniformly linearly independent in the projected null
space Ni, i.e., there exist c4 > 0 and l ≥ qi such that, for each ki ≥ k0, there exist

qi distinct indices kji with ki ≤ k1
i < . . . < kqii ≤ ki + l, s

kj
i

N,i ∈ Rqi, sk
j
i

i = Nis
kj
i

N,i,

9



j = 1, . . . , qi and the minimum singular value σmin(SkiNi
) of the matrix

SkiNi
=

[
s
k1
i

N,i

‖sk
1
i

N,i‖
. . .

s
k
qi
i

N,i

‖sk
qi
i

N,i‖

]
(19)

is bounded below by c4, i.e., σmin(SkiNi
) ≥ c4.

Note that the assumptions (AS1)-(AS5) are relatively mild and quite standard in
Newton-type convergence analysis of SQP methods [20]. Especially, condition (AS5)
holds due to the local stability result in Theorem 3.1 for the active set near the NLP
solution. Even though (AS6) seems relatively strong, a very similar assumption is made
in existing convergence results for quasi-Newton type matrix update schemes [13, 20].
Here, we only require uniform linear independence inside each block i. We proceed now
to prove the convergence of the quasi-Newton block-structured constraint Jacobian
approximation matrices, using ideas from [13] and [20]. We start by first showing an
intermediate result in the following lemma.

Lemma 3.4. Given (AS1)-(AS3) in Assumption 3.3, then the following holds for
each Jacobian block matrix approximation

∥∥∥yki −Aliski ∥∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki ‖s

k
i ‖, ∀l ≥ k + 1, (20a)

∥∥∥γki −Al>i σki ∥∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki ‖σ

k
i ‖, ∀l ≥ k + 1, (20b)

where i = 0, . . . , N − 1 and ηl,ki = max{‖wpi − wsi ‖ | k ≤ s ≤ p ≤ l} is defined.

Proof. Our proof follows closely the proof of Lemma 4.1 in [20] but extended to our
block-structured method and generalized to include both the forward and adjoint
TR1 Jacobian update formulas.

Step 1: Eq. (20a) based on forward Jacobian update
We start by showing the result of Eq. (20a) when αi = αF,i. The proof is by induction
for each block i = 0, . . . , N − 1. For l = k + 1, we know that yki − Aliski = 0 based on
the forward update. Assume that the result in (20a) holds for all j = k + 1, . . . , l.
Then, we have the following

‖yki −Al+1
i ski ‖ =

∥∥∥yki −Aliski − αlF,i ρliτ l>i ski ∥∥∥
≤ ‖yki −Aliski ‖+

∣∣∣∣(τ li , ski )(τ li , s
l
i)

∣∣∣∣ ‖ρli‖, (21)

where τ li = γli − Al
>

i σ
l
i and ρli = yli − Alisli such that αlF,i = 1

(τ l
i ,s

l
i)

. Then, using the

result in Eq. (20a), we can write∣∣∣(τ li , ski )∣∣∣ =
∣∣∣(γli −Al>i σli, ski )∣∣∣ ≤ ∣∣∣(γli, ski )− (σli, y

k
i )
∣∣∣+
∣∣∣(σli, yki )− (σli, A

l
is
k
i )
∣∣∣

≤
∣∣∣(γli, ski )− (σli, y

k
i )
∣∣∣+

c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki

∥∥∥σli∥∥∥∥∥∥ski ∥∥∥ . (22)
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Using the mean-value theorem, it follows that∣∣∣(γli, ski )− (σli, y
k
i )
∣∣∣ =

∣∣∣∣σl>i (∂Fi∂w
(wli + sli)−

∫ 1

0

∂Fi
∂w

(wki + t ski )dt

)
ski

∣∣∣∣
≤ c3 η

l+1,k
i

∥∥∥σli∥∥∥∥∥∥ski ∥∥∥ , (23)

based on the Lipschitz continuity in (AS2). From the skipping condition in (14), we

know that
∣∣(τ li , sli)∣∣ ≥ c1

∥∥σli∥∥ ∥∥ρli∥∥. In addition, given that ηl,ki ≤ η
l+1,k
i , we obtain

∥∥∥yki −Al+1
i ski

∥∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki

∥∥∥ski ∥∥∥
+

(
c3η

l+1,k
i +

c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki

) ∥∥σli∥∥∥∥ski ∥∥∣∣(τ li , sli)∣∣
∥∥∥ρli∥∥∥

≤ c3

c1

(
2

c2
1

+ 1

)l+1−k
ηl+1,k
i

∥∥∥ski ∥∥∥ .
(24)

Step 2: Eq. (20a) based on adjoint Jacobian update
Let us continue this proof by induction for Eq. (20a), based on the adjoint Jacobian
update formula. First, we derive the following error bound for the adjoint Jacobian
update in case l = k + 1 in Eq. (20a)∥∥∥yki −Ak+1

i ski

∥∥∥ =

∥∥∥∥yki −Aki ski − 1

(σki , ρ
k
i )
ρki τ

k>

i ski

∥∥∥∥ =

∥∥∥∥ρki − 1

(σki , ρ
k
i )
ρki τ

k>

i ski

∥∥∥∥
=

∣∣∣∣1− (τki , s
k
i )

(σki , ρ
k
i )

∣∣∣∣ ∥∥∥ρki ∥∥∥ =

∣∣∣∣∣(σki , yki −Aki ski )− (γki −Ak
>

i σki , s
k
i )

(σki , ρ
k
i )

∣∣∣∣∣ ∥∥∥ρki ∥∥∥
=

∣∣(σki , yki )− (γki , s
k
i )
∣∣∣∣(σki , ρki )∣∣
∥∥∥ρki ∥∥∥ .

(25)
From the skipping conditions in (14)-(15), we know that

∣∣(σki , ρki )∣∣ ≥ c1

∥∥ski ∥∥ ∥∥τki ∥∥ and∥∥ρki ∥∥ ≤ |(τk
i ,s

k
i )|

c1‖σk
i ‖
≤ ‖τ

k
i ‖‖ski ‖
c1‖σk

i ‖
holds. We can use these lower and upper bounds to rewrite

the latter expression as

∥∥∥yki −Ak+1
i ski

∥∥∥ =

∣∣(σki , yki )− (γki , s
k
i )
∣∣∣∣(σki , ρki )∣∣
∥∥∥ρki ∥∥∥ ≤ ∣∣(σki , yki )− (γki , s

k
i )
∣∣

c1

∥∥ski ∥∥ ∥∥τki ∥∥
∥∥∥ρki ∥∥∥

≤
∣∣(σki , yki )− (γki , s

k
i )
∣∣

c2
1

∥∥σki ∥∥
≤ c3

c2
1

∥∥∥ski ∥∥∥2
,

(26)
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where we additionally used the result∣∣∣(γki , ski )− (σki , y
k
i )
∣∣∣ =

∣∣∣∣σk>i (
∂Fi
∂w

(wk+1
i )−

∫ 1

0

∂Fi
∂w

(wki + t ski )dt

)
ski

∣∣∣∣
≤ c3

∥∥∥σki ∥∥∥∥∥∥ski ∥∥∥2
.

(27)

Note that ηk+1,k
i =

∥∥ski ∥∥ such that Eq. (20a) holds in case l = k+ 1. Assume that the
result in (20a) holds for all j = k + 1, . . . , l. Then, we have the following

‖yki −Al+1
i ski ‖ =

∥∥∥yki −Aliski − αlA,i ρliτ l>i ski ∥∥∥
≤ ‖yki −Aliski ‖+

∣∣∣∣(τ li , ski )(σli, ρ
l
i)

∣∣∣∣ ‖ρli‖, (28)

for the adjoint Jacobian update formula in which αA,i = 1
(σl

i,ρ
l
i)

. From the skipping

conditions in (14)-(15), we know that
∣∣(σli, ρli)∣∣ ≥ c1

∥∥sli∥∥ ∥∥τ li∥∥ and
∥∥ρli∥∥ ≤ |(τ l

i ,s
l
i)|

c1‖σl
i‖
≤

‖τ l
i‖‖sli‖
c1‖σl

i‖
holds such that ‖σ

l
i‖‖ρli‖
|(σl

i,ρ
l
i)|
≤ 1

c1

‖σl
i‖‖ρli‖

‖sli‖ ‖τ l
i‖
≤ 1

c21
. In addition, given eqs. (22) and (23)

and given that ηl,ki ≤ η
l+1,k
i , we obtain

∥∥∥yki −Al+1
i ski

∥∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki

∥∥∥ski ∥∥∥
+

(
c3η

l+1,k
i +

c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki

) ∥∥σli∥∥∥∥ski ∥∥∣∣(σli, ρli)∣∣
∥∥∥ρli∥∥∥

≤ c3

c1

(
1

c1
+

(
1

c2
1

+ 1

)(
2

c2
1

+ 1

)l−k)
ηl+1,k
i

∥∥∥ski ∥∥∥
≤ c3

c1

(
2

c2
1

+ 1

)l+1−k
ηl+1,k
i

∥∥∥ski ∥∥∥ .

(29)

Note that the induction proof of step 1 and 2 implies that Eq. (20a) additionally
holds when switching between the forward and adjoint Jacobian update formulas. A
similar induction-based proof can be used to show the result of Eq. (20b) for the
dynamic block-TR1 Jacobian updates.

Now, we present the resulting theorem on the convergence of the Jacobian approxi-
mation for the block-wise TR1 scheme under any sequence of decision rules that select
the adjoint or forward updates at every iteration k and for each block i = 0, . . . , N−1.

Theorem 3.5. Given (AS1)-(AS6) in Assumption 3.3, then the following holds for
each Jacobian block matrix i = 0, . . . , N − 1

lim
k→∞

∥∥∥∥(Aki − ∂Fi
∂wi

(w∗i )

)
Ni

∥∥∥∥ = 0, (30)
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such that the following holds for the complete Jacobian approximation

lim
k→∞

∥∥∥∥(Ak − ∂F

∂w
(w∗)

)
N

∥∥∥∥ = 0. (31)

Proof. Based on the inequality ‖wpi − wsi ‖ ≤ ‖w
p
i − w∗i ‖ + ‖wsi − w∗i ‖ and using the

definition ηl,ki = max{‖wpi − wsi ‖ | k ≤ s ≤ p ≤ l}, one obtains

ηk+l+1,k
i ≤ 2 νki for νki = max{‖wsi − w∗i ‖ | k ≤ s ≤ k + l + 1}, (32)

for l ≥ qi and qi is defined as in Assumption 3.3. In addition, the following holds∥∥∥∥yji − ∂Fi
∂wi

(w∗i )s
j
i

∥∥∥∥ =

∥∥∥∥∥
(∫ 1

0

∂Fi
∂wi

(wji + tsji )dt

)
sji −

∂Fi
∂wi

(w∗i )s
j
i

∥∥∥∥∥ (33a)

=

∥∥∥∥∥
(∫ 1

0

∂Fi
∂wi

(wji + tsji )dt−
∂Fi
∂wi

(w∗i )

)
sji

∥∥∥∥∥ (33b)

≤ c3ν
k
i

∥∥∥sji∥∥∥ , (33c)

at an iteration j, where k ≤ j ≤ k + l, regardless of whether the forward or adjoint
Jacobian update formula has been used. Moreover, from Lemma 3.4, we have that

∥∥∥yji −Ak+l+1
i sji

∥∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)k+l+1−j
ηk+l+1,j
i ‖sji‖, k ≤ j ≤ k + l,

≤ 2
c3

c1

(
2

c2
1

+ 1

)l+1

νki ‖s
j
i‖.

(34)

We use the triangle inequality to obtain∥∥∥∥∥∥
(
Ak+l+1
i − ∂Fi

∂wi
(w∗i )

)
sji∥∥∥sji∥∥∥
∥∥∥∥∥∥ ≤ 1∥∥∥sji∥∥∥

(∥∥∥yji −Ak+l+1
i sji

∥∥∥+

∥∥∥∥yji − ∂Fi
∂wi

(w∗i )s
j
i

∥∥∥∥)
(35a)

≤

(
2
c3

c1

(
2

c2
1

+ 1

)l+1

+ c3

)
νki , (35b)

which holds for a sequence of indices j = k1
i , . . . , k

qi
i . Then, we use the linear inde-

pendence condition (AS6) in Assumption 3.3 that guarantees both existence of the

inverse (SkiNi
)−1 and the upper bound ‖(SkiNi

)−1‖ ≤ 1/c4, such that∥∥∥∥(Ak+l+1
i − ∂Fi

∂wi
(w∗i )

)
Ni

∥∥∥∥ ≤ 1

c4

∥∥∥∥(Ak+l+1
i − ∂Fi

∂wi
(w∗i )

)
NiS

ki
Ni

∥∥∥∥ (36a)

≤ c5 ν
k
i , (36b)
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where c5 = c3
c4

(
2
c1

(
2
c21

+ 1
)l+1

+ 1

)
√
qi has been defined. Lastly, the result in Eq. (30)

follows from the fact that assumption (AS4) implies that νki tends to zero. Note that
this asymptotic result holds regardless of which Jacobian update (adjoint or forward
TR1 formula) is performed for each block i = 0, . . . , N − 1. The same convergence
result then holds for the complete Jacobian matrix in (31), based on separability of
the active inequality constraints and of the nonlinear constraint functions.

3.3. Local rate of linear convergence for Gauss-Newton based SQP

One iteration of the adjoint-based Gauss-Newton SQP method solves the linear system
in Eq. (6), which can be written in the following compact form

J̃IN(zk)∆z = −F(zk), (37)

where F(·) denotes the KKT optimality conditions in the right-hand side of Eq. (6).
Let us define regularity for a local minimizer z? := (w?, λ?, µ?) of the NLP, given
a particular set of active inequality constraints. For this purpose, we rely on the
linear independence constraint qualification (LICQ) and the second order sufficient
conditions (SOSC) for optimality, of which the latter requires that the Hessian of the
Lagrangian is strictly positive definite in the directions of the critical cone [31].

Definition 3.6. A minimizer of an equality constrained NLP is called a regular KKT
point, if both LICQ and SOSC are satisfied at this KKT point.

The convergence of this Newton-type optimization method then follows the classical
and well-known local contraction theorem from [9, 15, 20, 32]. We use a particular
version of this theorem from [19, 34], providing sufficient and necessary conditions
for the existence of a neighbourhood of the solution where the Newton-type iteration
converges locally. Let ρ(P ) denote the spectral radius, i.e., the maximum absolute
value of the eigenvalues for the square matrix P .

Theorem 3.7 (Local Newton-type contraction [19]). We consider the twice continu-
ously differentiable function F(z) from Eq. (6) and the regular KKT point F(z?) = 0
from Definition 3.6. We then apply the Newton-type iteration in Eq. (37), where
J̃IN(z) ≈ J(z) is additionally assumed to be continuously differentiable and invert-
ible in a neighbourhood of the solution. If all eigenvalues of the iteration matrix have
a modulus smaller than one, i.e., if the spectral radius satisfies

κ? := ρ
(
J̃IN(z?)−1J(z?)− 1

)
< 1, (38)

then this fixed point z? is asymptotically stable. Additionally, the iterates zk converge
linearly to the KKT point z? with the asymptotic contraction rate κ? when initialized
sufficiently close. On the other hand, the fixed point z? is unstable if κ? > 1.

A proof for Theorem 3.7 can be found in [19, 36], based on nonlinear systems theory.
Using this result, let us define the linear contraction rate for a Gauss-Newton method
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with exact Jacobian information

κ?GN := ρ


 H (∂F∂w − E)> P>A
∂F
∂w − E
PA

−1  ∇2
wL (∂F∂w − E)> P>A

∂F
∂w − E
PA

− 1

 < 1,

(39)
at the local solution point z? := (w?, λ?, µ?) of the KKT conditions. In what follows,
we show that the local contraction rate for the block-TR1 Gauss-Newton SQP method

κ?BTR1 := ρ

 H (A− E)> P>A
A− E
PA

−1  ∇2
wL (∂F∂w − E)> P>A

∂F
∂w − E
PA

− 1

 < 1,

(40)
coincides with the exact Jacobian based linear convergence rate in (39). The following
result states that the eigenspectrum of the iteration matrix J̃IN(z?)−1J(z?) − 1 at
the solution point z? := (w?, λ?, µ?) coincides with the eigenspectrum of the iteration
matrix J̃GN(z?)−1J(z?)− 1, using the notation σ(P ) to denote the spectrum, i.e., the
set of eigenvalues for a matrix P .

Lemma 3.8. For a regular KKT point z? := (w?, λ?, µ?), the eigenvalues of the block-
TR1 based iteration matrix J̃IN(z?)−1J(z?)− 1 satisfy

σ
(
J̃IN(z?)−1J(z?)− 1

)
= σ

(
J̃GN(z?)−1J(z?)− 1

)
. (41)

Proof. Let us define the eigenvalues s of the iteration matrix J̃IN(z?)−1J(z?) − 1 as
the zeros of

det
(
J̃IN(z?)−1J(z?)− (s+ 1)1

)
= 0, (42)

which, given that the Jacobian approximation J̃IN is invertible, this is equivalent to

det
(
J(z?)− (s+ 1)J̃IN(z?)

)
= 0. (43)

This block matrix then reads as

J(z?)−(s+1)J̃IN(z?) =

 ∇2
wL − (s+ 1)H

(
∂F
∂w − (s+ 1)A

)>
+ sE> −sP>A(

∂F
∂w − (s+ 1)A

)
+ sE

−sPA

 .
(44)

The result follows from Theorem 3.5 that claims the following asymptotic result for
the block-TR1 based Jacobian approximation

lim
k→∞

(
Ak − ∂F

∂w
(w∗)

)
N =

(
A− ∂F

∂w
(w∗)

)
N = 0, (45)

where N is a null space matrix with appropriate dimensions and orthonormal column
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vectors such that N>N = 1 and PAN = 0. We rewrite Eq. (43) as follows

det
(
J(z?)− (s+ 1)J̃IN(z?)

)
=

(−s)2nA det

 ∇2
wL − (s+ 1)H

(
∂F
∂w − (s+ 1)A

)>
+ sE> P>A(

∂F
∂w − (s+ 1)A

)
+ sE

PA

 .
(46)

It can be verified that det
(
J(z?)− (s+ 1)J̃IN(z?)

)
= 0 holds for s = 0 with an

algebraic multiplicity of 2nA as well as for the values of s that satisfy

det

([
N> 0
0 1

][
∇2
wL − (s+ 1)H

(
∂F
∂w − (s+ 1)A

)>
+ sE>(

∂F
∂w − (s+ 1)A

)
+ sE 0

][
N 0
0 1

])

= det

([
N>∆H N N>

(
∂F
∂w − (s+ 1)A

)>
+ sN>E>(

∂F
∂w − (s+ 1)A

)
N + sE N 0

])

= (−s)2nF det

([
N>∆H N N>

(
∂F
∂w − E

)>(
∂F
∂w − E

)
N 0

])
= 0,

(47)

in the limit for k → ∞, where the compact notation ∆H :=
(
∇2
wL − (s+ 1)H

)
has

been used for the Gauss-Newton Hessian approximation. Therefore, the eigenvalues
of the iteration matrix J̃IN(z?)−1J(z?) − 1 for the proposed block-TR1 approach,
evaluated at a regular KKT point, are equal to the eigenvalues of the iteration matrix
J̃GN(z?)−1J(z?)− 1 for the exact Jacobian based Gauss-Newton method.

Corollary 3.9. Based on Lemma 3.8, the linear contraction rate for the block-TR1
based optimization algorithm coincides with the linear contraction rate of the exact
Jacobian based Gauss-Newton method κ?BTR1 = κ?GN, when the iterates are sufficiently
close to the regular KKT point z? := (w?, λ?, µ?).

3.4. Superlinear convergence for SQP with quasi-Newton Hessian updates

Even though the majority of this article is focused on the generalized Gauss-Newton
method for nonlinear least squares type optimization problems that occur frequently
in predictive control applications, note that superlinear convergence results can be re-
covered when a block-structure preserving quasi-Newton method is additionally used
to approximate the Hessian of the Lagrangian. For example, let us consider the fol-
lowing lemma that represents a block-structured or partitioned version [23, 24] of
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [1] or the symmetric rank-one (SR1)
formula [13, 29] to approximate the block-diagonal Hessian matrix.

Theorem 3.10. Given (AS1)-(AS6) in Assumption 3.3, then the following holds for
each Hessian block matrix approximation

lim
k→∞

∥∥∥(Hk
i −∇2

wiwi
L(w?i , λ

?
i )
)
Ni

∥∥∥ = 0, (48)
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i = 0, . . . , N −1, such that the following holds for the complete Hessian approximation

lim
k→∞

∥∥∥(Hk −∇2
wwL(w?, λ?)

)
N
∥∥∥ = 0. (49)

Theorem 3.10 on the convergence of a separable quasi-Newton type Hessian approx-
imation method in combination with our main result in Theorem 3.5 on the block-
structured quasi-Newton type Jacobian update formula can be used directly to prove
the following result on convergence of the reduced KKT matrix.

Theorem 3.11. Given (AS1)-(AS6) in Assumption 3.3, the following holds

lim
k→∞

∥∥∥∥[N>HkN N>Ak
>

AkN 0

]
−
[
N>∇2

wwL(w?, λ?)N N> ∂F∂w (w?)>
∂F
∂w (w?)N 0

]∥∥∥∥ = 0. (50)

Based on Theorem 3.2, the above result ensures q-superlinear convergence of the
SQP iterates when using a quasi-Newton method to update both the block-structured
Hessian and Jacobian matrices. The proof for Theorem 3.11, based on the intermediate
convergence results in Theorem 3.5 and 3.10 can be found in [20].

4. Lifted Collocation Algorithm with Block-TR1 Jacobian Updates

As mentioned earlier, implicit integration schemes are often used in direct optimal
control because of their relatively high order of accuracy and their improved numeri-
cal stability properties [26]. More specifically, problem formulations based on a system
of stiff and/or implicit differential or differential-algebraic equations require the use of
an implicit integration scheme. Collocation methods are a popular family of implicit
Runge-Kutta methods. This section presents a novel lifted collocation algorithm based
on tailored block-TR1 Jacobian updates. The standard lifted collocation method with
exact Jacobian information was proposed in [37] as a structure-exploiting implemen-
tation of direct collocation, even though it shows similarities to multiple shooting.

4.1. Direct collocation for nonlinear optimal control

In direct transcription methods, such as direct collocation [3, 5], the integration scheme
and its intermediate variables are directly made part of the nonlinear optimization
problem. In this context, where the simulation routine is defined implicitly as part of
the equality constraints in the dynamic optimization problem, one typically relies on
implicit integration schemes for their relatively high order of accuracy and improved
numerical stability properties. The discrete-time optimal control problem can generally
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be written as

min
X,U,K

N−1∑
i=0

li(xi, ui) + lN (xN ) (51a)

s.t. x̂0 = x0, (51b)

xi +BiKi = xi+1, i = 0, . . . , N − 1, (51c)

Gi(xi, ui,Ki) = 0, i = 0, . . . , N − 1, (51d)

Piwi ≤ pi, i = 0, . . . , N, (51e)

where the additional trajectory K = [K>0 , . . . ,K
>
N−1]> denotes the intermediate vari-

ables of the numerical integration method. These variables are defined implicitly by
the equations in (51d), such that the continuity condition reads as in Eq. (51c). More
specifically, the Jacobian ∂Gi

∂Ki
(·) will generally be invertible for an integration scheme

applied to a well-defined set of differential equations in (1c). A popular approach of
this type is better known as direct collocation [4]. It relies on a collocation method,
a subclass of implicit Runge-Kutta (IRK) methods [26], to accurately discretize the
continuous time dynamics. In this case, the equations in (51d) define the collocation
polynomial on each control interval i = 0, . . . , N − 1.

In a similar fashion as in Section 2, the adjoint-based SQP method can be applied
directly to the direct collocation problem in (51) by solving the following convex QP
subproblem at each iteration

min
∆W,∆K

N∑
i=0

1

2
∆w>i H

k
i ∆wi + hc

>

i

[
∆wi
∆Ki

]
(52a)

s.t. ∆x0 = x̂0 − xk0, (52b)

eki + ∆xi +Bi ∆Ki = ∆xi+1, i = 0, . . . , N − 1, (52c)

cki +Dk
i ∆wi + Cki ∆Ki = 0, i = 0, . . . , N − 1, (52d)

Pi ∆wi ≤ pki , i = 0, . . . , N, (52e)

based on cki := Gi(w
k
i ,K

k
i ) and the Jacobian approximations Dk

i ≈ ∂Gi

∂wi
(wki ,K

k
i ) and

Cki ≈ ∂Gi

∂Ki
(wki ,K

k
i ). The corresponding gradient correction reads as

hci :=

∇wi
l(wki ) +

(
∂Gi

∂wi
(wki ,K

k
i )−Dk

i

)>
ωki(

∂Gi

∂Ki
(wki ,K

k
i )− Cki

)>
ωki

 , (53)

where ωki denotes the current value of the multipliers for the nonlinear constraints
in (51d) and λki again denotes the multipliers for the continuity constraints in (51c).

4.2. Tailored structure exploitation for direct collocation

As mentioned earlier, the Jacobian matrix ∂Gi

∂Ki
for the collocation equations needs to

be invertible. Therefore, given an invertible approximation Cki ≈ ∂Gi

∂Ki
(wki ,K

k
i ), we can
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rewrite the linearized expression in Eq (52d) as follows

∆Ki = −Ck−1

i

(
cki +Dk

i ∆wi

)
. (54)

By substituting the above expression for ∆Ki back into the direct collocation struc-
tured QP in (52), one obtains the condensed but equivalent formulation

min
∆W

N∑
i=0

1

2
∆w>i H

k
i ∆wi + h̃c

>

i ∆wi (55a)

s.t. ∆x0 = x̂0 − xk0, (55b)

dki + ∆xi −BiCk
−1

i Dk
i ∆wi = ∆xi+1, i = 0, . . . , N − 1, (55c)

Pi ∆wi ≤ pki , i = 0, . . . , N, (55d)

where dki = eki −BiCk
−1

i cki is defined and the condensed gradient reads as

h̃ci = ∇wi
l(wki ) +

(
∂Gi
∂wi
− ∂Gi
∂Ki

Ck
−1

i Dk
i

)>
ωki , (56)

given the original gradient correction in (53).
Note that the resulting QP formulation in Eq. (55) is of the same problem dimen-

sions and exhibits the same sparsity as the multiple shooting structured QP subprob-
lem in Eq. (7). Therefore, state of the art block-structured QP solvers can be used,
for which an overview can be found in [21]. After solving the condensed QP in (55),
the collocation variables can be obtained from the expansion step in Eq. (54). Based
on the optimality conditions of the original direct collocation structured QP in (52),
the corresponding Lagrange multipliers can be updated as follows

ωk+1
i = ωki − Ck

−>

i

(
∂Gi
∂Ki

>
ωki +B>i λ

k+1
i

)
, (57)

where λk+1
i denote the new values of the Lagrange multipliers for the continuity con-

ditions in (55c) or in (52c).

4.3. Block-TR1 Jacobian update for lifted collocation

The block-TR1 update formula from Eq. (11) can be readily applied to the direct
collocation equations, resulting in

[Dk+1
i Ck+1

i ] = [Dk
i C

k
i ] + αki

(
yki − [Dk

i C
k
i ] ski

)(
γk
>

i − σk
>

i [Dk
i C

k
i ]
)
, (58)

where the quantities γk
>

i = σk
>

i
∂Gi

∂(wi,Ki)
(wk+1

i ,Kk+1
i ) and σki = ωk+1

i − ωki are defined.

In addition, ski :=

[
wk+1
i − wki

Kk+1
i −Kk

i

]
and yki = Gi(w

k+1
i ,Kk+1

i )−Gi(wki ,Kk
i ) is defined. In

order to use this block-TR1 update formula in combination with the lifted collocation
method, one needs to be able to efficiently form the condensed QP in Eq. (55). For this
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purpose, we need to avoid the costly computations of the inverse matrix Ck
−1

i as well

as the matrix-matrix multiplication Ck
−1

i Dk
i . In what follows, we present a procedure

to directly obtain a rank-one update formula for the inverse matrix Ck+1−1

i and for

the corresponding product Ek+1
i := Ck+1−1

i Dk+1
i .

Based on the Sherman-Morrison formula, one can directly update the matrix inverse

given the previous invertible approximation Ck
−1

i ≈ ∂Gi

∂Ki

−1
. Let us first rewrite the

block-TR1 update from Eq. (58) as follows

Dk+1
i = Dk

i + αki ρ
k
i τ

k>

D,i and Ck+1
i = Cki + αki ρ

k
i τ

k>

C,i, (59)

where ρki = yki − [Dk
i C

k
i ]ski and [τk

>

D,i τ
k>

C,i] = γk
>

i −σk
>

i [Dk
i C

k
i ]. The Sherman-Morrison

formula then reads as

Ck+1−1

i = Ck
−1

i − αki βki Ck
−1

i ρki τ
k>

C,iC
k−1

i , (60)

where βki = 1
1 +αk

i τ
k>
C,iC

k−1
i ρki

. Let us define ρ̃ki = Ck
−1

i ρki such that we obtain the follow-

ing update for the condensed Jacobian

Ek+1
i = Ck+1−1

i Dk+1
i = Ck

−1

i

(
Dk
i + αki ρ

k
i τ

k>

D,i

)
− αki βki Ck

−1

i ρki τ
k>

C,iC
k−1

i

(
Dk
i + αki ρ

k
i τ

k>

D,i

)
= Eki + αki ρ̃

k
i τ

k>

D,i − αki βki ρ̃ki τk
>

C,i(E
k
i + αki ρ̃

k
i τ

k>

D,i)

= Eki + αki ρ̃
k
i τ̃

k>

i ,

(61)

where τ̃k
>

i = τk
>

D,i − βki τk
>

C,i(E
k
i + αki ρ̃

k
i τ

k>

D,i) has been defined. It is readily seen that the

update for Eki in Eq. (61) is a rank-one update for the condensed Jacobian matrix. As
proposed in [27], corresponding low-rank update formulas for the condensed Hessian
can be obtained for the special case of a pseudospectral method based on a global
collocation polynomial.

4.4. Lifted collocation SQP method with block-TR1 Jacobian updates

It is important to stress that the novel block-TR1 update formula for the condensed

Jacobian matrix Ek+1
i = Ck+1−1

i Dk+1
i in Eq. (61) provides an efficient manner to

directly compute the rank-one update to the matrices in the condensed QP formulation
of Eq. (55), without the need for a matrix factorization, inversion and without any
matrix-matrix multiplications. Instead, the proposed implementation merely requires
matrix-vector multiplications and outer products, resulting in a quadratic instead of
cubic computational complexity with respect to the number of optimization variables
within each control interval. However, this comes at the cost of a slightly increased
memory footprint, since additionally the matrices C−1

i and Ei need to be stored from
one iteration to the next. The implementation of the lifted block-TR1 based SQP
method for direct collocation is presented in Algorithm 2.
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Algorithm 2 One lifted collocation SQP iteration with block-wise TR1 updates.

Input: wki = (xki , u
k
i ), K

k
i , λki , ω

k
i , Cki , Dk

i , Ck
−1

i and Eki .
Problem linearization and QP preparation

1: Formulate the QP in (55) with Jacobian matrices Eki , Gauss-Newton Hessian ap-

proximations Hk
i and vectors dki , p

k
i and h̃ci in (56) for i = 0, . . . , N − 1.

Computation of Newton-type step direction

2: Solve the QP subproblem in Eq. (55) to update optimization variables:
wk+1
i ← wki + ∆wki and λk+1

i ← λki + ∆λki . . full step

Block-wise TR1 Jacobian updates

3: for i = 0, . . . , N − 1 do in parallel
4: Choose αki = αkF,i or αki = αkA,i via some decision rule.

5: Kk+1
i ← Kk

i − Ck
−1

i cki − Eki ∆wki ,

6: ωk+1
i ← ωki − Ck

−>

i

(
∂Gi

∂Ki

>
ωki +B>i λ

k+1
i

)
,

7: Dk+1
i ← Dk

i + αki ρ
k
i τ

k>

D,i and Ck+1
i ← Cki + αki ρ

k
i τ

k>

C,i,

8: Ck+1−1

i ← Ck
−1

i − αki βki ρ̃ki τk
>

C,iC
k−1

i ,

9: Ek+1
i ← Eki + αki ρ̃

k
i τ̃

k>
i .

10: end for
Output: wk+1

i , Kk+1
i , λk+1

i , ωk+1
i , Ck+1

i , Dk+1
i , Ck+1−1

i and Ek+1
i .

4.5. Convergence results for block-TR1 based lifted collocation

We observe that the TR1 Jacobian updates of the lifted collocation implementation are
equivalent to the updates of the direct collocation method. More specifically, the Jaco-
bian approximation matrices are the same at each SQP iteration, regardless of whether
we perform the condensing and expansion procedure for the collocation variables in the
proposed lifted implementation of Algorithm 2. Therefore, the convergence properties
shown in the previous section also hold for both the standard and lifted collocation
based block-TR1 SQP method.

Corollary 4.1. If the assumptions of Theorem 3.1 and Assumption 3.3 hold, then the
lifted collocation SQP method with block-wise TR1 Jacobian updates in Algorithm 2,
with a Gauss-Newton Hessian approximation, produces iterates {wk, λk, µk} that con-
verge q-linearly within a neighbourhood around the KKT point (w∗, λ∗, µ∗) of the NLP.

Proof. It follows from the equivalence of the SQP iterations between the direct and
lifted collocation formulation based on the numerical condensing and expansion of the
collocation variables in Eq. (54). In particular, the direct collocation QP subprob-
lem (52) is a special case of the QP formulation in (7), with additional intermediate
variables and corresponding equations. The block-TR1 Jacobian matrix convergence
results of Theorem 3.5 therefore hold for direct collocation as well as for the proposed
lifted implementation in Algorithm 2.

5. Numerical Case Studies of Nonlinear Model Predictive Control

In this section, we illustrate numerically how the proposed block-TR1 SQP method
can be used in the context of nonlinear MPC using an algorithm implementation based
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on the real-time iterations (RTI), as proposed originally in [18] with exact Jacobian
information. The approach is based on one block-TR1 SQP iteration per control time
step, and using a continuation-based warm starting of the state and control trajectories
from one time step to the next [28]. Each iteration consists of two steps:

(1) Preparation phase: discretize and linearize the system dynamics, linearize the
remaining constraint functions, and evaluate the quadratic objective approxi-
mation to build the optimal control structured QP subproblem.

(2) Feedback phase: solve the QP to update the current values for all optimization
variables and obtain the next control input to apply feedback to the system.

The proposed block-wise TR1 based Jacobian updates in Algorithm 1 and 2 become
part of the preparation step, in order to construct the linearized continuity equations.
Therefore, the feedback step remains unchanged and the Jacobian updates do not
affect the computational delay between obtaining the new state estimate and applying
the next control input value to the system.

We validate the closed-loop performance of these novel block-TR1 based RTI algo-
rithms by presenting numerical simulation results for two NMPC case studies. Moti-
vated by real embedded control applications, we present the computation times for the
proposed NMPC algorithms using the ARM Cortex-A53 processor in the Raspberry
Pi 3. The block-sparse QP solution in the feedback phase will be carried out by the
primal active-set method, called PRESAS, that was recently presented in [35].

5.1. Nonlinear MPC for a chain of spring-connected masses

In our first case study, the control task is to return a chain of nm masses connected
with springs to its steady state, starting from a perturbed initial configuration, without
hitting a wall that is placed close to the equilibrium state configuration. The mass
at one end is fixed, while the control input u(t) ∈ R3 to the system is the direct
force applied to the mass at the other end of the chain. The state of each free mass
xj := [pj

>
, vj

>
]> ∈ R6 consists in its position pj := [pjx, p

j
y, p

j
z]> ∈ R3 and velocity

vj ∈ R3 for j = 1, . . . , nm − 1, such that the dynamic system can be described by the
concatenated state vector x(t) ∈ R6(nm−1). Similar to the work in [37], the nonlinear
chain of masses can be used to validate the computational performance and scaling of
an optimal control algorithm for a range of numbers of masses nm, resulting in a range
of different problem dimensions. The nonlinear system dynamics and the resulting
optimal control problem formulation can be found in [39].

5.1.1. Local convergence: Gauss-Newton SQP with block-TR1 Jacobian updates

We illustrate the impact of the proposed block-wise TR1 Jacobian updates on the
local convergence rate of the resulting inexact adjoint-based SQP algorithm. Figure 1
shows a comparison of the convergence between different SQP variants for the so-
lution of the nonlinear chain of masses OCP. In particular, the comparison includes
the exact Jacobian-based SQP method, the standard dense TR1 update [25], and the
good and bad Broyden update formulas [12]. For the proposed block-TR1 based SQP
implementation, the figure illustrates both the adjoint and forward variant by using,
respectively, the scaling factor in (12) and (13). The performance of the block-TR1
method is additionally illustrated for an implementation where αi is chosen dynam-
ically, depending on which of the two variants results in the largest denominator in
order to avoid the need to skip a block-wise Jacobian update.
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Figure 1. Local convergence analysis: comparison between different variants of the inexact adjoint-based SQP

method as described in Algorithm 2 based on lifted collocation, using either the exact Jacobian or different
quasi-Newton type Jacobian update formulas for the nonlinear chain of 6 masses.

Figure 2. Comparison of the average preparation and feedback computation times (in ms):
block-TR1 versus exact Jacobian based lifted collocation SQP method. 2

It is known that an exact Jacobian-based SQP method with Gauss-Newton type
Hessian approximation results in locally linear convergence, for which the asymptotic
contraction rate depends on the optimal residual value in the least squares type ob-
jective [31]. It can be observed in Figure 1 that all three variants of the proposed
block-wise TR1 update formula result in the same asymptotic rate of convergence as
for the exact Jacobian based algorithm, i.e., the rate of convergence appears to be the
same close to the local solution of the NLP. Note that this confirms numerically the
result of Corollary 3.9. In addition, the block-wise TR1 Jacobian updates result in
a smaller total number of SQP iterations, compared to the standard dense Jacobian
update formulas for the particular example in Figure 1. In the latter case, the direct
application of a standard rank-one update formula destroys the block sparsity in the
QP subproblems and is therefore computationally unattractive.

5.1.2. Computational timing results for block-TR1 based lifted collocation

Figure 2 illustrates the computation times of both the preparation and feedback steps
of an NMPC implementation for a chain of nm = 2, . . . , 8 masses, using the lifted col-
location based SQP method in Algorithm 2. It can be observed that the preparation
time scales quadratically with the number of states for the block-TR1 implementation,
instead of the cubic computational complexity when using the exact Jacobian. More
specifically, the Jacobian evaluation, the factorization and matrix-matrix multiplica-
tions are replaced by adjoint differentiation sweeps and matrix-vector operations in
Algorithm 2. On the other hand, the feedback time remains essentially the same be-
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Table 1. Average computation times (in ms) for nonlinear MPC on a chain of nm = 6

masses, i.e., 30 differential states (4 Gauss collocation nodes versus 10 steps of RK4).

Explicit (RK4 in Alg. 1) Implicit (GL4 in Alg. 2)

exact block-TR1 exact block-TR1

Linearization 32.36 5.33 16% 291.37 35.99 12%
QP solution 23.22 37.82 26.33 27.86

Total RTI step 56.39 43.99 78% 318.58 64.69 20%
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Figure 3. Closed-loop NMPC performance of two double lane changes at a vehicle speed of 10 m/s on

snow-covered road conditions, using model parameters from [2] in the nonlinear OCP formulation [33].

cause, after the linearization and QP preparation, both approaches lead to the solution
of a similarly structured QP in Eq. (7) or (55).

Table 1 provides a more detailed comparison between the exact Jacobian and the
proposed block-TR1 variant of the real-time iterations for NMPC, using an ARM
Cortex-A53 processor. The table shows these results for both the explicit Runge-Kutta
method of order 4 (RK4) in combination with Algorithm 1 and using the implicit 4-
stage Gauss-Legendre (GL4) method within Algorithm 2. The proposed block-TR1
algorithm results in a computational speedup of about factor 6 − 8 for the problem
linearization step. In order to obtain a relatively fair comparison, the number of in-
tegration steps for RK4 has been chosen such that the numerical accuracy is close to
that of the 4-stage GL method. However, since the system dynamics for the chain of
masses are non-stiff, an explicit integration scheme should instead typically perform
better in terms of computational efficiency.

5.2. Nonlinear MPC for vehicle control on a snow-covered road

Our second case study considers nonlinear MPC for real-time vehicle control as mo-
tivated by automotive applications in autonomous driving. The nonlinear optimal
control problem formulation is based on single-track vehicle dynamics with a Pacejka-
type tire model [33]. The experimentally validated model parameters can be found
in [2]. As often the case in practice, these vehicle dynamics are rather stiff such that
an implicit integration scheme should preferably be used. Therefore, it forms an ideal

2The computation times in Figure 2 have been obtained using an Intel i7-7700k processor @ 4.20 GHz on

Windows 10 with 64 GB of RAM.
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Table 2. Average computation times (in ms) for vehicle control based on a single-track

vehicle model within NMPC (4 Gauss collocation nodes versus 30 steps of RK4).

Explicit (RK4 in Alg. 1) Implicit (GL4 in Alg. 2)

exact block-TR1 exact block-TR1

Linearization 106.73 75.78 71% 52.22 18.27 35%
QP solution 4.46 4.51 4.59 4.72

Total RTI step 111.79 80.94 72% 57.43 23.64 41%

case study for the proposed lifted collocation based RTI method of Algorithm 2. Let
us perform the closed-loop NMPC simulations as presented in [33], but using the pro-
posed block-TR1 based RTI implementation. We carried out numerical simulations
for two successive double lane changes on snow-covered road conditions. The resulting
closed-loop trajectories for both the exact Jacobian and the block-TR1 method are
indistinguishable from each other, as illustrated in Figure 3.

The corresponding computation times on the ARM Cortex-A53 processor are il-
lustrated in detail by Table 2. Because of the relatively stiff system dynamics, the
proposed block-TR1 lifted collocation method from Algorithm 2 becomes attractive
and additionally provides a computational speedup of about factor 3 over the standard
exact Jacobian based implementation. Note that, even though the Raspberry Pi 3 is
not an embedded processor by itself, it uses an ARM core of the same type as those
that are used by multiple high-end automotive microprocessors. Therefore, the pro-
posed algorithm implementation as well as the corresponding numerical results form a
motivation for real-time embedded control applications that involve a relatively large,
implicit and/or stiff system of differential equations.

6. Conclusions and outlook

In this paper, we proposed a block-wise sparsity preserving two-sided rank-one (TR1)
Jacobian update for an adjoint-based inexact SQP method to efficiently solve the
nonlinear optimal control problems arising in NMPC. We proved local convergence for
the block-structured quasi-Newton type Jacobian matrix updates. In case of a Gauss-
Newton based SQP implementation, we additionally showed that the asymptotic rate
of contraction remains the same. We also presented how this approach can be imple-
mented efficiently in a tailored lifted collocation framework, in order to avoid matrix
factorizations and matrix-matrix multiplications. Finally, we illustrated the local con-
vergence properties as well as the computational complexity results numerically for
two nonlinear MPC case studies. The effect of the presented contraction properties on
the convergence and closed-loop stability of the block-TR1 based real-time iterations
is an important topic that is part of ongoing research.
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[16] M. Diehl, H.G. Bock, and J.P. Schlöder, A real-time iteration scheme for nonlinear op-
timization in optimal feedback control, SIAM Journal on Control and Optimization 43
(2005), pp. 1714–1736.

[17] M. Diehl, H.J. Ferreau, and N. Haverbeke, Efficient numerical methods for nonlinear
MPC and moving horizon estimation, in Nonlinear model predictive control, L. Magni,
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