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Abstract

Algorithm performance evaluation is so entrenched in the Machine Learning community that one
could call it an addiction. Like most addictions, it is harmful and very difficult to give up. It is harmful
because it has serious limitations. Yet, we have great faith in it practicing it in a ritualistic manner: we
follow a fixed set of rules telling us the measure, the data sets and the statistical test to use. When we
read a paper, even as reviewers, we are not sufficiently critical of results that follow these rules. Here,
we will debate what are the limitations and how to best address them. This paper may not cure the
addiction but hopefully it will be a good first step along that road.

1 Introduction

In the early days of Machine Learning research, testing was not a priority but over time this attitude changed.
A report on the AAAI 1987 conference noted “the ML community has become increasingly concerned about
validating claims and demonstrating solid research results” (Greiner et al., 1988). In 1988, Langley wrote an
editorial for the journal Machine Learning, quickly expanded, in the same year, into a workshop paper with
co-author Kibler, arguing persuasively for greater focus on performance testing. With this sort of accord in
the community, performance testing took on greater prominence. With the appearance, soon after, of the
UCI collection of data sets (Blake and Merz, 1998) 1, performance comparisons between algorithms became
commonplace. Today, publishing a machine learning paper that does not include a section on performance
testing is unthinkable.

Kibler and Langley are certainly not alone in stressing the important role of testing. In the overarching
field of Artificial Intelligence, Simon (1993) and Cohen and Howe (1988) also stress this point. Carefully

1The archive was, actually, created as early as in 1987 as an ftp archive by David Aha and graduate students at UC Irvine.
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carried out experiments are what separates science from other activities and in sciences such as ours exper-
iments have an even greater role. The experimental section is often the largest section in our publications
and in many ways it is considered the most important. Yet, how critically it is read by the community at
large, or even by the reviewers who accepted the paper, is less clear. Our concern, and one we address here,
is that our experimental procedures have become a habit bordering on ritual. By this we mean that we
follow a fixed set of rules without a clear understanding of what they mean. The ritual, itself, is over-valued
as it is based on the assumption that if the form is followed then the conclusions can be trusted. Readers of
the paper, including the reviewers, are not sufficiently critical if the authors follow the rules.

In this paper, we begin by exposing what we see as the main concerns with existing experimental pro-
cedures. We will look at ways to address these problems. We do not intend to offer a single view on these
topics but rather two separate views. We follow this procedure partly because the authors themselves cannot
agree on every point, but also because we think that there are many views within the community which need
expressing. If this paper encourages widespread debate throughout the community, it will have achieved its
main goal. We label these two opposing views as ”Revision” and ”Reform”. The former, although advocating
changes, contends that much can be saved from our existing procedures. The latter argues that a radical
overhaul is needed.

We view artificial intelligence and the subfield of machine learning as science. As such, we, as researchers,
are committed to the scientific method. Unfortunately, it is far from clear exactly what the “scientific
method” entails. Although some argue its merits Platt (1964), the somewhat simple view of an observa-
tion/hypothesis/test cycle is certainly well short of an exhaustive description of what scientists do (Kuhn,
1962). As we have ready raised our concerns about ritual we feel that, before proposing any overarching
method, we need to consider why experiments are important to our field of research. The following are two
views on this issue.

Revision: No matter how sophisticated our pro-
posed classifiers are, no matter what their theoret-
ical or cognitive qualities are, simply proposing a
classification model, without testing it thoroughly,
is not sufficient for convincing anyone to use that
model. Indeed, it is not uncommon, especially in
the field of Artificial Intelligence, that clever ideas
or insights as to how people perform certain tasks
turn out not to be the best approach to solving the
same problem using computer power. A notable in-
stance of this observation comes from the subfield of
Natural Language Processing where brute-force sta-
tistical approaches currently outperform their cogni-
tive counterparts. Careful experimental evaluation
is critical in preventing delusion.

Reform: Experiments are critical to machine learn-
ing, it is an experimental science after all. But we
should not equate experiments with hypotheses test-
ing or, worse still, with statistical hypotheses test-
ing. The role of experiments in an experimental sci-
ence is, and should be, very broad. Experiments are
used to explore ideas, discover relationships, com-
pare alternatives as well as testing hypotheses. The
experimental results do often act as empirical sup-
port for the views of the researcher, but to require
that they be couched as a hypothesis test is an un-
necessary restriction. To insists that some sort of
statistical test is required is to replace personal judg-
ment with an ill-understood test.

We expect that throughout the research field there is agreement in that, sooner or later, the claims of
different researchers must be subject to empirical validation. It is certainly easy to delude oneself of the
effectiveness of one’s algorithm and we should avoid having this delusion spread to the field as a whole.
What is more controversial is if this role is the pre-eminent one for experimental work or if the more informal
exchange of experimental results might better serve the community. Let us continue the debate.
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Revision: The need to test algorithms thoroughly
is perhaps more salient today than it was in the past,
given the number of researchers working in the field
and their geographical spread. When only a handful
of thinkers, all European, studied problems, the is-
sues were quite different. In addition, these thinkers
were not subjected to the same kind of economic
pressure as researchers are today, with industrial in-
terests dictating the pace and direction of scientific
investigation. Long lost, at least in our field, is the
time when researchers could simply follow their in-
terests and intuitions.
The purpose of these observations is not to praise
today’s practices or to mourn those of yesteryear.
Instead, we argue that given the situation as it is
now, the careful and thorough testing of our algo-
rithms is of utmost importance. Indeed, if all ideas
were presented as equally useful. How many dead-
ends would we hit? How much time would we waste
coding seemingly promising algorithms that, in fact,
have no chance at solving the task at hand? A lot of
resources would be wasted, both economical and in-
tellectual. Our conferences and journals would cease
to serve any useful purpose and researchers would
start to lose all interest in the field.

Reform: Empirical validation is a necessary part
of any science, but it is still possible to overempha-
size its importance. Other evidence is also required;
it must fit with current understanding within the
research field. This is not to say that novel exper-
imental results should be disregarded, it is only to
say that it is just one of the checks and balances.
Empirical evidence should lead to explanation, not
stand in its stead. We might take inspiration from
our own algorithms. The view that learning is a
search through hypothesis space suggests that it is
wise to entertain multiple hypotheses. We are still
searching. So, eliminating ideas, or indeed accepting
them, too early is counterproductive.
Part of the emphasis on performance testing un-
doubtedly comes from application focused research.
Applications are useful to the field in exposing new
problems, but we should not let the tail wag the
dog. Machine learning is not solely an engineering
discipline. Further, too much weight can be placed
on experimental results. There are some well publi-
cized examples of questionable work being accepted
in high ranking journals (Giles, 2004; Brumfiel, 2002;
Couzin, 2006). Sometimes, the rigor is superficial.
Experiments rather than protect us from delusion
can actively promote it.

In this debate, one side places a strong emphasis on the value of adopting a rigorous method of evaluation.
The other side argues that a more open exploratory process serves us better. Even in statistics, many
emphasize the exploratory role over the more traditional confirmatory one (Tukey, 1977). Each of the
proponents claims that his or her approach encourages more effective research. Perhaps the reader feels
that a compromise could be struck between the two views expressed above, that would allow researchers
to spend more time exploring and developing their ideas, and less time testing and confirming them. Yet,
confirmatory testing would remain an important part of the process. But the devil is so often in the details
and the emphasis we put on the different experimental roles does matter.

2 What’s wrong with what we are doing now?

Existing reviewing practices pressure us to spend a great deal of our time testing in order to publish. This
might be time well spent if the conclusions we could draw from our tests told us which theories were worth
pursuing and which were not. Unfortunately, the testing procedure is of questionable merit in distinguishing
good theories from bad. There are three components of this procedure that undercut its value: the measures
used, the reliance on null hypothesis testing and the use of benchmark data sets. Our measures do not
measure all that we care about. Null hypothesis statistical tests are widely misinterpreted. The data sets
are not a sample of any “real” world. In this section, we address these problems in turn.
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2.1 What are we measuring?

The most common way of evaluating our classifiers is to use a single scalar measure. We would argue that
any single scalar measure has significant limitations. That is not to say that using accuracy, as our sole
performance measure, did not originally benefit research. Large gains unquestionably represented progress.
But early on, the gains achieved over very simple systems were shown to be quite small (Holte, 1993). As
time has gone on these gains have become smaller, so it is less clear that they represent worthwhile progress
(Hand, 2006). So what are the pros and cons of a single measure, the following debates the issues.

Revision: The main advantage of a simple scalar
measure—our preferred kind of evaluation measure,
nowadays—is that it is objective. It gives a clear,
and definitive answer, to which algorithm is the best.
If the algorithm being tested is well described, and
the experimental set up is well specified, then the ex-
perimental results could be reproduced by another
researcher. What is more, as scalars are totally or-
dered, there could be no debate on what the re-
sults show. The same conclusions would be drawn
right across the field. Error rate, or accuracy, is a
good example of a simple scalar measure. Every-
body would agree that making the fewest mistakes
is a good property for any classifier. It is true that
accuracy has it weaknesses (Provost et al., 1998), but
other scalar measures, such as “area under the ROC
curve” (Bradley, 1997), address many of its limita-
tions. Adopting a few important measures through-
out our research field would still allow an easy com-
parison of results. Encouraging a more promiscuous
use of measures would serve more to confuse than to
edify.

Reform: Objectivity is unquestionably desirable
but only if “all other things are equal”, an essen-
tial caveat. The measure must represent something
we care about. There is great diversity in the people
who must be considered in this judgment: the partic-
ular researcher, the research community as a whole,
end users of applications and, of course, referees for
conferences and journals. It is impossible to capture
all these concerns in a single scalar measure. Jap-
kowicz (2006) discussed problems with three popular
ones: accuracy, precision and recall. Particular at-
tention was given to the extreme circumstances un-
der which often they disagreed on the classifiers’ per-
formance ranking. As Drummond and Holte (2005)
pointed out that some algorithms fail to do better
than trivial classifiers for extreme class skews is a
concern that was largely hidden by the standard
practice. Many measures are needed to establish
the worth of a classifier. Graphical, multi-objective
representations can be used to capture the inher-
ent complexities of algorithm performance. With
graphical representations, humans can process infor-
mation faster and more effectively than using tables
of scalar values.

Both views suggest that more than a single performance measure is probably needed for research to
progress, but how many and which ones? We might consider a classifier’s error rate on each class separately
(Provost et al., 1998). We might consider misclassification costs (Pazzani et al., 1994). We might consider
a classifier’s stability, small changes in the data should not cause large changes in classification (Evgeniou
et al., 2004). In application oriented research, the measure should reflect the concerns of the end users,
typically hard to model precisely (Thearling and Stein, 1998). Having only a few, community approved,
metrics may result in some important characteristics being missed.

Although unquestionably the most widespread in the machine learning community, scalar measures are
not the exclusive way to evaluate algorithms in use today. Recently, a small segment of the research com-
munity turned to the use of graphical approaches such as ROC Analysis (Provost and Fawcett, 2001), Cost
Curves (Drummond and Holte, 2006) and Precision/Recall curves (Davis and Goadrich, 2006). Unfortu-
nately, the largest segment of the research population has been ignoring these newer developments. Even
when they are initially adopted, it seems to many the lure of simple scalar measures is too strong. As seen
at an ROC workshop (Ferri et al., 2004) many researchers are now using the scalar measure “Area under
the ROC curve”. We are concerned that we are simply replacing an old orthodoxy with a new one. So what
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should we do?

Revision: Although it hard to satisfy all the de-
mands on what a measure should capture, some
things like error rate are more fundamental than oth-
ers. For different applications there may indeed be
specific concerns. But unless they prove to be very
general in nature they are not likely to be impor-
tant to the community at large. But whatever is
of value does need careful experimental evaluation.
The heart of any real science is quantification, only
by getting a grip on the numbers does one get a grip
on the subject. There is much to be admired in the
early days of machine learning, but as we matured
as a community we recognized the importance of
careful evaluation. Evidence of an anecdotal nature
was no longer enough, hard evidence in the form of
quantitative comparison became necessary for pub-
lication and community acceptance. To retreat from
this position would not serve the field well.

Reform: Unfortunately, if a quantitative measure
is needed to make a paper publishable, things which
cannot be quantified are unlikely to be studied. In
the early days of machine learning, how easily a clas-
sifier could be understood by a human was consid-
ered very important (Michalski, 1983). Although
there is still some interest, notably at an artificial
intelligence workshop (Oblinger et al., 2005) rather
than a machine learning one, it has declined over
the years. This is at least partially attributable to
the inability to measure it. As Kodratoff (1994) says
“This attitude can be explained by the fact that we
have no way of measuring or even analyzing what
a ’good’ explanation is ...”. Some measures are in-
herently qualitative, but that does not mean they
are unimportant and should be ignored. Yet, forcing
them into a quantitative form would be an uncertain
process and do little to improve objectivity.

A measure may capture something of importance but not everything of importance. A single scalar
measure can over-simplify complex questions, combining things together which should be kept separate.
When we spend all our time improving on a single scalar measure the gains inevitably get progressively
smaller. As that measure captures only part of what we care about, progress in our field must suffer.
Thus, any advantage indicated by a simple scalar measure may be illusory if it hides situation dependent
performance differences. Single scalar measures are summaries of a system’s performance. Since many such
summaries, each with a different twist could be generated, it seems mistaken to stick with a single one. But
will a few well chosen measures solve our problems? Or should we be much more open to reporting results
using many different measures and even allowing qualitative claims to be published?

2.2 What does a statistical test buy us?

Although we use null hypothesis statistical tests extensively—they are often considered essential for a paper
to be published—our understanding of what they mean is limited. We often misinterpret them, reading much
more into the results than they can reasonably support. Here, we debate the value of such tests. We note
that this debate has been going on for some time in other fields. There is an enormous amount of literature
on this issue, stretching back more than sixty years (Hagood, 1941). The controversy is particularly evident
in psychology as seen in the response from critics that accompanied a paper (Chow, 1998) in the journal
Behavioral and Brain Sciences.
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Revision: Statistical testing is necessary when the
data set on which we are experimenting is small or
non-uniform. The purpose of these tests is to tell us
whether the results that we have obtained on our ex-
periments can be generalized to future cases. A rela-
tively involved testing approach is commonly used in
the Data Mining/Machine Learning community, in-
volving such concepts as that of cross-validation and
statistical validity testing using the Student t-test.
However, these methods are often used blindly, by
researchers who are not very well versed in Statis-
tics. As a result, they may not always be applied
properly, and thus, the results obtained may not
be valid. Some researchers (Salzberg, 1997; Hand,
2006) claim that the improvements observed by our
current evaluation methods are, in fact, much less
impressive than they may appear.

Reform: The evaluation of algorithms is inherently
a statistical question, we only have a sample of the
problem in our data set. It would therefore seem sen-
sible to use statistical hypothesis tests. One problem
with such tests is tendency for people to read into
the results what they would like to believe. That this
is such a strong temptation is, at least partly, due to
the tests, when correctly interpreted, saying remark-
ably little. Certainly, they say nothing as strong we
would hope, such as the probability that the claim
is true. The main advantage of null statistical hy-
pothesis tests is the apparent rigor they bring to
our field. The results we publish are not just wish-
ful thinking, they have been empirically evaluated.
The contention here is that their value is consider-
ably overstated and that they act more to confuse
than to clarify.

Both viewpoints point out the lack of understanding in the use of statistical tests. That people rou-
tinely misinterpret tests has been discussed elsewhere. Cohen (1994) gives some examples: “near-universal
misinterpretation of p as the probability that Ho is false, the misinterpretation that its complement is the
probability of successful replication, and the mistaken assumption that if one rejects Ho one thereby af-
firms the theory that led to the test”. Following procedures with little understanding is what we see as the
ritualistic nature of our experimental procedures.

To address this problem, the first view advocates greater knowledge of the various statistical methods
used so that appropriate tests can be chosen under the different sets of circumstances that arise. The second
view questions their overall value. The issue, as in psychology, is whether or not their advantages outweigh
their disadvantages. Some would argue strongly for their continued use, such as Hagen (1997) whose paper
is titled “In Praise of the Null Hypothesis Statistical Test”. Others are much less complimentary, Gigerenzer
states (Chow, 1998, p199) “[the test] is an inconsistent hybrid of Fisherian and Neyman-Pearsonian ideas.
In psychology it has been practiced like ritualistic handwashing and sustained by wishful thinking about
its utility.” At the very least, researchers in our field should be aware of the controversy. It may be that
statistical tests are useful but in a much more limited role than at present. Perhaps as Shafto (Chow, 1998,
p199) says “[tests] may be most clearly and directly useful .... as a safeguard against over-interpretation of
subjectively large effects in small samples”.

2.3 What do our data sets represent?

The main advantage of benchmark data sets is our familiarity with them. When we read a paper discussing
experiments, using some subset of the UCI collection, we have natural intuitions about the results. In all
probability, we have used most of the data sets ourselves, or read about their use elsewhere. We can therefore
easily compare the results with our own experience or the results from other papers. A question remains
about how well experimental results will generalize to other yet unseen problems. More than fifteen years
ago, Holte (1993) raised this concern saying “one may doubt if the [benchmark] datasets used in this study
are ’representative’ of the datasets that actually arise in practice”. Other researchers are clearly convinced
they are not (Saitta and Neri, 1998). It seems a fair assumption that the UCI data sets are not a random
sample of the world. But just how valuable are they?
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Revision: Although the UCI domains do have
many limitations, they have been, and will con-
tinue to be, an important resource for our commu-
nity. They certainly represent a slice of reality, al-
beit not capturing all possible aspects of the world,
since most of them were gathered from real appli-
cations. A number of researchers have claimed that
the very familiarity with these data sets has led to
over-fitting (Bay et al., 2000; Salzberg, 1997). Yet,
given their diversity, it is worth wondering whether
the type of learning algorithms Machine Learning
researchers develop can, truly, over-fit them. If an
algorithm can do well on, say, 30 of these domains,
are we right to assume that it is over-fitting them?
This is an open empirical questions that is worth ex-
ploring further. It is true that the UCI domains are
not sufficient, both because they are limited in the
kind of problems they illustrate—class and attribute
noise, missing features, class imbalances, cost issues
etc. and are only a small subset of all the situations
that can arise in real-world situations —and because
they are quite small. But it should be remembered
that the UCI collection is far from static, new data
sets are being added all the time. This should go a
long way towards addressing any concerns.

Reform: Not only do the data sets not truly repre-
sent the world, the instances they contain are often
not random samples of the application domain. Take
the class distribution in the two UCI credit applica-
tion datasets. They contain very different numbers
of credit approvals. It might be a difference in lo-
cal practice but more likely it represents a difference
in how the data were collected. The Splice dataset
has an equal number of positive and negative ex-
amples, in actual DNA sequences the ratio is more
like 1:20 (Saitta and Neri, 1998). It is also doubtful
that the distribution of instances over the attribute
space reflects reality. It is more likely an artifact
of how the data set was constructed. Not know-
ing how the instances were collected undercuts the
value of any statistical tests. The basic assumption
on which they are founded, that the sample is ran-
dom, is questionable. It is clear that we should not
place too much weight on results from experiments
on such data sets. We should not be very surprised
when they do not generalize well to more practical
problems. We should also question the value of do-
ing a simple experiment over a large number of UCI
data sets. “More is better” is a questionable adage
in this case.

The two points of view presented above are not completely contradictory. They clearly agree that the
nature of the data sets contained in the UCI repository is more of the problem than the mere existence of
the repository and the practice of community experiments. Something must be done about how we deal
with this collection of data sets, how we review experimental results arising from them and how we get the
resources needed to make our experiments more trustworthy.

3 What’s the alternative?

One attraction of the present way of carrying out experiments is that it codifies a simple recipe for testing
algorithms; use cross-validation to estimate accuracy, or AUC, on lots of UCI data sets, run a t-test on the
results and count up wins losses and draws. But the ritualistic adherence to this recipe is one of the main
objections raised in this paper. Certainly, we feel the existing recipe is too rigid and greater flexibility is
needed. Just how much flexibility is the area of debate in this section. Let us begin by looking at two views
on the future role for experiments in Machine Learning research.
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Revision: It is important to recognize, that as a
community, we have settled on a simplified, and
perhaps, confused view of evaluation. We separate
the notion of testing from the normal conduct of re-
search. During the development of our research, as
we design our algorithms and refine them, we con-
stantly need to test our ideas to see if they are on
the right track. The testing that takes place at the
end of the endeavor, for the purpose of reporting
our findings, is a continuation of that process. That
being said, as testing is such a fundamental part of
our research, it is crucial not to water it down by
confusing it with the overall design/testing process.
We must keep a high level of care in the reporting of
our final results. With a good understanding of the
meaning of statistical tests, with a careful choice of
ways to measure and visualize our results, and with
the right selection of data sets, we will achieve an ef-
fective experimental procedure that can be adopted
throughout our community.

Reform: It is too simple a view that science pro-
gresses by individual scientists proposing hypotheses
which are either falsified, or corroborated, by an ex-
periment. This view is neither historically accurate
nor a particularly good practical methodology. Hav-
ing our papers reflect this structure is therefore ques-
tionable. We should encourage papers that are much
more exploratory in nature. Experimental results
are only one aspect of support for various claims by
researchers, it is also necessary to have a well rea-
soned argument that appeals to other researchers’
intuitions. Hypothesis testing is important, but it
should address more substantive issues than “my al-
gorithm is better than yours”, which is too often
the case. An answer to a statistical question is not
an answer to a substantive one. Until we have clear
substantive questions to answer, hypothesis tests are
not warranted. Except in very limited cases, null hy-
pothesis statistical tests are not warranted at all.

As is clear so far in this paper, the views expressed do not support the status quo. Too often, in our
papers, the hypothesis being tested is often not clearly stated nor is it clear how the test corroborates it.
We feel that many experiments, in fact, do little more than test if “algorithm A is better than algorithm B”.
Setting aside, for the moment, questions about our confidence in the experiments themselves, it is not clear
how an answer to such a question advances our field. So how should we address these problems?

Revision: There should be two separate branches
to Machine Learning research: one that continues
what we do now, designing and testing new algo-
rithms, using the most up-to-date evaluation tech-
niques proposed; and another, more philosophical
research, that explores the nature of the field, de-
signing new evaluation methods, thinking up the
standards by which to measure progress. Both kinds
of papers are important and should be published for
the time being. Eventually, the philosophical side
should produce results bearing on the algorithm de-
sign and test side. At that point, the philosophi-
cal side may disappear, perhaps reappearing peri-
odically thereafter, while the design and test side
continues, but in a new format. Without this kind
of reflection, the field is at an impasse that prevents
it from progressing and remaining relevant. It is
not necessary, however, that the practice we are cur-
rently using be totally abandoned. It is unlikely that
the philosophical research will revolutionize how to
evaluate algorithms, the process will only need to be
refined.

Reform: The broad aim of any research field is to
progress in the understanding of its topic. It is de-
batable if our field is mature enough to have strong
overarching theories. An early view in AI was that
our programs themselves were theories. But even in
this case (Simon, 1995) warned “ we must take care
to define what characteristics of the programs repre-
sent the theory,, and what parts constitute boundary
conditions and initial conditions for a particular ap-
plication of the theory.” Presently, when we do hy-
pothesis testing, it is often for very particular claims
which do little to advance the field. We would be
better off sharing the results of more general exper-
iments and exploring our insights. Our aim should
be “rules of thumb” much like the earlier laws of
Physics, capturing empirical relationships. If this
means that there would be few hypotheses tests pub-
lished, so be it. Most research is exploratory. True
hypothesis tests, those of a substantive nature, will
be rare. Yet, they will mark important milestones
in our collective research.
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3.1 What should we measure?

Both sides of the debate are clear that a single scalar measure, adopted community wide, is of questionable
value. They also agree in that experiments should do much more than just compare the performance of two
algorithms. Yet, the two views below are very much in opposition as to where we should go from here.

Revision: It is unlikely that more than a few com-
munity wide scalar measures will be needed. So, the
best way of displaying results is still in tables. Tables
of results have served us well in the past. Readers of
papers are familiar with this form of representation.
Graphical methods have too much inherent flexibil-
ity, making results difficult to interpret and therefore
little help in making a decision. To be able decide
between alternatives in fundamental to our testing.
For applications, we must decide which algorithm to
use. As researchers, we must decide what research
avenues are most profitable to explore. As reviewers,
we must decide which papers to accept. A greater
reliance on a subjective interpretation of the results
would make all these decisions more time consum-
ing. In particular, reviewers would would find it
much harder to judge papers and more discussion
among reviewers would be necessary. This is infea-
sible given the reviewing load many researchers al-
ready have. Yet, papers including tables for mul-
tiple measures, accompanied by an interpretation
of the results, should result in little extra review-
ing load. In fact, current research suggests we may
be able to summarize various measures into a single
one (Caruana and Niculescu-Mizil, 2004; Huang and
Ling, 2006), simplifying the tables once again.

Reform: For applications, a measure of perfor-
mance is needed to compare algorithms, but it is
not the only thing needed. Users are often reluc-
tant to accept a system based on performance fig-
ures alone, even when these figures show large gains
over standard practice. For the research field as a
whole, experimental results are only a small part of
a much larger argument about the value of any ap-
proach. Even when a solid gain in performance is
achieved, it is unclear what it says about the merits
of a particular algorithm. For instance, sometimes
small changes can reverse the ranking of algorithms
(Caruana and Niculescu-Mizil, 2006). Even if the
results are unassailable, the interpretation of the re-
sults is not. How to generalize beyond them is not
inherent in the results themselves. In the choice of
measure, it is less important to abide by a commu-
nity standard than it is to be well justified, fitting
well into the broader argument. Our focus on perfor-
mance testing has detracted from the bigger picture
of why something is interesting and matters to the
field. Requiring that experimental results be based
on community wide measures is part of this depen-
dence. Using different measures in different circum-
stances, and generally de-emphasizing the role of
performance testing, will promote broader research.

The above discussion suggests that we should be more flexible in what we measure. Flexibility is also
needed in the way we judge the results, increasing the reliance on human judgment. One view argues,
however, that too much flexibility could throw us back to a time where machine learning algorithms were
not well validated. This would lead to some useless systems ”polluting” the research landscape, generating
unwarranted discussions and follow-ups given their low performance, and ultimately, their lack of interesting
and practical insights. The other view is that research output is as much a well reasoned argument as it is
performance evaluation. For example, were Mitchell’s 1977 version spaces or Michalski’s 1973 AQ systems as
well validated as more recent algorithms? Probably not. Yet, these systems offered useful conceptualization
of the machine learning problem (“machine learning as search” and “learning by recognition versus learning
by discrimination”). This view argues that performance testing is only part of a larger experimental process,
itself part of a larger exercise. Too strong a focus on performance testing has resulted in progress becoming
a matter of small gains based on questionable measures. Removing this focus would allow researchers to
spend more time investigating higher-level concepts, of much more value to the field in the long run.
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3.2 What tests should we do?

Many problems arise because of our lack of understanding of statistical testing. We are therefore susceptible
to misinterpreting the results, and making claims that are not supported by our experiments. Even those
with a deeper understanding often lack sufficient clarity in their writing to explain to others what our
experiments mean. One answer would clearly be to improve rigor in our field, this is one view taken in the
debate. The other view is that this rigor would be of questionable value.

Revision: Rigor is important but that does
not mean ritualistically following simple evaluation
recipes. Machine Learning researchers should con-
sider a range of possibilities, from which particular
re-sampling regimens and statistical tests should be
selected on a case by case basis. For such a choice
to be done properly, the person testing the classifier
must be sufficiently knowledgeable in Statistics. It
is, thus, of utmost importance that we bring Ma-
chine Learning practitioners to a level of sophisti-
cation in Statistical Analysis sufficient to conduct
evaluation of classifiers properly. To improve the
rigor in our field, we should use the appropriate sta-
tistical language when describing the outcome of ex-
periments. We should better educate our graduate
students in how research papers should be written.
We should better educate them in how to carry out
experiments and the meaning of any statistics used.
That is not to suggest that we all become statistical
experts. Instead, we should develop a level of knowl-
edge, in these issues, similar to the one researchers
in psychology or economics have that allows them
to craft experiments and validate models more rig-
orously than we do. We should insist that papers
are accompanied by the algorithms and data used in
the experiments, so that exactly what has occurred
can be verified by others.

Reform: Additional rigor would buy us little and
the effort is not worth the return. In many ways, it
is the attempt to be rigorous that has led us down
this particular path and it could do so again. In the
traditional sciences, such as physics and chemistry,
there is little use of statistical testing. As the fa-
mous physicist Ernest Rutherford once said “If your
experiment needs statistics, then you ought to have
done a better experiment.” So, it might be worth
asking ourselves if the questions we are trying to an-
swer are the right ones. If we were to look to physics
for some scientific hypothesis, we might take Boyle’s
law, pressure times volume is a constant. This says
nothing about the null hypothesis or indeed any al-
ternative hypothesis.
Rigor, certainly when it becomes formulaic, tends
to diminish careful consideration by the authors of a
paper, as well as the readers and reviewers. Too
often statistical tests fail to combat delusion but
rather encourage it. People looking at graphs and
tables can, and should, make their own interpreta-
tion of the results. As one statistics researcher put
it, people can use ”visual perception as a statisti-
cal test” (Buja and Cook, 1999). Most certainly, we
should be clear of the difference between a scientific
hypothesis and a statistical one.

Here the two views diverge. The first argues that the problems can be solved by carefully adhering to
a strong, yet transparent, statistical methodology. We can no longer treat statistical tests as black boxes.
We need to, and so do our graduate students, better understand what different statistical tests mean, and
how and when they should be used. The second view argues that this would take time and the time would
not be well spent. Statistical tests even when applied appropriately simply do not tell us what we want to
know. The rigor they provide is of questionable value.

3.3 What data should we use?

As we saw earlier, both views agreed that the UCI data sets are not sufficient to draw conclusive results. We
need more data from a wider set of conditions that better reflect all aspects of the world. In the following, to
achieve this, one view is that better ways of collecting data from real domain experts is needed. The other
view suggests that much more can be obtained by using artificial data, generated the right way.
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Revision: The view taken here is that we need
to strongly encourage the collection of more real
data sets to test our algorithms. A weakness in our
present approach, which needs addressing, is the re-
liance on old, or artificial, data. The old data has
been used too frequently and for far too long, so
results based on them are untrustworthy. Artificial
data, which does not represent real situations, is of-
ten misleading and encourages the investigation of
imaginary problems. The UCI data sets have some
limitations but the collection is not a static with
new data sets being collected over time. There also
other sites (Hettich and Bay, 1999; Meyer and Vla-
chos, 1989; Tsang, 2000) which are good sources of
real data.
What we lack is data focused on particular topics. A
web site where one could exchange data for analyzes
would help. It could be advertised in medical, en-
vironmental, and other circles. Researchers in prac-
tical domains would upload their data and receive,
in exchange, a free analysis of their domain. They
would describe the data, explain their expectations,
and so on. Machine Learning researchers would send
their results, with an explanation to the person who
posted the data. It would clearly require additional
work on both sides, but the benefits to all should
outweigh this. With sufficient data sets, should we
want certain statistical guarantees on our results,
we would have domains that represent the necessary
characteristics. This would give considerably more
confidence in our performance measures, error esti-
mation method and our statistical tests.

Reform: Although there is unquestionable value in
real data, this does not mean it is the only data that
should be used in experiments. The idea that ar-
tificial data is somehow dangerous is one we would
reject strongly. In fact, we would argue that not
using artificial data is much more dangerous. Real
data is good at telling us different aspects of the
world, some of which we may have overlooked. But
artificial data allows us explore variability not found
in the real data we have collected yet we can rea-
sonably expect to encounter in practice. Of equal
importance is that such data allows us tighter con-
trol, giving rise to more carefully constructed and
more enlightening experiments.
A discussion that arose at a workshop (Drummond
et al., 2006) suggested the generation of artificial
data sets based on reality. The idea would be to
create an artificial data set generator that takes as
input a real domain, analyzes it automatically and
generates deformations of this data set that follow
certain high-level characteristics. Narasimhamurthy
and Kuncheva (2007) describe some of the deforma-
tions that might be applied. For example, the user
could request noise of certain type to be injected in
the domain. She or he could also ask for segments of
the population to be made rarer, or for imbalances
to be created. The generator would offer a number
of options that could be used to extend the data. A
particular advantage of this approach is that an un-
limited number of data points could be generated,
thus, eliminating the need for statistical analysis al-
together.

Our challenge, as always, is limited data. It would be ideal if we had some massive collection of real
data that represented all the problems we might encounter. But given that this ideal will not be achieved
any time soon we must find the best compromise. One view argues that the best we can do is experiment
on real industrial weight problems. Artificial data just generates artificial problems. But our aim is always
to generalize beyond the immediate results, and the other view claims that artificial data will best aid this
process. One more issue that is open to debate.

4 Conclusions

In this paper, we have highlighted the limitations of our current experimental procedures and ways that they
might be improved. We gave two alternate views, at least in part, to capture the range of opinions held by
some within the community. Our hope is to encourage a much more widespread debate. To promote this
aim, we have been holding workshops (Drummond et al., 2006, 2007, 2008) and will continue to do so at
different venues. We believe that this topic is of sufficient importance that this debate should not be short
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lived. How we carry out experiments is an area of research in its own right. At the very least, we feel this
warrants special issues of a journal, from time to time, perhaps even its own small conference. We ask those
who share this view to contact us. Generally, we would welcome any debate on this interesting topic with
members of this community.
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