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ABSTRACT
We present a modification of a primal-dual algorithm [7] based on a mixed aug-
mented Lagrangian and a log-barrier penalty function. The goal of this new feature
is to quickly detect infeasibility. An additional parameter is introduced to balance
the minimization of the objective function and the realization of the constraints. The
rules of updating the parameters are based on [8]. The global convergence of the
modified algorithm is analysed under mild assumptions. We also show that under
a suitable choice of the parameters along the iterations, the rate of convergence of
the algorithm to an infeasible stationary point is superlinear. This is the first local
convergence result for the class of interior point methods in the infeasible case. We
finally report some numerical experiments to show that this new algorithm is quite
efficient to detect infeasibility and does not deteriorate the overall behavior in the
general case.
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1. Introduction

Nonlinear optimization algorithms focus on two tasks: minimizing the objective func-
tion and satisfying the constraints. When the set of the optimal solutions is nonempty,
many efficient algorithms in the literature are designed to find a local optimal solution
of the optimization problem. On the other hand, infeasible instances also appear quite
a lot. They can arise, for example, in mathematical modeling, by varying the param-
eters of a model to study the system response. Infeasibility may also appear when
solving a sequence of subproblems in an algorithm like a branch-and-bound method.
Even if the problem is feasible, a numerical optimization algorithm may encounter
difficulties in finding a feasible point. In that case it would be nice to quickly return
an infeasible stationary point, to avoid long sequence of iterations or convergence to a
spurious solution. In this context, a rapid infeasibility detection becomes an important
issue in nonlinear optimization.

In the literature, a variety of algorithms using different approaches has been pro-
posed to handle infeasibility. Mart́ınez and Prudente [21], Birgin et al. [9, 10] and
Gonçalves et al. [19] investigated infeasibility detection for augmented Lagrangian al-
gorithms. Byrd et al. [12] and Burke et al. [11] have also proposed infeasibility detection
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strategies for sequential quadratic programming methods. Especially, local convergence
analyses in the infeasible case have been done in these papers. In the framework of in-
terior point method, the solver IPOPT [25], which is a filter line search algorithm, uses
a feasibility restoration phase. Besides finding a new acceptable iterate to the filter, a
feature of this phase is to detect (local) infeasibility. The local convergence of IPOPT
near an infeasible stationary point was not made. The algorithm of Curtis [14] is a
combination of a penalty method and an interior point method. The numerical results
showed that this approach is efficient to detect infeasibility. Nocedal et al. [22] pre-
sented a trust region interior point method with two phases: a main phase (solution of
the barrier problem with a decrease of the barrier parameter) and the feasibility phase
(minimization the feasibility violation measure). Numerical experiments showed that
the new method is better than the older one KNITRO/CG [13] in detecting infeasible
problems and there is no loss of robustness in solving feasible problems. Despite good
numerical results obtained, there is no complete global or local convergence analysis
for two latter algorithms ([14, 22]).

Recently, Armand and Omheni [7] proposed a nonlinear optimization algorithm,
called SPDOPT, which is a mix of an interior point method and of an augmented
Lagrangian method. The capability of this algorithm to detect infeasibility is closely
related to the behaviors of the penalty parameter and of the dual variables. In particu-
lar, an infeasible stationary point can be detected when the sequence of dual variables
tends to infinity and the penalty parameter converges to zero. Nevertheless, a fast
infeasibility detection has not been observed in practice or theoretically proved for
this algorithm. This fact motivated us to modify SPDOPT in order to accelerate the
infeasibility detection without losing its good performances in the feasible case. More
specifically, a new parameter, called the feasibility parameter, is introduced to balance
the minimization of the barrier function and the realization of the equality constraints.
If a nearly feasible point is detected, the feasibility parameter remains constant and
our algorithm acts as the original algorithm. When the algorithm tends to an infeasible
stationary point, the feasibility parameter acts as a barrier parameter. In this case,
the exact solution of the perturbed system parametrized by the feasibility parameter
defines a smooth trajectory. With a suitable rule of updating the feasibility parame-
ter, the iterates tangentially follow this trajectory. Consequently, when the sequence
of iterates converges to an infeasible stationary point, the algorithm can achieve a
superlinear rate of convergence. To the best of our knowledge, this is the first lo-
cal convergence analysis in the infeasible case related to interior point methods. The
idea to introduce a new parameter is inspired from [8]. This one is a modification of
SPDOPT-AL [6]. Besides analyzing the local convergence near an infeasible station-
ary point, numerical experiments demonstrated a better performance of the modified
algorithm compared with the predecessor in detecting infeasibility.

The paper is organized as follows. The current section is an introduction with some
notations which will be used throughout the paper. The algorithm is described in the
next section. Section 3 and Section 4 are devoted to the global and the local conver-
gence analysis. The implementation of our algorithm and some numerical experiments
are reported in the last section.

Notation

Vector inequalities are understood componentwise. For a vector x, the capital letter
stands for the diagonal matrix X = diag(x) and the ith component of this vector is
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denoted by [x]i or simply xi when there is no ambiguity. The letter e is used for the
vector of all ones. For two real vectors x and y of same lengths in Rn, x>y is their
Euclidean scalar product and ‖x‖ = (x>x)1/2 is the associated norm. The Hadamard
product of two vectors x and y is defined by [x ◦ y]i = [x]i[y]i for all indices i. The
notation x ⊥ y means that the vectors x and y are orthogonal. For a real matrix M , the
induced matrix norm is ‖M‖ = max{‖Md‖ : ‖d‖ ≤ 1}. The inertia of a real symmetric
matrix M , denoted In(M) := (ι+, ι−, ι0), is the numbers of positive, negative and null
eigenvalues. For a function f and an iterate xk, to simplify the notation we denote
fk = f(xk). Likewise, f∗ stands for f(x∗), and so on. The positive part of a real number
r is defined by r+ = max{r, 0}. Let {ak} and {bk} be nonnegative scalar sequences.
We write ak = O(bk), or equivalently bk = Ω(ak), if there exists a constant c > 0 such
that ak ≤ c bk for all k ∈ N. We also write ak = Θ(bk) if ak = O(bk) and ak = Ω(bk).
The notation ak = o(bk) means that there exists a positive sequence {εk} converging
to zero such that ak = εkbk for all k ∈ N.

2. Algorithm

Consider the following nonlinear optimization problem:

minimize
x∈Rn

f(x) subject to c(x) = 0 and x ≥ 0, (1)

where f : Rn → R and c : Rn → Rm are twice continuously differentiable functions.
Any optimization problem with equality and inequality constraints can be formulated
under this form by possibly adding slack variables and splitting free variables. Let us
recall some basic definitions about stationarity. A point x ∈ Rn is called a Fritz-John
(FJ) point of problem (1) if there exists a nonzero vector (u, y, z) ∈ R×Rm×Rn such
that

ug(x) +A(x)y − z = 0, u ≥ 0, c(x) = 0 and 0 ≤ x ⊥ z ≥ 0,

where we denote g(x) = ∇f(x) the gradient of f at x and A(x) = ∇c(x) the transpose
of the Jacobian matrix of c at x. When u > 0, a FJ point x is called a Karush-Kuhn-
Tucker (KKT) point. By dividing the first equation by u, we see that y/u and z/u
are the vectors of Lagrange multipliers associated with the equality and the bound
constraints. Whenever u = 0, a FJ point x is called a singular stationary point.
Equivalently, a singular stationary point is a feasible solution for (1) at which the
Mangasarian-Fromovitz constraint qualification (MFCQ) does not hold. The point x
is called an infeasible stationary point, if there exists z ∈ Rn such that

c(x) 6= 0, A(x)c(x)− z = 0 and 0 ≤ x ⊥ z ≥ 0.

In other words, an infeasible stationary point is not feasible for (1), but is a KKT
point for the feasibility problem

minimize
x∈Rn

1
2‖c(x)‖2 subject to x ≥ 0. (2)
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To the problem (1), we associate the mixed penalty function

ϕρ,λ,σ,µ(x) = ρf(x) + λ>c(x) + 1
2σ‖c(x)‖2 − ρµ

∑
i log xi, (3)

where ρ > 0 is the feasibility parameter, λ ∈ Rm is an estimate of the vector of
Lagrange multipliers associated with the equality constraints, σ > 0 is the quadratic
penalty parameter and µ > 0 is the barrier parameter. This penalty function is a
mixed of the augmented Lagrangian and of the logarithmic barrier function. It can be
interpreted as the augmented Lagrangian associated with the log-barrier problem

minimize
x∈Rn

ρ(f(x)− µ
∑

i log xi), subject to c(x) = 0. (4)

The first order optimality conditions for (3) are

ρg(x) +A(x)(λ+ 1
σ c(x))− ρµX−1e = 0. (5)

By introducing the dual variables y = λ+ 1
σ c(x) and z = ρµX−1e, the equation (5) is

equivalently formulated as

Φ(w, λ, ρ, σ, µ) :=

ρg(x) +A(x)y − z
c(x) + σ(λ− y)
XZe− ρµe

 = 0, (6)

where w := (x, y, z) ∈ RN , with N = n+m+ n. This primal-dual system of equation
can be seen as a perturbation of the FJ optimality conditions of problem (1). The
equality constraints is perturbed thanks to the term σ(λ− y). Note that when λ = y,
this system is the primal-dual optimality system associated with the problem (4). Each
complementarity products is perturbed thanks to the term ρµ. An important feature
of our approach is that each time the parameters are updated, either ρ is reduced, or
µ is reduced, but not both. We will see that, under some usual regularity assumptions,
this allows to guarantee the superlinear convergence in case of convergence to a local
minimum or to an infeasible stationary point.

The algorithm involves applying a Newton-type method for the solution of the
system Φ = 0, while updating the parameters along the iterations to control the
convergence to a FJ point or to an infeasible stationary point. There are two kinds of
iteration: outer and inner. At an outer iteration, the parameters are updated, while at
an inner iteration the parameters are kept constant. At each iteration, outer or inner,
a candidate iterate w+ is computed as a solution of the following linear system:

Jρ,θ,δ(w)(w+ − w) = −Φ(w, λ, ρ, σ, µ)

where the matrix is defined as

Jρ,θ,δ(w) :=

Hρ,θ(x, y) A(x) −I
A(x)> −δI 0
Z 0 X

 ,
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with

Hρ,θ(x, y) := ρ∇2f(x) +

m∑
i=1

yi∇2ci(x) + θI.

The regularization parameters θ ≥ 0 and δ > 0 are chosen such that the matrix

Kρ,θ,δ(w) := Hρ,θ(x, y) +X−1Z +
1

δ
A(x)A(x)>

is positive definite. This property implies that not only the matrix Jρ,θ,δ(w) is nonsin-
gular, but also that the solution of the linear system solved during the inner iterations
is a descend direction for some merit function.

We now describe in detail the outer iteration algorithm. At the beginning, a starting
point w0 = (x0, y0, z0) ∈ R2n+m satisfying v0 = (x0, z0) > 0 is chosen, then we set
λ0 = y0. Besides, we choose σ0 > 0, µ0 > 0, ρ0 = 1 and four constants κ, d, τ̄ ∈ (0, 1)
and l ∈ N. The outer iteration counter is set to k = 0. A feasibility tolerance ε > 0
must be chosen. A flag is used to indicate if the algorithm is in the feasibility detection
phase (F = 1) or not (F = 0). Initially F = 1, then this value is kept until a feasible, or
nearly feasible, point has been detected. The index ik stores the last iteration number
prior to k at which inequality (7) is satisfied. It is initialized to i0 = 0.

The algorithm can be seen as an extension of [7, Algorithm 1]. The first four steps are
related to the updating of the parameters and are drawn from the feasibility detection
algorithm for the equality constrained case proposed in [8].

The first step aims to detect a feasible or nearly feasible point. Whenever this is
the case, the flag is set to F = 0 and this value is kept for all further iterations. In this
case, the algorithm is exactly the same as [7, Algorithm 1]. In particular, the sequence
{ρk} is eventually constant. It is worth noting that this switching mechanism is nec-
essary to avoid the undesirable situation in which the condition (7) is alternatively
satisfied and not satisfied an infinite number of times, for example when the feasi-
bility measure decreases very slowly. In this case, it would be difficult to distinguish
between a convergence to a KKT point or to a singular stationary point. Moreover,
in practice, a point is deemed to be feasible if the norm of the constraints is smaller
than some predefined tolerance. Suppose, for example, that we want to minimize x in
R, subject to the constraint ex ≤ 0. Most of well established softwares for nonlinear
numerical optimization return a message like “optimal solution found” when solving
this problem. Hence, it seems natural to state that the problem is feasible, whenever
the feasibility tolerance is small enough.

Depending on the reduction of the feasibility measure, the trial values ρ+
k and µ+

k
for the feasibility and barrier parameters, as well as the new values σk+1 and λk+1 for
the augmented Lagrangian parameters, are chosen. If the inequality (7) is satisfied, the
feasibility parameter is kept constant, new values the barrier and quadratic penalty
parameters are chosen, the Lagrange multiplier estimate is set to the current value of
the dual variable. As shown in [6], from a theoretical point of view and in practice, it is
better to force the convergence of {σk} to zero to get a rapid rate of convergence. On the
other hand, if the condition (7) is not satisfied, then there are two situations. The first
situation is when the algorithm is still in the feasibility detection phase (F = 1). In that
case, the feasibility parameter is sufficiently reduced, while the barrier and quadratic
penalty parameters are kept constant, and then the Lagrange multiplier estimate is
rescaled. When these updates are always done from some iteration, this scaling of the
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Algorithm 1 (kth outer iteration)

(1) If ‖ck‖ ≤ ε, then set F = 0.
(2) Choose ζk > 0 such that {ζk} → 0. If k = 0 or

‖ck‖ ≤ κmax{‖cij‖ : (k − l)+ ≤ j ≤ k}+ ζk (7)

then set ik+1 = k and go to Step 4, otherwise set ik+1 = ik.
(3) If F = 1, then choose 0 < ρ+

k ≤ dρk and set σk+1 = σk, µ
+
k = µk, λk+1 = ρ+

k λk,
else set ρ+

k = ρk, choose 0 < σk+1 ≤ dσk, 0 < µ+
k ≤ dµk and set λk+1 = λk.

Go to Step 5.
(4) Set ρ+

k = ρk, choose 0 < σk+1 ≤ σk and 0 < µ+
k ≤ dµk. Set λk+1 = yk.

(5) If ρ+
k = ρk, then choose δk = Ω(µk), else set δk = σk. Choose regularization

parameter θk ≥ 0 such that Kρ+k ,θk,δk
(wk) � 0. Set Jk = Jρ+k ,θk,δk(wk). Compute

w+
k by solving the linear system

Jk(w
+
k − wk) = −Φ(wk, λk+1, ρ

+
k , σk+1, µ

+
k ). (8)

(6) Choose τk ∈ [τ̄ , 1[. Compute αk as the largest α ∈ (0, 1] such that

vk + α(v+
k − vk) ≥ (1− τk)vk, (9)

where vk = (xk, zk). Choose a vector ak = (axk, a
y
k, z

z
k) ∈ [αk, 1]N such that

vk + avk ◦ (v+
k − vk) > 0, where avk = (axk, a

z
k).

(7) Set ŵk = wk + ak ◦ (w+
k − wk), (ρk+1, µk+1) = (ρk, µk) + αk(ρ

+
k − ρk, µ

+
k − µk).

(8) Choose εk > 0 such that {εk} → 0. If ‖Φ(ŵk, λk+1, ρk+1, σk+1, µk+1)‖ ≤ εk, then
set wk+1 = ŵk. Otherwise, apply the inner iteration algorithm to find wk+1 such
that

‖Φ(wk+1, λk+1, ρk+1, σk+1, µk+1)‖ ≤ εk (10)

Lagrange multiplier estimate is useful for the convergence of the iterates to an infeasible
stationary point (see Theorem 3.1-ii). The second situation is when the algorithm has
left the feasibility detection phase (F = 0). In that case, the feasibility parameter is
kept constant, the barrier parameter is reduced as in a standard interior point method,
the quadratic penalty parameter is also reduced to penalize the constraints violation
and the Lagrange multiplier estimate is kept constant as in a classical augmented
Lagrangian algorithm.

At Step 5, the choice of the regularization parameter δk of the regularized Jacobian
matrix is done as follows. When the feasibility parameter is unchanged, because (7) is
satisfied or F = 0, we set δk = Ω(µk). This choice is imposed by the global convergence
theory of the algorithm in the feasible case, see [5, Theorem 3.3] and [7, Theorem 4.2].
In case the feasibility parameter is reduced, we set δk = σk. This choice is motivated
to get a rapid convergence when the sequence of iterates converges to an infeasible
stationary point, see Lemma 4.3 below.

Once the Newton iterate w+
k is computed at Step 5, the fraction to the boundary

rule is applied to ensure the positivity of the primal and dual variables. As in [5],
the step length can be selected componentwise to calculate the trial iterate ŵk. The
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values of barrier and feasibility parameters are then updated according to formulae at
Step 7. These formulae avoid too large discrepancies between the magnitude of these
parameters and the one of ‖Φ‖ and increase robustness [4].

Finally, at Step 8, if the trial iterate ŵk satisfies a sufficient reduction of the residual
norm of the perturbed optimality conditions, then wk+1 = ŵk. If this is not the case,
a sequence of inner iterations with all the parameters fixed to their current values will
be carried out to find the new iterate wk+1.

The inner iteration algorithm is a backtracking line search applied to the primal-dual
merit function

Mρ,λ,σ,µ(w) = ϕρ,λ,σ,µ(x) + ν1ψσ,λ(x, y) + ν2πρ,µ(x, z)

where ϕρ,λ,σ,µ(x) is defined by (3),

ψσ,λ(x, y) =
1

2σ
‖c(x) + σ(λ− y)‖2 and πρ,µ(x, z) = x>z − ρµ

p∑
i=1

log(xizi),

where ν1 > 0, ν2 > 0 are scaling parameters. This is motivated by the fact that the
first order optimality conditions for minimizing this merit function correspond to (6).
We refer the reader to [7, Algorithm 2] for a complete description of this algorithm.
To simplify the presentation, we consider that the quadratic parameter σk+1 remains
constant all along the inner iterations, while in [7] it can be increased. This choice has
no impact from the theoretical point of view and in our numerical experiments, the
value of this parameter is allowed to increase during the inner iterations. It has been
shown that if the sequence of primal inner iterates remains in a compact set, then the
inner iteration algorithm succeeds in finding an iterate that satisfies (10) after a finite
number of iterations [7, Theorem 4.1].

We end this section by showing some properties related to the behavior of the
parameters with respect to the feasibility detection by means of the criterion (7).

Lemma 2.1. Assume that Algorithm 1 generates an infinite sequence of iterates {wk}.
Let K ⊂ N be the set of iteration indices at which the inequality (7) is satisfied.

(i) If K is infinite, then {ck}k∈K converges to zero and {ρk} is eventually constant.
(ii) If K is finite, then lim inf ‖ck‖ > 0.

In addition, suppose that the sequence {Hρ+k ,θk
(xk, yk), gk, Ak} is bounded and that the

matrices Kρ+k ,θk,δk
(wk) are uniformly positive definite for k ∈ N.

(iii) If K is infinite, then the sequence {µk} converges to zero.
(iv) If K is finite, then the sequences {σkρk} and {σkλk} converge to zero.

Proof. The outcomes (i) and (ii) are proved in [8, Lemma 1], while (iii) is a direct
consequence of [7, Theorem 4.2 (iv)].

To prove (iv), suppose that K is finite and let us define k0 := maxK. Two cases are
considered. The first case is when ‖ck‖ ≤ ε at some iteration k. We then have F = 0
for all further iterations. The update of the parameters at Step 3 implies that both
sequences {ρk} and {λk} are eventually constant and {σk} tends to zero. It follows
that the two sequences {σkρk} and {σkλk} converge to zero. The second case is when
‖ck‖ > ε for all k ∈ N, which implies that F = 1 at each iteration. In that case, for
all k ≥ k0 + 1, ρ+

k ≤ dρk, σk+1 = σk0 , µk+1 = µk0 and ‖λk+1‖ ≤ dρk‖λk‖ ≤ dρk‖yk0‖.
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By using similar arguments as in the proof of [7, Theorem 4.2 (iv)] and [5, Theorem
3.3], we will show that {ρk} converges to zero, which will imply that the two sequences
{σkρk} and {σkλk} converge to zero. The proof is by contradiction by supposing that
{ρk} is bounded away from zero by some constant ρ̄ > 0. For all k ≥ k0, we have
ρ+
k ≤ dρk with d ∈ (0, 1). From Step 7 of Algorithm 1, for all k ≥ k0 we have

ρk+1 = ρk + αk(ρ
+
k − ρk)

≤ (1− (1− d)αk)ρk.

Because {ρk} is supposed to be bounded away from zero, this inequality implies that
{αk} converges to zero. We will get a contradiction by showing that {αk} is bounded
away from zero. The inequality (33) in [7, Theorem 4.2] shows that for all k large
enough, we have

τ̄

1 + ‖w+
k − wk‖/

√
ρ̄
≤ αk. (11)

Recall that the inequality (10) is satisfied at each iteration with a sequence {εk} going
to zero. Therefore, the sequence {Φ(wk, λk, ρk, σk, µk)} converges to zero. In particular,
{XkZke− ρkµke} tends to zero. Consequently, for k large enough

[xk]i[zk]i ≥
ρ̄µk0

2
, for all i = 1, ..., n.

Keeping in mind all the assumptions and the previous lower bound on {xk ◦ zk}, [2,
Theorem 1] shows that there exists a constant K1 > 0, such that for all k ≥ 0

‖Jρ+k ,θk,δk(wk)
−1‖ ≤ K1. (12)

From the definition of Φ(·), for all k ≥ 0 we have

Φ(wk, λk+1, ρ
+
k , σk+1, µ

+
k ) = Φ(wk, λk, ρk, σk+1, µ

+
k )

+ ((ρ+
k − ρk)g

>
k , σk+1(λk+1 − λk)>, (ρk − ρ+

k )µ+
k e
>)>.

By using (8), (10), (12) and noting that σk+1 = σk = σk0 , µ
+
k = µk = µk0 , λk+1 = ρ+

k λk
and ρ+

k ≤ ρk ≤ 1, for k large enough we then get

‖w+
k − wk‖ = ‖Jρ+k ,θk,δk(wk)

−1Φ(wk, λk+1, ρ
+
k , σk+1, µ

+
k )‖

≤ K1(‖Φ(wk, λk, ρk, σk, µk)‖+ |ρk − ρ+
k |(‖gk‖+ µk0‖e‖) + σk0 |ρ+

k − 1|‖λk‖)
≤ K1(εk + ‖gk‖+ µk0‖e‖+ σk0‖λk‖).

Because {εk} tends to zero, {gk} is bounded and ‖λk‖ ≤ d‖yk0‖, we deduce that
‖w+

k −wk‖ is bounded from above, which contradicts inequality (11) and the fact that
{αk} is supposed to converge to zero. We then deduce that ρk → 0, which completes
the proof of (iv).
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3. Global convergence analysis

For the global convergence of the inner iterations see [7, Theorem 4.1]. Roughly speak-
ing, this theorem shows that under some standard assumptions, the inner iteration
algorithm is able to find a new iterate wk+1 satisfying the stopping test (10) after a
finite number of iterations. Hence, we can assume that the inner iteration algorithm
successfully terminates each time it is called at Step 8.

We then have the following result about the global convergence of Algorithm 1.

Theorem 3.1. Assume that all the assumptions of Lemma 2.1 are satisfied and that
Algorithm 1 generates an infinite sequence {wk}. Let K ⊂ N be the set of iteration
indices for which the condition (7) is satisfied.

(i) If K is infinite, then ρk = ρ̄ > 0 for k large enough and the iterates approach
stationary of the problem (1), i.e., the sequences {ρ̄gk + Akyk − zk}, {ck}K and
{Xkzk} converge to zero.

(ii) If K is finite, then {‖ck‖} is bounded away from zero and the sequence of pri-
mal iterates approaches stationarity of the feasibility problem, i.e., there exists a
sequence {uk} ⊂ Rn+ such that lim ‖(Akck − uk, Xkuk)‖ = 0.

Proof. Let us denote Φk := Φ(wk, λk, ρk, σk, µk) for k ∈ N. Step 8 of Algorithm 1
implies that {Φk} converges to zero.

Suppose that K is infinite. Lemma 2.1-(i) shows that {ck}K tends to zero and that
ρk = ρ̄ for sufficiently large k. The first block of Φk is ρkgk + Akyk − zk, therefore
lim ρ̄gk + Akyk − zk = 0. The third block of Φk is XkZke − ρkµke. Lemma 2.1-(iii)
implies that {µk} tends to zero. Therefore {Xkzk} tends to zero, which concludes the
proof of outcome (i).

Suppose now that K is finite. Lemma 2.1-(ii) implies that the sequence {‖ck‖} is
bounded away from zero. Let us define uk := σkzk > 0 for k ∈ N. For all k ∈ N, we
have

Akck − uk = σk(ρkgk +Akyk − zk)− σkρkgk +Ak(ck + σk(λk − yk))− σkAkλk

and

Xkuk = σk(XkZke− ρkµke) + σkρkµke.

By taking the norm on both sides, for all k we then get

‖Akck − uk‖+ ‖Xkuk‖ ≤ (2σk + ‖gk‖+ 2‖Ak‖+ µk‖e‖) max{‖Φk‖, σkρk, σk‖λk‖}.

By assumptions, the sequences {gk} and {Ak} are bounded. The first assertion of this
proof and Lemma 2.1-(iv) imply that the second term of this inequality tends to zero.
We then deduce that {(Akck−uk, Xkuk)} converges to zero, which ends the proof.

The next result summarizes the behavior of the Algorithm 1 under a mild and usual
assumption about the boundedness of the sequence of primal iterates.

Theorem 3.2. Assume that Algorithm 1 generates an infinite sequence of iterates
{wk} such that {xk} lies in a compact set. Assume also that the regularization param-
eters chosen at Step 5 are such that the matrices Kρ+k ,θk,δk

(wk) are uniformly positive
definite for k ∈ N.
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(i) Any feasible limit point of {xk} is a Fritz-John point of problem (1).
(ii) If {xk} has no feasible limit point, then any limit point is an infeasible stationary

point of problem (1).

Proof. The compactness assumption implies that the sequence {(gk, Ak)} is bounded.
Assume that {xk} has a feasible limit point x̄, i.e., c̄ = 0. Lemma 2.1-(ii) implies

that the updating condition (7) is satisfied an infinite number of times. Let K ⊂ N such
that limK xk = x̄. From Lemma 2.1-(i), we have ρk = ρ̄ for k large enough. We consider
two situations regarding the boundedness of the sequence {yk}K. Suppose that {yk}K
is bounded. With the compactness of {xk} we have that the sequence {Hρ+k ,θk

(xk, yk)}
is bounded and so Theorem 3.1 applies. The sequence {zk} is also bounded. Indeed,
for all k ∈ N, we have

‖zk‖ ≤ ‖ρkgk +Akyk − zk‖+ ‖ρkgk +Akyk‖.

The first term on the right hand side tends to zero and the second one is bounded. Con-
sequently, by virtue of Theorem (3.1)-(i), any limit point of the sequence {xk, yk, zk}K
satisfies the FJ conditions. Because ρ̄ > 0, x̄ is a KKT point of problem (1). The sec-

ond situation is when {yk}K is unbounded. For all k ∈ K, let (ak, bk) := (yk,zk)
‖(yk,zk)‖ . Note

that bk > 0, because of Step 6 of Algorithm 1. By taking a subsequence if necessary,
we can assume that limK(ak, bk) = (ā, b̄) 6= 0, with b̄ ≥ 0. For all k ∈ N we have

‖Akak − bk‖ ≤
1

‖(yk, zk)‖
(‖ρkgk +Akyk − zk‖+ ‖ρkgk‖)

Because {ρkgk + Akyk − zk} converges to zero, {gk} is bounded, {ρk} is eventually
constant and {yk}K is unbounded, we get Āā− b̄ = 0. For all k ∈ N we have

‖Xkbk‖ =
1

‖(yk, zk)‖
(‖XkZke− ρkµke‖+ ρkµk‖e‖)

Because {XkZke − ρkµke} tends to zero and {(yk, zk)}K is unbounded, we also get
X̄b̄ = 0. We can conclude that x̄ is a singular stationary point of problem (1).

Let us now consider the second outcome for which any limit point of {xk} is infea-
sible. It follows from Lemma 2.1-(i) that the Step 3 of Algorithm 1 is executed at all
iteration k ≥ k0 for some k0 ∈ N. There are two cases depending on the boundedness
of {yk}. If {yk} is bounded, then the sequence {Hρ+k ,θk

(xk, yk)} is bounded. Therefore,

Theorem 3.1-(ii) shows that any limit point x̄ of {xk} is an infeasible stationary point
of (1). In the second case, {yk} is unbounded. From the convergence to zero of the
sequence {ck + σk(λk − yk)} and the boundedness of {λk} (since ‖λk‖ ≤ ‖λk0‖ for
all k ≥ k0), we deduce that the sequence {σk} tends to zero. As a consequence, the
sequences {σkρk} and {σkλk} converge to zero. We then obtain the same conclusion
as Lemma 2.1-(iv). It suffices to repeat the proof of Theorem (3.1)-(ii) to show that
any limit point {xk} is an infeasible stationary point of (1).

4. Asymptotic behavior

There are two cases to analyse. The first one is when {wk} converges to a primal-
dual solution of problem (1). Because the flag F is switched to zero at some iteration,
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the feasibility parameter becomes constant after a finite number of iterations. Conse-
quently, the analysis in [23, Section 1.4] can be directly applied to demonstrate that
under some classical assumptions and a suitable choice of the parameters, the rate of
convergence of the sequence {wk} is superlinear. The second case is when Algorithm 1
generates a convergent sequence {xk} to an infeasible stationary point x∗ ∈ Rn of the
problem (1). This section concentrates to this case.

4.1. Assumptions and basic results

The first assumption is about the regularity of the problem data. This assumption is
standard in our framework.

Assumption 1. The function f and c are twice continuously differentiable and their
second derivatives are Lipschitz continuous over an open neighborhood of x∗.

To analyse the rate of convergence of the sequence of iterates to an infeasible sta-
tionary point, a natural assumption is that the whole sequence of iterates converges
to such a point.

Assumption 2. Algorithm 1 generates an infinite sequence {wk} which converges to
w∗ = (x∗, y∗, z∗) ∈ R2n+m, where x∗ is an infeasible stationary point of problem (1).

This assumption implies that the algorithm always stays in feasibility detection
phase, i.e., the feasibility flag keeps the value F = 1 all along the iterations. More
precisely, some direct consequences are the following.

Lemma 4.1. Under Assumption 2, F = 1 at each iteration, there exists k0 ∈ N such
that for all k ≥ k0, σk = σ := σk0 > 0 and µk = µ := µk0 > 0, {ρk} converges to zero
and ‖λk+1‖ = o(ρ+

k ).

Proof. Assumption 2 implies that {ck} is bounded away from zero. By virtue of
Lemma 2.1-(i), the inequality (7) is satisfied only a finite number of times. It follows
that Step 3 of Algorithm 1 is always executed for k sufficiently large. For all k ∈ N,
we have

‖ck‖ ≤ ‖ck + σk(λk − yk)‖+ σk‖λk‖+ σk‖yk‖.

Inequality (10) implies that the first term of the right-hand side tends to zero. The
update of λk at Step 3 implies that {λk} remains bounded. Since {yk} is supposed to
be convergent, the sequence {σk} cannot go to zero, which implies that F = 1 at each
iteration. Hence, there exists k0 ∈ N such that for all k ≥ k0, σk = σk0 , µk = µk0 and
λk+1/ρ

+
k = ρ+

k−1...ρ
+
k0
λk0 . By using the same arguments as in the proof of Lemma 2.1-

(iv), we deduce that the sequence {ρk} converge to zero. Thank to the fact that
ρ+
k−1 ≤ ρk, we get ‖λk+1‖ = o(ρ+

k ).

For w = (x, y, z) ∈ R2n+m and ρ > 0, let us define

F (w, ρ) =

ρg(x) +A(x)y − z
c(x)− σy
XZe− ρµe

 ,

where σ and µ are the values defined by Lemma 4.1. From the fact that
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lim Φ(wk, λk, ρk, σk, µk) = Φ(w∗, 0, 0, σ, µ) = F (w∗, 0), one has y∗ = 1
σ c
∗, z∗ = 1

σA
∗c∗

and 0 ≤ x∗ ⊥ z∗ ≥ 0.
Let us denote the Hessian matrix of the function 1

2‖c‖
2 at x ∈ Rn by

S(x) :=

m∑
i=1

ci(x)∇2ci(x) +A(x)A(x)>.

The set of active bounds is denoted by A := {i : [x∗]i = 0}.

Assumption 3. The second order sufficient optimality conditions (SOSC) for the
feasibility problem (2) hold at x∗, i.e., u>S∗u > 0 for all u 6= 0 satisfying [u]i = 0 for
all i ∈ A.

Assumption 4. Strict complementarity holds at w∗, that is

a := min{[x∗]i + [z∗]i : i = 1, ..., n} > 0.

The next lemma summarizes some basic results which are direct consequences of
these assumptions.

Lemma 4.2. Under Assumptions 1-4, there exist positive constants r∗, ρ∗, K, C, L,
L1, L2 and a continuously differentiable function w : (−ρ∗, ρ∗) → RN , such that for
all w,w′ ∈ B(w∗, r∗) and for all ρ, ρ′ ∈ (−ρ∗, ρ∗), we have

(i) ‖F ′w(w, ρ)−1‖ ≤ K,
(ii) F (w, ρ) = 0 if and only if w(ρ) = w,

(iii) ‖w(ρ)−w(ρ′)‖ ≤ C|ρ− ρ′|,
(iv) ‖F ′w(w, ρ)− F ′w(w′, ρ)‖ ≤ L(‖w − w′‖),
(v) L1‖w − w′‖ ≤ ‖F (w, ρ)− F (w′, ρ)‖ ≤ L2‖w − w′‖.

Proof. In order to prove (i), we only need to show that the matrix F ′w(w∗, 0) is
nonsingular. Let u ∈ RN such that F ′w(w∗, 0)u = 0. By writing u := (u1, u2, u3) and
by using the fact that y∗ = 1

σ c
∗, we have 1

σ

∑
i c
∗
i∇2c∗i A∗ −I

A∗> −σI 0
Z∗ 0 X∗

u1

u2

u3

 =

0
0
0

 .

The third equation of this linear system and Assumption 4 imply that [u1]i = 0 for
all i ∈ A and [u3]i = 0 for all i /∈ A. Consequently, one has u>1 u3 = 0. The second

equation of the linear system gives us u2 = 1
σA
∗>u1. Substituting this equality into

the first equation and premultiplying by u>1 , we get 1
σu
>
1 S
∗u1 = 0. By Assumption 3

we deduce that u1 = 0, from which we deduce that u2 = 0 and u3 = 0.
The properties (ii) and (iii) are direct consequences of the implicit function theorem.
The Lipschitz continuity of F ′w, property (iv), follows from Assumption 1.
The last assertion (v) is a consequence of [16, Lemma 15].

Our asymptotic analysis also requires some specifications on the choice of the fea-
sibility parameter. For all k ∈ N, the trial value of feasibility parameter ρ+

k is chosen
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such that

θ1ρ
1+t
k ≤ ρ+

k ≤ θ2ρk (13)

for some constants θ1 > 0, θ2 ∈ (0, 1) and t ∈ (0, 1). From the fact that {ρk} goes to
zero, the left inequality of (13) implies that

ρ2
k = o(ρ+

k ). (14)

At last, the parameter τk used in (9) must satisfy the following condition:

lim
k→∞

(1− τk)
ρk

ρ+
k

= 0. (15)

The conditions (13) and (15) are standard in the asymptotic analysis of this family
of primal-dual methods, see e.g., [1, 5]. The left inequality of (13) means that the
parameter of the path w must converge to zero with a subquadratic rate of convergence
in order that the Newton iterates, which converge naturally with a quadratic rate,
catch the path prior the parameter is nearly zero.

For k large enough, we have ρ+
k < ρk and σk = σ. Therefore, at Step 5 of Algo-

rithm 1, the regularization parameter of the matrix Jk is set to δk = σ. The next
lemma shows that the matrix Jk coincides with the Jacobian of F (·, ρ+

k ) at wk when
the feasibility parameter goes to zero.

Lemma 4.3. Under Assumptions 1-4, for all k ∈ N large enough, one has

Jk = F ′w(wk, ρ
+
k ) and ‖J−1

k ‖ ≤ K,

where K is defined by Lemma 4.2.

Proof. For the first claim, it suffices to show that θk = 0 for k large enough. This is
true whenever Kρ+k ,0,σ

(wk) is positive definite. For all k ∈ N we have

Kρ+k ,0,σ
(wk) = Hρ+k ,0

(xk, yk) + 1
σAkA

>
k +X−1

k Zk

=
1

σ
(Sk − S∗) +Hρ+k ,0

(xk, yk −
1

σ
ck) + 1

σS
∗ +X−1

k Zk.

The first two matrices tend to zero when k tends to infinity because {(xk, yk)} and
{ρ+

k } respectively converge to (x∗, 1
σ c
∗) and zero. It remains to show that the matrices

1
σS
∗ + X−1

k Zk are uniformly positive definite for k large enough. Let us define the
n × n diagonal matrix E, whose ith diagonal element is equal to one if i ∈ A and
zero otherwise. Assumption 3 means that S∗ is positive definite on the null space of
E. Therefore, from Debreu’s Lemma [15], there exists γ > 0 such that the matrix
1
σS
∗ + γE is positive definite. For k ∈ N, let us define the diagonal matrix Ξk whose

ith diagonal element is [zk]i/[xk]i if i ∈ A and zero otherwise. Because of the strict
complementarity assumption, the matrices X−1

k Zk−Ξk tend to zero and each nonzero
component of Ξk goes to infinity. It follows that Ξk − γE is positive semidefinite for
all k large enough. By writing

1

σ
S∗ +X−1

k Zk =
1

σ
S∗ + γE + Ξk − γE +X−1

k Zk − Ξk,
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we deduce that the matrices 1
σS
∗ + X−1

k Zk are uniformly positive definite for all k
large enough.

The second assertion follows directly from the first claim and Lemma 4.2-(i).

Throughout this section, we assume that Assumption 1-4 are satisfied. The following
result gives an estimate of the distance of the Newton iterate to the trajectory w.

Lemma 4.4. There exists M > 0, such that for all sufficiently large k

‖w+
k −w(ρ+

k )‖ ≤M(‖wk −w(ρk)‖2 + ρ2
k + ‖λk+1‖).

Proof. Let k ∈ N be large enough such that ρk ≤ ρ∗ and wk ∈ B(w∗, r∗). Define
ek := w(ρ+

k )−wk. From the linear system (8), then using Φ(w, λ, ρ, σ, µ) = F (w, ρ) +

(0, σλ>, 0)> and F (w(ρ+
k ), ρ+

k ) = 0, we have

w+
k −w(ρ+

k ) = −J−1
k Φ(wk, λk+1, ρ

+
k , σ, µ)− ek

= J−1
k

(
F (w(ρ+

k ), ρ+
k )− F (wk, ρ

+
k )− (0, σλ>k+1, 0)> − Jkek

)
= J−1

k

∫ 1

0
(F ′w(wk + tek, ρ

+
k )− F ′w(wk, ρ

+
k ))ekdt

+ J−1
k (F ′w(wk, ρ

+
k )− Jk)ek − J−1

k (0, σλ>k+1, 0)>.

By taking norm on both sides and next applying Lemma 4.2-(iv) and Lemma 4.3, we
then have

‖w+
k −w(ρ+

k )‖ ≤ 1

2
KL‖ek‖2 +Kσ‖λk+1‖.

By applying Lemma 4.2-(iii) and by using the inequality ρ+
k ≤ ρk, we also get

‖ek‖ ≤ ‖wk −w(ρk)‖+ ‖w(ρk)−w(ρ+
k )‖

≤ ‖wk −w(ρk)‖+ Cρk.

Finally, by using the inequality (a+ b)2 ≤ 2(a2 + b2) for two real numbers a and b, we
deduce that

‖w+
k −w(ρ+

k )‖ ≤ KL‖wk −w(ρk)‖2 +KLC2ρ2
k +Kσ‖λk+1‖.

Set M = K max{L,LC2, σ} to complete the proof.

4.2. Asymptotic result

According to Assumptions 1-4 and Lemma 4.4, the convergence to w∗ of wk implies
that there exists r̄ ∈ (0,min{r∗, a}), where a is defined in Assumption 4, such that
for all k large enough, wk, wk+1, w(ρk), w(ρ+

k ), and w(ρk+1) belong to B(w∗, r̄) and
ρk ∈ (0, ρ∗). Without loss of generality, we can assume that these properties are true
for all k ∈ N.

The following lemma gives an evaluation of the distance between the next iterate
wk+1 and the path w.
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Lemma 4.5. There exists a constant C1 > 0 such that for all k ∈ N,

‖wk+1 −w(ρk+1)‖ ≤ C1(‖ŵk −w(ρk+1)‖+ ‖λk+1‖). (16)

Proof. If there is no inner iteration, we then have wk+1 = ŵk, therefore the inequality
(16) holds trivially with C1 = 1. Suppose now that wk+1 is obtained by applying a
sequence of inner iterations. By virtue of Lemma 4.2-(v), Lemma 4.2-(ii) and Step 8
of Algorithm 1, there exists an index k0 ∈ N such that for all k ≥ k0,

L1‖wk+1 −w(ρk+1)‖ ≤ ‖F (wk+1, ρk+1)− F (w(ρk+1), ρk+1)‖
= ‖Φ(wk+1, λk+1, ρk+1, σ, µ)− (0, σλ>k+1, 0)>‖
≤ εk + σ‖λk+1‖
< ‖Φ(ŵk, λk+1, ρk+1, σ, µ)‖+ σ‖λk+1‖
≤ ‖F (ŵk, ρk+1)− F (w(ρk+1), ρk+1)‖+ 2σ‖λk+1‖
≤ L2‖ŵk −w(ρk+1)‖+ 2σ‖λk+1‖.

By defining C1 := 1
L1

max{L2, 2σ}, the inequality (16) is true for all k ≥ k0. This
inequality also holds for all k < k0 by increasing the constant C1 if necessary.

The next lemma gives a lower bound on the step length computed by applying the
fraction to the boundary rule (9). The proof is given in [1, Corollary 1].

Lemma 4.6. For all k ∈ N, the step length αk computed by (9) satisfies

1− αk ≤ 1− τk + b‖wk − w+
k ‖, (17)

where b =
1

a− r̄
> 0.

The first step of the asymptotic analysis is to show that the distance of the iterates
to the trajectory w is upper bounded by a constant times the feasibility parameter.

Lemma 4.7. The iterates wk generated by Algorithm 1 satisfy

‖wk −w(ρk)‖ = O(ρk)

Proof. First of all, let us prove that there exist constants D1 ∈ (0, 1), D2 > 0 and
D3 > 0 such that for all k ∈ N,

dk+1 ≤ d2
k +D1

ρk+1

ρk
dk +D2ρk+1, (18)

where dk := D3‖wk−w(ρk)‖. Indeed, if a sequence {dk} satisfies this inequality, it has
been proved in [1, Lemma 7] that dk = O(ρk) and thus the conclusion of the lemma
will follow.

Let us choose k ≥ 0. Invoking inequality (16) and Lemma 4.2-(iii), we get

C−1
1 ‖wk+1 −w(ρk+1)‖ ≤ ‖ŵk −w(ρ+

k )‖+ ‖w(ρ+
k )−w(ρk+1)‖+ ‖λk+1‖

≤ ‖ŵk −w(ρ+
k )‖+ C|ρ+

k − ρk+1|+ ‖λk+1‖. (19)
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By using the definition of ρk+1 at Step 7 of Algorithm 1, one has

|ρ+
k − ρk+1| = (1− αk)(ρk − ρ+

k )

≤ (1− αk)ρk
≤ (1− τk + b‖wk − w+

k ‖)ρk, (20)

where the last inequality is due to (17). In the same manner, we also have

ŵk −w(ρ+
k ) = ak ◦ (w+

k −w(ρ+
k )) + (e− ak) ◦ (wk −w(ρ+

k )).

Taking the norm on both sides and noting that ‖ak‖∞ ≤ 1 and ‖e− ak‖∞ ≤ 1− αk,
we obtain

‖ŵk −w(ρ+
k )‖ ≤ ‖ak‖∞‖w+

k −w(ρ+
k )‖+ ‖e− ak‖∞‖wk −w(ρ+

k )‖
≤ ‖w+

k −w(ρ+
k )‖+ (1− αk)‖wk −w(ρ+

k )‖.

Applying Lemma 4.2-(iii), Lemma 4.4 and inequality (17) to the previous inequality,
we deduce

‖ŵk −w(ρ+
k )‖ ≤ ‖w+

k −w(ρ+
k )‖+ (1− αk)(‖wk −w(ρk)‖+ Cρk)

≤ M(‖wk −w(ρk)‖2 + ρ2
k + ‖λk+1‖)

+ (1− τk + b‖wk − w+
k ‖)(‖wk −w(ρk)‖+ Cρk). (21)

By using Lemma 4.2-(iii), Lemma 4.4, ‖wk −w(ρk)‖ ≤ 2r̄ and ρk ≤ ρ∗, we obtain

‖wk − w+
k ‖ ≤ ‖wk −w(ρk)‖+ ‖w(ρk)−w(ρ+

k )‖+ ‖w(ρ+
k )− w+

k ‖
≤ ‖wk −w(ρk)‖+ Cρk +M(‖wk −w(ρk)‖2 + ρ2

k + ‖λk+1‖)
≤ K1‖wk −w(ρk)‖+K2ρk +M‖λk+1‖, (22)

where K1 = 1 + 2Mr̄ and K2 = C +Mρ∗. Combining (20)-(22) into (19), using again
‖wk−w(ρk)‖ ≤ 2r̄ and also the inequality ab ≤ 1

2(a2 + b2) for two real numbers a and
b, we obtain

C−1
1 ‖wk+1 −w(ρk+1)‖ ≤ C2‖wk −w(ρk)‖2 + (1− τk)‖wk −w(ρk)‖

+ C3ρ
2
k + 2C(1− τk)ρk + C4‖λk+1‖,

where C2 = M + bK1 + bCK1 + 1
2bK2, C3 = M + 2bCK2 + bCK1 + 1

2bK2 and C4 =
M + 2bCM + 2bMr̄ + 1. By using the properties (14) and (15), we get

C−1
1 ‖wk+1−w(ρk+1)‖ ≤ C2‖wk−w(ρk)‖2+o

(
ρ+
k

ρk

)
‖wk−w(ρk)‖+o(ρ+

k )+C4‖λk+1‖.

Now, we use ‖λk+1‖ = o(ρ+
k ) given in Lemma 4.1 and ρ+

k ≤ ρk+1 to get

‖wk+1 −w(ρk+1)‖ ≤ C1C2‖wk −w(ρk)‖2 + o

(
ρk+1

ρk

)
‖wk −w(ρk)‖+ o(ρk+1).
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Multiplying both sides by D3 := C1C2, for k large, we get

dk+1 ≤ d2
k + o

(
ρk+1

ρk

)
dk + o(ρk+1).

By increasing the constant D2 > 0 if necessary, inequality (18) is satisfied for all
k ∈ N.

Lemma 4.8. The Newton-like iterate w+
k generated at Step 5 of Algorithm 1 satisfies

‖wk − w+
k ‖ = O(ρk).

Proof. Let k ∈ N. In view of Lemmas 4.4, 4.7, 4.1 and the relation (14), we get

‖w+
k −w(ρ+

k )‖ ≤M(‖wk −w(ρk)‖2 + ρ2
k + ‖λk+1‖) = o(ρ+

k ) (23)

By virtue of Lemmas 4.7, 4.2-(iii), (23) and (13), we then have

‖wk − w+
k ‖ ≤ ‖wk −w(ρk)‖+ ‖w(ρk)−w(ρ+

k )‖+ ‖w(ρ+
k )− w+

k ‖
≤ O(ρk) + C|ρk − ρ+

k |+ o(ρ+
k )

= O(ρk).

The following lemma shows that iterate ŵk is asymptotically tangent to the trajec-
tory w.

Lemma 4.9. The candidate iterate ŵk computed at Step 7 of Algorithm 1 satisfies

ŵk = w(ρk+1) + o(ρk+1).

Proof. Let k ∈ N. A first order Taylor expansion of w at ρ = 0 and the definition of
ρk+1 at Step 7 of Algorithm 1 yield

w(ρk+1) = w∗ + w′(0)ρk+1 + o(ρk+1)

= αk(w
∗ + w′(0)ρ+

k ) + (1− αk)(w∗ + w′(0)ρk) + o(ρk+1)

= αk(w(ρ+
k ) + o(ρ+

k )) + (1− αk)(w(ρk) + o(ρk)) + o(ρk+1)

= αkw(ρ+
k ) + (1− αk)w(ρk) + o(ρk+1)

By using the definition of ŵk at Step 7 of Algorithm 1, we get

ŵk −w(ρk+1) = ak ◦ w+
k + (e− ak) ◦ wk −w(ρk+1)

= ak ◦ (w+
k −w(ρ+

k )) + (e− ak) ◦ (wk −w(ρk))

+ (ak − αke) ◦ (w(ρ+
k )−w(ρk)) + o(ρk+1).

Taking the norm on both sides, using ‖ak‖∞ ≤ 1, ‖e−ak‖∞ ≤ 1−αk and ‖ak−αke‖∞ ≤
1− αk and then invoking Lemma 4.2-(iii), Lemma 4.7 and inequality (23), we deduce
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that

‖ŵk −w(ρk+1)‖ ≤ ‖ak‖∞‖w+
k −w(ρ+

k )‖+ ‖e− ak‖∞‖wk −w(ρk)‖
+ ‖ak − αke‖∞‖w(ρ+

k )−w(ρk)‖+ o(ρk+1)

≤ ‖w+
k −w(ρ+

k )‖+ (1− αk)‖wk −w(ρk)‖
+ C(1− αk)ρk + o(ρk+1)

= o(ρ+
k ) + O((1− αk)ρk) + o(ρk+1) (24)

The bound (17) on the step length gives

(1− αk)ρk ≤ (1− τk + b‖wk − w+
k ‖)ρk.

Using Lemma 4.8, properties (15) and (14), we deduce that

(1− αk)ρk = o(ρ+
k ) + O(ρ2

k) = o(ρ+
k ) (25)

We conclude by substituting (25) into (24) and by using the fact that ρ+
k ≤ ρk+1.

We now state the main result of this section, which states that the sequence of
iterates becomes asymptotically tangent to the trajectory w.

Theorem 4.10. Under Assumptions 1-4, if the feasibility parameter satisfies (13),
if the fraction to the boundary parameter satisfies (15), if the tolerance is such that
εk = Ω(ρk+1), then we have the following results

(i) Algorithm 1 asymptotically need no inner iterations, i.e., wk+1 = ŵk for k large
enough.

(ii) The iterates generated by Algorithm 1 satisfy

wk = w(ρk) + o(ρk).

(iii) The unit step is asymptotically accepted by the fraction to the boundary rule, i.e.,
αk = 1 for k large enough.

In particular, {wk} and {ρk} have the same rate of convergence, i.e.,

‖wk − w∗‖ = Θ(ρk). (26)

Proof. To prove the result (i), it suffices to show that the stopping condition in Step 8
of Algorithm 1 is satisfied for k large enough. According to Lemmas 4.2-(ii), 4.2-(v),
4.9 and 4.1 with noting that ρ+

k ≤ ρk+1, we have

‖Φ(ŵk, λk+1, ρk+1, σ, µ)‖ ≤ ‖F (ŵk, ρk+1)− F (w(ρk+1), ρk+1)− (0, σλ>k+1, 0)>‖
≤ L2‖ŵk −w(ρk+1)‖+ σ‖λk+1‖
= o(ρk+1)

< εk.

The second result (ii) follows directly from (i) and Lemma 4.9.
The proof of the acceptation of the unit step obtained by the fraction to the bound-

ary rule (9) is similar to the one in [5, Lemma 4.20].
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From (ii) we have wk−w∗ = w′(0)ρk+o(ρk). The strict complementarity assumption
implies that w′(0) 6= 0, from which we deduce (26).

5. Numerical experiments

We refer to our algorithm as SPDOPT-ID (Strongly Primal-Dual Optimization with
Infeasibility Detection) which has been implemented in C. We compared it with SP-
DOPT [7] on two sets of problems. The standard set consists of 186 problems in the
Hock and Schittkowski collection [20] with at least one inequality. The infeasible set is
created from the standard set by adding the constraint c2

1 +1 = 0 or (x1−u1)2 +1 = 0,
where c1 is the first component of c and u1 is a bound of the first variable (x1 ≤ u1 or
x1 ≥ u1). It is clear that all problems of the latter set is infeasible.

With a default starting point x0 and z0 = (1, . . . , 1)>, y0 is defined as the least
squares solution of g0 +A0y− z0 = 0. The barrier parameter is initialized by µ0 = 0.1.
If this parameter is updated with a trial value µ+

k < µk, we adopt the rule described
in [5, Algorithm 2].

The feasibility parameter is initially set to ρ0 = 1. When F = 1, a trial value of the
feasibility parameter in Step 3 is updated as follows

ρ+
k = min{0.2ρk, ρ1.4

k }.

This choice of ρ+
k satisfies the requirement (13) with t = 0.4, θ1 = 1, θ2 = 0.2. A lower

bound of 10−16 is also imposed on this parameter.
For the fraction to the boundary rule, the choice τk = max{0.99, 1 − ρkµk} ver-

ifies condition (15). The regularization parameter δk is updated by the following
rule: if F = 1 and the condition (7) is not satisfied, then δk = σk; otherwise,
δk = max{10−2µk, 10−8}. It is easy to verify that all assumptions of δk in the global
and the local analysis are fulfilled. The parameters σk and θk are updated as in [7,
Algorithm 1].

If ‖(gk + Akyk/ρk − zk/ρk, ck, xk ◦ zk/ρk)‖∞ ≤ εtol with εtol = 10−8, the algorithm
is terminated and an optimal solution is declared to be found. Otherwise, if ‖ck‖ >
εtol, ‖Φ(wk, 0, 0, σk, µk)‖∞ ≤ εtol and ρk ≤ εtol, the algorithm is stopped at an infeasible
stationary point. For SPDOPT, the stopping conditions ‖ck‖ > εtol, ‖Akck◦xk‖∞ ≤ εtol
and σk ≤ εtol are added to terminate this algorithm at an infeasible stationary point.

For the aim of getting a fast local convergence when the algorithm converges to an
infeasible stationary point, the feasibility tolerance at Step 1 is set to ε = εtol. At Step
2 of Algorithm 1, we choose c = 0.9, ` = 2 and ζk = 10σkρk for all iteration k. The
sequence of tolerance {εk} in Step 8 is defined by the following formula

εk = 0.9 max{‖Φ(wi, λi, ρi, σi, µi)‖ : (k − 4)+ ≤ i ≤ k}+ 10 min{αxk, αzk}0.2µk+1ρk+1.

By applying [3, Proposition 1], it is easy to see that {εk} converges to zero. This
choice meets the requirements to get a fast convergence in both feasible case, i.e.,
εk = Ω(µk+1), and in the infeasible case, i.e., εk = Ω(ρk+1).

The linear solver MA57 [18] is used for all the algorithms. The maximum number
of iterations, counting both the inner and the outer iterations, is limited to 3000.

For the standard problems, only 182 problems solved by at least one of two algo-
rithms are selected for the comparison purpose (problems hs099, hs102, hs103 and
s332 have not been solved). Figure 1 gives us the performance profiles of Dolan and
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Figure 1: Performance profiles comparing 2 algorithms on the set of standard problems

Figure 2 shows the performances of these algorithms in terms of numbers of function and
gradient evaluations on a set of 169 infeasible problems (the problems hs033, hs044, hs057,

hs064, hs083, hs084, hs085, hs089, hs099, hs105, s220, s331, s332, s356, s357, s376,

s383 have been eliminated since two algorithms cannot detect the infeasibility). We observe
that SPDOPT-ID is the most e�cient algorithm for detecting infeasible problems. In particu-
lar, the e�ciency rate of SPDOPT-ID is over 65% whereas that of SPDOPT and IPOPT is less
than 40%. In term of robustness, SPDOPT-ID and IPOPT are more robust than SPDOPT-AL
since they can detect more than 90% of problems, while SPDOPT-AL only detects 40%.
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Figure 2: Performance profiles comparing 2 algorithms on the set of infeasible problems
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Moré [17] on the numbers of function and gradient evaluations. These profiles show
that SPDOPT-ID and its predecessor SPDOPT have their own strengths in terms
of efficiency and robustness. In particular, SPDOPT is slightly more efficient than
SPDOPT-ID (14%). In term of robustness, SPDOPT-ID are succeeded in 180 prob-
lems which are more 2 problems than SPDOPT. We can conclude that the infeasibility
detection does not change too much the performances of the original algorithm (SP-
DOPT) for solving standard problems.

Figure 2 shows the performances of these algorithms in terms of numbers of
function and gradient evaluations on a set of 174 infeasible problems (the prob-
lems hs044, hs057, hs064, hs083, hs084, hs099, hs105, s220, s331, s332,

s357, s376 have been eliminated since two algorithms cannot detect the infeasibility).
We observe that SPDOPT-ID is the most efficient algorithm for detecting infeasible
problems. In particular, the efficiency rate of SPDOPT-ID is over 95%. In term of ro-
bustness, SPDOPT-ID is also more robust than SPDOPT since they can detect more
than 93% of problems (174 problems), while the rate of SPDOPT is only 40%.

2 4 6 8 10
0.6

0.7

0.8

0.9

1

⌧

⇢
s
(⌧

)

Function evaluations

2 4 6 8 10
0.6

0.7

0.8

0.9

1

⌧

Gradient evaluations

SPDOPT-ID SPDOPT

Figure 1: Performance profiles comparing 2 algorithms on the set of standard problems

Figure 2 shows the performances of these algorithms in terms of numbers of function and
gradient evaluations on a set of 169 infeasible problems (the problems hs033, hs044, hs057,

hs064, hs083, hs084, hs085, hs089, hs099, hs105, s220, s331, s332, s356, s357, s376,

s383 have been eliminated since two algorithms cannot detect the infeasibility). We observe
that SPDOPT-ID is the most e�cient algorithm for detecting infeasible problems. In particu-
lar, the e�ciency rate of SPDOPT-ID is over 65% whereas that of SPDOPT and IPOPT is less
than 40%. In term of robustness, SPDOPT-ID and IPOPT are more robust than SPDOPT-AL
since they can detect more than 90% of problems, while SPDOPT-AL only detects 40%.
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Figure 3 gives a general overview about the performances of these algorithms on
the set of 356 problems including both standard and infeasible problems. We are able
to see that SPDOPT-ID is more efficient and more robust than SPDOPT.

Figure 3 gives a general overview about the performances of these algorithms on the set of 369
problems including both standard and infeasible problems. We are able to see that SPDOPT-ID
and IPOPT are the most robust algorithms. Moreover, SPDOPT-ID is more e�cient than two
other ones.
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Figure 3: Performance profiles comparing 2 algorithms on the set of standard and infeasible
problems
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6. Conclusion

Both in theory and practice, the capability of the mixed logarithmic barrier-augmented
Lagrangian algorithm [7] to quickly detect infeasibility has been improved. But when
the feasibility measure becomes smaller than the feasibility tolerance (‖c∗‖ ≤ ε), the
new algorithm exhibits the same behavior as the original one. More precisely, in that
case, the quadratic penalty parameter goes to zero and the multipliers associated to
the equality constraints become unbounded. An open question would be to find an
interior point algorithm with a superlinear rate of convergence in any case, even if the
sequence stays infeasible, but becomes nearly feasible (think about the realization of
the constraint ex ≤ 0). In practice we can always choose a feasibility tolerance “small
enough”, but from a conceptual point of view this not entirely satisfactory.

This paper completes the local convergence analysis of an interior point method
for nonlinear optimization in the difficult case of infeasible problems. Note especially
that no assumption on the linear independence of the gradient of active constraints is
used in our analysis, contrary to the analyses of Byrd et al. [12] and Burke et al. [11].
This comes from the fact that in the infeasible case, the quadratics penalty parameter
provides a natural regularization of the matrix of the linear system to solve at each
iteration. As a consequence, an open question is whether we can analyse the local
behavior of the mixed penalty method [7] in the feasible case without any constraint
qualification. We note that the local convergence analysis of interior point methods
were considered under MFCQ (see, e.g., Wright and Orban [26], Vicente and Wright
[24]) or the full rank of the Jacobian of equality constraints (see, e.g., Yamashita and
Yabe [27]). On the other hand, when solving large scale problems, the algorithm [7]
has good performances on degenerate problems, even if MFCQ is not valid.

21



References

[1] P. Armand and J. Benoist, A local convergence property of primal-dual methods for non-
linear programming, Math. Program. 115 (2008), pp. 199–222.

[2] P. Armand and J. Benoist, Uniform boundedness of the inverse of a Jacobian matrix
arising in regularized interior-point methods, Math. Program. 137 (2013), pp. 587–592.

[3] P. Armand, J. Benoist, R. Omheni, and V. Pateloup, Study of a primal-dual algorithm
for equality constrained minimization, Comput. Optim. Appl. 59 (2014), pp. 405–433.

[4] P. Armand, J. Benoist, and D. Orban, Dynamic updates of the barrier parameter in
primal-dual methods for nonlinear programming, Comput. Optim. Appl. 41 (2008), pp.
1–25.

[5] P. Armand, J. Benoist, and D. Orban, From global to local convergence of interior methods
for nonlinear optimization, Optim. Methods Softw. 28 (2013), pp. 1051–1080.

[6] P. Armand and R. Omheni, A globally and quadratically convergent primal-dual augmented
Lagrangian algorithm for equality constrained optimization, Optim. Methods Softw. 32
(2017), pp. 1–21.

[7] P. Armand and R. Omheni, A mixed logarithmic barrier-augmented Lagrangian method
for nonlinear optimization, J. Optim. Theory Appl. 173 (2017), pp. 523–547.

[8] P. Armand and N.N. Tran, An augmented lagrangian method for equality constrained
optimization with rapid infeasibility detection capabilities, Tech. Rep., XLIM Laboratory,
2017.

[9] E.G. Birgin, J.M. Mart́ınez, and L.F. Prudente, Augmented Lagrangians with possible
infeasibility and finite termination for global nonlinear programming, J. Global Optim. 58
(2014), pp. 207–242.

[10] E.G. Birgin, J.M. Mart́ınez, and L.F. Prudente, Optimality properties of an augmented
Lagrangian method on infeasible problems, Comput. Optim. Appl. 60 (2015), pp. 609–631.

[11] J.V. Burke, F.E. Curtis, and H. Wang, A sequential quadratic optimization algorithm with
rapid infeasibility detection, SIAM J. Optim. 24 (2014), pp. 839–872.

[12] R.H. Byrd, F.E. Curtis, and J. Nocedal, Infeasibility detection and SQP methods for
nonlinear optimization, SIAM J. Optim. 20 (2010), pp. 2281–2299.

[13] R.H. Byrd, J. Nocedal, and R.A. Waltz, KNITRO: An integrated package for nonlinear
optimization, in Large-scale nonlinear optimization, Nonconvex Optim. Appl. Vol. 83,
Springer, New York, 2006, pp. 35–59.

[14] F.E. Curtis, A penalty-interior-point algorithm for nonlinear constrained optimization,
Math. Program. Comput. 4 (2012), pp. 181–209.

[15] G. Debreu, Definite and semidefinite quadratic forms, Econometrica 20 (1952), pp. 295–
300.

[16] J.E. Dennis Jr. and R.B. Schnabel, Numerical methods for unconstrained optimization
and nonlinear equations, Classics in Applied Mathematics Vol. 16, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
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