
A Comparison of Adaptive Appearance Methods for Tracking

Faces in Video Surveillance

M. Ali Akber Dewan*, E. Granger*, F. Roli
†
, R. Sabourin*, and G. L. Marcialis

†

*Laboratoire d’imagerie, de vision et d’intelligence artificielle, École de technologie supérieure,
Université du Québec, Montréal, Canada

dewan@livia.etsmtl.ca, eric.granger@etsmtl.ca, robert.sabourin@etsmtl.ca
†Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d'Armi, Cagliari, Italy

roli@diee.unica.it, marcialis@diee.unica.it

Keywords: Biometrics, Face Tracking, Spatiotemporal Face
Recognition, Video Surveillance, On-Line and Incremental
Learning, Adaptive Appearance Methods.

Abstract

Face recognition is increasingly employed by public safety
organizations in decision support systems for video
surveillance, to detect the presence of individuals of interest.
In the context of spatiotemporal face recognition, tracking is
an important function used to locate, follow and regroup faces
of different individuals in a scene. Techniques for face
tracking in video surveillance should be robust to changes in
pose, expression and illumination, as well as occlusion in
cluttered scenes. Given these challenges, trackers based on
adaptive appearance modelling (AAM) typically improve
target’s state estimation because they initiate and update an
internal face model per individual according to changes in
facial appearance. In this paper, the performance of three
AAM trackers – Incremental Visual Tracking (IVT), Tracking
Learning Detection (TLD) and Discriminative Sparse Coding
based Tracking (DSCT) – are compared for face tracking with
video surveillance applications in mind. These methods are
evaluated according to area overlap error, tracking error and
time complexity using Chokepoint videos collected in
uncontrolled video-surveillance environments, where
individuals walk through portals. Results indicate that IVT
outperforms the others in its ability to accurately track faces
in the presence of occlusion, and under variations in pose,
scale and lighting. Further characterization of IVT indicates
that using a small batch size and forgetting factor during
update provide better tracking accuracy when face tracks
changes in their capture conditions. When conditions change
more gradually, IVT benefits from assessing facial quality
before updating face models.

1 Introduction

Given the current demand for security and surveillance
technologies, decision support systems for video surveillance
are being considered by many public safety organizations for
enhanced situation analysis. In many applications, automated
face recognition is increasingly employed to alert a human
operator as to the presence of individuals of interest appearing
in either live (real-time monitoring) or archived (post-event
analysis) videos. Face recognition is relevant in a range of

video surveillance applications still-to-video face recognition
(e.g., watch-list screening) and video-to-video face
recognition (e.g., person re-identification). In practice, face
recognition in video surveillance (FRiVS) is challenging
because accurate responses are required for faces captured
under semi-constrained (e.g., inspection lane, portal and
checkpoint entry) and unconstrained (e.g., cluttered free-flow
scene at an airport or casino) conditions.

In the recent years, face tracking has become an
important tool for recognition. It is used to locate and follow
faces of different individuals in motion, and regroup the facial
information for spatiotemporal face recognition. This
information is useful to generate reliable facial models;
mitigate effects of non-cooperative capture conditions; model
facial behaviour; generate better facial models from multiple
views; and accumulate decision on multiple frames to achieve
improved recognition [1]. However, variations in pose, scale,
expression, and illumination, and the occlusions in cluttered
scenes can degrade tracking performance. To address these
challenges, many robust face tracking methods have been
proposed, although only partial solutions to these key issues
exist. Beyond the need for reliable face tracking, efficient
techniques are required for various real-time applications
because video surveillance networks are comprised of a
growing number of cameras, and potentially cluttered scenes.

Face tracking involves (1) facial model (FM)
representation, (2) prediction filtering (PF), and (3) data
association (DA). In FM, facial captures are represented with
distinctive features in order to be located and tracked from
frame to frame, whereas PF allows predicting the state (size
and location) of a face in the current frame based on
information from previous frames and on some underlying
state transition model. Finally, DA allows to link facial
captures to predicted face locations in order to actually locate
different faces of a frame.

Among state-of-the-art trackers, adaptive appearance
modelling (AAM) methods have been shown to efficiently
address current challenges of face tracking since they adapt
internal face models for enhanced PF as well as DA [2].
These methods employ some off-line and on-line learning
algorithms to adapt changes in facial appearance in a scene.
However, AAM methods are computationally expensive and
seek to fulfil the contradicting goals of rapid learning and
stable memory for the AAMs, which is often referred to as the
stability-plasticity dilemma. Finally, AAMs carry the risk of
adapting to inputs from other targets or the background,

flangevin
Zone de texte
Accepted in 5th Int. Conference on Imaging for Crime Detection and Prevention (ICDP), 2013

leading tracks to drift from the target. This is referred to as
knowledge corruption. These key issues must be considered
when selecting an AAM method that is suitable for FRiVS.

This paper presents an empirical comparison of
performance for trackers based on AAM. State-of-the-art
methods are reviewed, and an algorithmic description is
presented for three representative AMM trackers –
Incremental Visual Tracking (IVT) [3], Tracking-Learning-
Detection (TLD) [4], and Discriminative Sparse Coding–
Based Tracking (DSCT) [5] highlighting their pros and cons
for FRiVS. Among all AAM–based trackers, IVT, TLD and
DSCT are considered as the baseline trackers representing
three subgroups of the AAM taxonomy. These trackers are
compared according to tracking quality and computation time
using the Chokepoint video dataset for unconstrained video
surveillance applications. Since IVT outperforms the other
trackers, this paper also characterizes the impact of its key
parameters (i.e., batch size and forgetting factor) on IVT
tracking quality. In addition, this paper explores the benefits
of updating IVT’s internal FM using quality assessment
provided by a core module in all systems for FRiVS – the
face detection module.

2 Adaptive Appearance Model-Based Trackers

Trackers based on AAM use an internal FM of different
individuals, and can adapt these models to changes in the
scene. The main benefit of using AAM for FRiVS
applications is to improve accuracy for DA in changing face-
capture condition. According to DA mechanisms, AAM
trackers in literature are categorized into two main groups:
generative and discriminative. AAM trackers with generative
DA typically use 1-class classification (or density estimation)
to model only target face samples, whereas the discriminative
typically use 2-class classification to model faces in a scene
with target and non-target samples. Typically, generative
modelling requires more (target) samples to attain a high level
of performance.

Generative methods learn the appearance of faces and
track them by searching for the region most similar to the
target face appearances in each frame. They do not exploit
any background information for DA. In this category, Eigen
tracker [6] learns a low dimensional subspace offline for FM
of each target at some fixed views, whereas the sum of
squared difference is used for DA. Wandering-Lost-Stable
Model–based Tracker [7] uses a Gaussian Mixture Model
(estimated with an online Expectation Maximization
algorithm) for FM in order to handle appearance variations
during tracking. Euclidean distance along with a robust
estimator is used for DA. Methods in [6] and [7] do not
involve PF. IVT [3] presents grey-scale intensities of target
faces in a low dimensional subspace for FM which is updated
adaptively using the faces tracked in the previous frames.
Particle filter is used for PF, and Euclidean and Mahalanobis
distances are used for DA. Riemannian Manifold tracker [8]
presents an online subspace learning algorithm for face
representation, which is based on a covariance matrix
descriptor. In this method, particle filtering is used for PF and
Log Euclidean-Riemannian metric is used for DA.

With discriminative methods, trackers localize the target
using a classifier that learns a decision boundary between the
appearance of target and that of background and non-target
samples. In this category, Support Vector Machine–based
Tracker [9] trains SVMs off-line for DA, and uses histogram
of oriented gradient and the RGB colour components for FM
representation. In addition, Ensemble tracker [10] presents an
online boosting algorithm to classify pixels belonging to
foreground and background. Multiple-Instance-Learning
tracker [11] performs multiple instance learning to handle
ambiguously labelled target and non-target samples from the
scene to reduce visual drift caused by classifier update. Haar-
like features are used for facial representation and AdaBoost
algorithm is used for DA. DSCT [5] uses target and non-
target samples to generate sparse codes for face representation
and compares them using adaptive and a static observation
model to achieve robust DA. All the above methods use
particle filtering for PF. Finally, TLD [4] performs tracking
by refining the results obtained from a tracker and a detector.
Target and non-target image patches are used as FM. A
learning component exploits p-expert and n-expert to select
target and non-target patches during to update FM and
detector online. A classifier based on random forest is used
for DA.

Considering the challenges of real world video
surveillance applications, both generative and discriminative
trackers face several issues. For generative trackers,
numerous scaled and aligned facial samples from consecutive
frames are required in order to learn a FM online; otherwise,
the drift problem is likely to occur if the appearance of an
individual’s face changes significantly in the scene. Since
these trackers do not use background and non-target
information, the FMs that they generate are less discriminant
and may cause interchange of the tracks in multi-face
tracking. Discriminative trackers outperform in such
conditions if sufficient reference samples are available for
design. However, having enough data of the target, and the
background and non-target information in advance is also not
realistic. Both generative and discriminative trackers suffer
from tracking drift problem when FMs are updated with noisy
and potentially misaligned samples through online learning.

In this paper, IVT [3], TLD [4], and DSCT [5] are
selected for further analysis. IVT and TLD are selected as
baseline AAM trackers in the generative and discriminative
categories. Also from the discriminative category, DSCT is
selected as a representative of a broad subgroup of tracking
techniques based on sparse coding.

2.1 Incremental Visual Tracking:

The IVT method (see Algorithm 1) incrementally updates
FMs in a low dimensional sub-space, and adapts changes in
capture condition during tracking. Incremental update is
performed using Sequential Karhunen–Loeve (SKL) [12].
Once a new face is initially detected in the scene, IVT tracks
the face in the first n frames using template matching, and
then defines a data block A = {p1, …, pn}, where components
are the vectors representing the tracked face regions with
states {X1, …, Xn}. The initial FM of the target is represented

as a eigenspace U, computed from the singular value
decomposition (SVD) of the centered data matrix of A. To
find face correspondence, particle filter–based affine motion
parameters are used in a Bayesian framework, where
Euclidean and Mahalanobis distances are used for DA. When
a new data block B = {pn+1, …, pn+m} becomes available after
tracking for m more frames, the updated appearance ′U of
the FM is obtained by using the augmented data matrix [A B],
where the update exploits computationally efficient SKL
algorithm. Two key parameters – forgetting factor, f, and
batch size, m, determine the plasticity of FM. The parameter
m defines the number of observations whereas f the amount of
contribution from older observations to be considered in
updating the face model for tracking.
Algorithm 1: IVT for a single face in a scene.
Input: Frames { }1,..., ∞I I . The target face is labelled in the first frame I1

using a face detection.
Output: States { }1 , ..., ∞X X of the target face in the frames.

1: for t = 2, …, ∞ do

2: if t n≤ then
3: –Perform template based tracking and define the state

t
X .

4:

–Construct data block A with the tracked facial region
t

p

t
← +A A p

5: end if

6:

Compute () () ()()
1

1 1
n T

C A i A i Ai
n

=
= − = − − −∑M A p p p p p

where ()
1

1
n

A ii
n

=
= ∑p p .

7:
Compute

SVD
T

C →M UΣV , and use U as the initial FM.

8: if t n> then

9:

–Predict states ˆ
tX at

t
I by modelling the affine parameters

(), , , , ,
t t t t t t

x y sθ α φ with Gaussian distribution:

() ()1 1
ˆ ˆ , ,t t t tp N− −=X | X X X ψ ; { }2 2 2 2 2 2, , , , ,x y sθ α φσ σ σ σ σ σ=ψ

10:

–Given a facial region
t

p (defined by ˆ
tX), compute the

probability of
t

p being generated from U and centered at µ :

() () ()2| ; , ; ,T T

t t t tP N Nε −= + Ι Σp X p µ UU p µ U U

11:

–Estimated
tX as a hidden state using Bayes’ theorem, given

that a set of observed image patches { }1,...,tΓ = tp p :

() () () ()1 1 1 1| | | |t t t t t t t t tP P P P d− − − −Γ ∝ Γ∫X p X X X X X

12: if ()|t tP δΓ <X then // δ is a predefined threshold

13: –Drop the track and exit.
14: else
15: –Update data block B with

t
→ +B B p

16: if size of B becomes equal to m then update U :
17:

1
n+m

B ii=n+1
= m∑p p ,

c A B

fn m
=

fn + m fn + m
+p p p

18:
() () (){ } ()ˆ

n+1 B n+m B B A- ... - nm n m - = +  
B p p p p p p

19:
()ˆ ˆorth T= −B B UU B% and

()

ˆ

ˆ ˆ

T

T

f 
 =
 −
 

Σ U B
R

0 B B UU B%

20:
 SVD of

SVD
T=R :R UΣV% % %

21: ′  =  U U B U% % and ′ =Σ Σ%

22: end if

23: end if

24: end if

25: end for

In IVT, the face representation based on eigenspaces is
robust to illumination and pose changes and clutter.
Moreover, the on-line learning incrementally updates FMs
according to the changes in the scene. However, IVT is
susceptible to drift as it can gradually adapt to non-targets
regions since this FMs representation is built solely on target
samples from previous tracked frames. Moreover, IVT lacks
mechanisms for detecting and correcting drift as it does not
incorporate global constraints on the overall appearance of the
target FM. Such constraints can be learned from a set of
generic (non specific) well-cropped and well aligned face
images that span possible variations in pose, illumination and
expressions [13]. However, it requires off-line training, and
performance would rely heavily on the training datasets.

2.2 Tracking-Learning-Detection:

With the TLD method (see Algorithm 2), FM is represented
with a collection of target and non-target patches observed,

{ }1 2 1 2, ,..., ; , ,...,m n

+ + + − − −=M p p p p p p . Two similarity measures – the
relative similarity ()rS S S S+ + −= + and conservative
similarity ()50% 50%

c
S S S S

+ + += + – are employed throughout
TLD to measure the similarity of an arbitrary patch p to the
appearance in the FM, M, where S, S

+ , S
− , and 50%S + are

defined as follows:

() ()(), 0.5 , 1i j i jS NCC= +p p p p (1)

() (){ }, max , :i i j jS S+ + += ∈p M p p p M (2)

() (){ }, max , :i i j jS S− − −= ∈p M p p p M (3)

() (){ }50% , max , : 2i iS p S p p p M i m
+ + += ∈ ∧ ≤M (4)

Here, NCC refers to the normalized cross-correlation of the
image patches.

The TLD framework consists of three main components:
tracking, detection, and learning. The tracking component
uses median-flow tracker [14] to find the face correspondence
in frames. The detection component employs a three layer
cascaded classifier, where at each layer a number of candidate
patches are refined. Finally, detection selects the patch most
similar to the target FM, M, using a nearest neighbour
classification, where the similarity is measured using rS .
Among the two regions obtained from detection and tracking,
the maximally confident region is selected as the tracking
target, where the confidence is determined using conservative
similarity cS . The learning component employs p-expert and
n-expert to select reliable target and non-target patches to
update M, where the reliability is determined using c

S .
Since the TLD framework uses a threshold to update FM,

this method tracks faces as long as the appearance does not
differ considerably from the appearance observed so far in
previous frames. Moreover, by using a 2-class classifier, this
method learns the appearance of the target with respect to
non-target samples, and thus can automatically determine the
presence or disappearance of the faces in the scene. In low-
clutter scenes, the vulnerability of TLD to drift is lower, at the
expense of being less adaptive. Moreover, TLD performs an
exhaustive search of faces through the whole image which
also increases its processing time. Tracking failure may occur
if an object with similar appearance to the target face is
present in the scenario.

Algorithm2: TLD for a single face in a scene.
Input: Frames { }1,..., ∞I I . The target face is labelled in the first frame I1

using a face detection.
Output: States { }1 , ..., ∞X X of the target face in the frames.

1: for t = 1, …, ∞ do

2: if 1t = then
3: –Define 1X with the labeled face. A set of target 1 ,..., m

+ +
p p

and non-target 1 ,..., n

− −p p patches are collected using
1X

4:

 –Initial FM is represented as { }1 1 2,..., , , ,...,m n

+ + − − −=M p p p p p

5: else

 A. Detection

6. –Detect {p1, …, pz} by varying the location and size of a
search window in It

7. –Reject the patches with
1

() () 2
tiV V
−

< Xp p , where
1t−Xp is

the patch defined by
1t −X and () 2 2() ()i i iV E E= −p p p

8. –Reject the patches whose posterior probability generated by
an ensemble classifier C is less than 0.5

9. –Select pt as the new location of FM in It which generates
minimum Sr

 B. Tracking

10. –Estimate FM location in It using median flow tracker [14]
11. –Drop a track if median|di-dm|>10, where di and dm are a

single displacement and median displacement of the FM

 C. Integrator

12. –Integrate detection and tracking results by selecting the
window with maximum Sc.

13. –Define Xt of the FM at It with the selected window

 D. Learning
14. –P-Expert selects target patches from reliable tracks, where a

track is considered reliable if c
S δ>

15. –N-Expert selects non-target patches, where the overlap
between the target and non-target patches is less than 0.2

16. – Update M and C with the selected patches
17. end if

18. end for

2.3 Discriminative Sparse Coding–Based Tracking:

DSCT (see Algorithm 3) uses sparse codes to represent the
target FM for tracking. When a face is initially detected, a set
of positive samples are drawn from the locations Ipos specified
by a Gaussian perturbation of the target location in the first
frame I1 that satisfy ||lpos-l1||<γ, and a set of negative samples
are drawn from the locations that satisfy γ<||lneg-l1||<η, where
the γ and η are the thresholds that define the area for
collecting the positive and negative samples, respectively.
The image patches specified by the locations lpos and lneg are

then cropped and computed the sparse codes { } 1
,

m

i i i
y

=
z , where

2n d

i

+∈ ℜz , { }1, 1iy ∈ + − , m is the number of training samples,

d is the dimensionality of the image vectors, and n is the
number of image vectors. With this data, a linear classifier is
trained to identify the target in future frames. This is known
as a static observation model. The DSCT also exploits an
adaptive observation model which is constructed by
accumulating several of the most recent frames. The sample
in the following frame is first processed by adaptive
observation model and then further examined with the static
observation model to achieve tracking in the DSCT.

Both the observation models in DSCT depend on the
strong assumption that all future states are similar to some

extent to the ground truth in the first frame, which is not
necessarily true in video surveillance. Furthermore, the
adaptive model often fails, which leads to malfunctioning of
the static model. The dimensionality of feature vectors in
DSCT is high which translates to high computational
complexity, especially when these vectors are further used to
train a classifier.
Algorithm 3: Discriminative Sparse Coding–Based Tracking (DSCT) for a
single face in a scene.
Input: Frames { }1,..., ∞I I . The target face is labeled in the first frame I1

using a face detection
Output: States { }1 ,..., ∞X X of the target face in the frames

1: for t = 1, …, ∞ do
2: if t = 1
3: –Construct an initial over-complete dictionary Dt
4:

–Learn a linear classifier with the sparse-codes extracted
from Dt and parameter wt

5: else
6: –Perform particle filtering to estimate target state *

tX by
using the previous tracking result Xt-1, and the adaptive
observation model parameterized by Dt-1 and wt-1

7: –Set *
1

ˆ
t t− ←X X .

8: –Perform particle filtering again with 1
ˆ

t−X and the static

observation model parameterized by Dt and wt to determine
the final state Xt

9: if tracking quality δ< then // δ is a predefined threshold

10 –Drop the track and exit
11: else

12:

–Update the adaptive tracker to get Dt and wt with the
tracking result

tX
13: end if
14: end if

15: end for

3 Performance Analysis

3.1 Experimental Setup

To compare the performance of the 3 trackers, 18 video
sequences – 9 from entering and 9 from leaving (see Table 1)
– are used from the Chokepoint dataset [15]. Each sequence
views 5 individuals walking through the portal, one at a time.
The Viola-Jones face detection algorithm [16] is used to
initiate new tracks. These video sequences are recorded for
face recognition applications under real world surveillance
conditions, where an array of 3 cameras was placed above
several portals (natural choke points of pedestrian traffic) to
capture subjects walking through portals. The sequences are
named according to the recording conditions (e.g.,
P2E_S1_C3), where P, S, and C stand for portal, sequence
and camera, respectively. E and L indicate subjects either
entering or leaving the portal.

Entering Seq. Frame Count Leaving Seq. Frame Count

P1E_S1_C1
1023

P1L_S1_C1
905 P1E_S1_C2 P1L_S1_C2

P1E_S1_C3 P1L_S1_C3

P1E_S2_C1
1035

P1L_S2_C1
860 P1E_S2_C2 P1L_S2_C2

P1E_S2_C3 P1L_S2_C3
P2E_S2_C1

1073
P2L_S2_C1

1000 P2E_S2_C2 P2L_S2_C2
P2E_S2_C3 P2L_S2_C3

 Table 1: Video sequences selected for performance analysis.

Both qualitative and quantitative evaluations are
presented for performance analysis. In each case, tracker
parameters were optimized to achieve best accuracy on the
security feeds. In qualitative evaluation, the robustness and
failure modes are observed visually under different face
tracking challenges. The 3 following performance metrics are
used for quantitative evaluation.
(i) Area Overlap Error (AOE) for a frame is computed by the
ratio of the overlapping in the facial regions of the target face
defined by the tracker to that of the ground truth as

() ()1 2 T GT T GTAOE B B B B= − ∩ + (5)

where BT and BGT represent the set of pixels in the tracking
window and the window obtained from ground truth data,
respectively. Here, AOE equals 0 in case of perfect overlap
and 1 is case of no overlap at all. In the experiments, average
AOE is computed for all the frames of a video sequence.

(ii) Tracking Error (TE) is computed for a video by taking the
ratio of the number of correct face-correspondences achieved
by a tracker and the total number of face-correspondences in
the sequence as follows:

1 C ATE T T= −

 (6)

where TC is the number of correct face-correspondences and
TA is the total number of face-correspondences that extend
from the first to the last frame in the sequence. A face-
correspondence is considered as a correct if AOE > ∂ , where

[0,1]∂ ∈ is a predefined threshold.

(iii) Computation Time (CT) refers to the time needed by a
tracker to process of one face in a frame. Trackers are
implemented in Matlab code, and in order to compare the
performance in terms of CT, the experiments are conducted
on a 3.40 GHz Intel Core-i7 processor and 8 GB memory.

3.2 Experimental Results

To observe the behaviour of trackers under changes in scale,
pose and illumination, the tracking results on the sequence
P1L_S1_C1 are shown in Figures 1(a)-(c). In this sequence
the illumination, pose, and the scale of the face region
changes gradually. The IVT and TLD perform better on this
sequence. Due to strong assumption that future states should
be similar that of the ROI with a face of the first frame, the
DSCT cannot adapt to changes of the capture condition and
starts drifting as seen in Figure 1(c). To observe tracking
performance under occlusion and clutter, the results on the
sequence P2L_S5_C1 are shown in Figures 1(d)-(f). DSCT
drifts and TLD stops tracking when a partial occlusion occurs
as seen in Figure 1(e). In Figure 1 (f), TLD incorrectly
retrieves a dropped track because features used as the face
descriptor are less discriminant. IVT outperforms the other
trackers over the whole sequence.

Table 2 shows the accuracy (AOE and TE) for the
trackers on the 6 entering and 6 leaving sequences in Table 1,
where the TE is computed by selecting the face-
correspondences with 0.7AOE > . Since AOE is sensitive
to small misalignment of the bounding boxes, 0.7AOE ≤ is
considered as a satisfactory tracking result in this experiment.
According to the average AOE and TE, it can be seen that

IVT outperforms other methods. The robust tracking
performance of IVT can be attributed to the eigenface
representation of the face model which is robust to
illumination change, pose change and clutter, and to the
update mechanism [12] which incrementally updates the FM
to adapt it with the changes of the scene. It is to be noted that,
for all the tracking methods, the average AOE and TE are
higher in the “entering” sequences than the “leaving”
sequences; this is because the entering sequences are more
challenging in terms of pose, scale and illumination changes.

(a) Frame 161 (b) Frame 171 (c) Frame 184

(d) Frame 1000 (e) Frame 1021 (f) Frame 1111

Figure 1: Face tracking provided by IVT, TLD, and DSCT on selected frames
of P1L_S1_C1 and P2L_S5_C1 sequences.

For a fair analysis, instead of fixing 0.7∂ = , this
threshold is varied in the range [0, 1], and the corresponding
TE and average AOE for the entering and leaving sequences
are plotted in Figures 2(a) and (b), respectively. Note that an
ideal tracker is represented by the point (0, 0) in these figures.
In the sequences, when large variations in face appearance
occurs due to any challenging condition, TLD stops tracking,
whereas IVT and DSCT usually continue tracking with
generating larger AOE. This results in higher average AOE for
IVT and DSCT than TLD in the area of Figure 2(a) where TE
is greater than 0.3. In real-world video surveillance
applications, a face tracking method generating TE > 0.25
may not be suitable. In the areas of Figures 2(a) and (b),
where 0.25TE ≤ , IVT performs the best among methods.

 Entering Sequences Leaving Sequences

AAM Avg. AOE TE Avg. CT Avg. AOE TE Avg. CT

IVT 0.34 0.005± 0.14 0.08 0.001± 0.30 0.005± 0.17 0.09 0.001±

TLD 0.39 0.008± 0.26 1.03 0.002± 0.37 0.007± 0.24 0.97 0.002±

DSCT 0.49 0.007± 0.38 6.18 0.001± 0.50 0.007± 0.42 6.22 0.002±
Table 2: Avg. AOE, TE, and CT (in sec.) for the face tracking methods along
with standard errors.

In terms of CTs, IVT also outperforms the other methods
(Table 2). The computational effort required by the trackers is
mainly found in processing steps for face model update and
data association. For model update, IVT uses the SKL
algorithm [12], which is computationally efficient. For DSCT,
the large dimensionality of the final feature vector causes
high computational cost when they are used to update a
classifier [17]. TLD accumulates some positive and negative
samples from a reliable tracking trajectory to update a random
forest classifier to improve detection, which is
computationally complex. For data association, IVT and
DSCT generate 600 particles (candidate samples) each using
particle filters, whereas TLD generates 50,000 candidate

patches for an image (240×320 pixels) by varying scale, size,
and shifting parameters of an initial window, although these
candidate patches are further refined by employing a cascaded
classifier. The processing time for all the trackers depends on
the update frequency. It is predefined for IVT and DSCT, but
is adaptive for TLD according to changes observed in face
tracks.

(a) Entering sequences (b) Leaving sequences
Figure 2: TE vs. average AOE of the trackers by varying [0,1]∂ ∈

Since IVT outperformed others in terms of tracking
accuracy and time complexity, further analysis is now
presented. In particular, this section considers how this face
tracking algorithms can be exploited within a system for
FRiVS. One of the main limitations of IVT is track drift
which occurs due to the integration of non-facial regions into
the facial model during its update process. By controlling the
plasticity of face models and assessing the quality of the
facial regions that may be used to update a model, the
problem of track drift can be mitigated. In the IVT, batch size,
m, and forgetting factor, f, determine the plasticity of facial
models. In addition, within a system for FRiVS, a face
detection module may be exploited for facial quality
assessment before a facial model is updated.

In IVT, batch-size, m refers to the number of frames used
before updating a face model during tracking. In the original
implementation of IVT (available in the authors’ website,
http://www.cs.toronto.edu/~dross/ivt/), this m is set to 5.
However, this value affects a trade-off between computational
efficiency and quality of facial modeling. Increase of m
makes IVT computationally faster at the expense of being less
adaptive, and vise-versa.
 Entering Sequences Leaving Sequences

Batch Avg. AOE Avg. CT Avg. AOE Avg. CT

5 0.338 0.005± 0.081 0.001± 0.304 0.005± 0.091 0.001±

10 0.357 0.006± 0.077 0.005± 0.312 0.006± 0.073 0.003±

15 0.368 0.005± 0.071 0.003± 0.337 0.008± 0.066 0.004±

20 0.379 0.007± 0.063 0.008± 0.341 0.003± 0.062 0.007±
Table 3: Average AOE and CT required by IVT for different batch sizes, m.

Table 3 presents the average AOE and average CT for six
“leaving” and six “entering” sequences of Chokepoint dataset
when batch sizes are m = 5, 10, 15, and 20. As m increases,
the average AOE also increases while the CT decreases,
because the internal facial models are updated less frequently.
It is however not necessarily true that adapting face models
more frequently can lead to higher tracking accuracy for all
sequences. Rather, frequent updates may gradually
incorporate non-facial regions and cause tracks to drift. For
best tracking accuracy, when a video scene captures faces that
move rapidly or abruptly, the face models should be adapted

more frequently (with smaller batches) at the expense of CT.
Moreover, the “entering” sequences result in higher AOE than
the “leaving” sequences. This is due to the fact that the
“entering” sequences include more variations in face
appearances (pose, scale and illumination changes).

IVT exploits a parameter known as forgetting factor, f ∈
[0, 1], where f = 0 is set to forget all previous observation,
while f = 1 is set to remember them. This parameter
determines the contributions of earlier observations while
updating a face model. Figure 3 presents the AOE for the
twelve videos of Chokepoint dataset when f is set to 0.00,
0.0.20, 0.40, 0.60, 0.80, and 1.00. This figure shows that, for
most sequences, the AOE decreases, as the f increases. Results
suggest that, though recent observations are more indicative
of the current facial appearance, a contribution from both the
recent and older observations in updating face model can be
beneficial. Small m and f values are most suitable for abrupt
changes, while larger m and f values are most suitable for
tracks with gradual changes.

Figure 3: Average AOE of IVT for different forgetting factors.

Face detection is the front end of any system for FRiVS
[18]. For quality assessment, the Viola-Jones face detection
algorithm was considered. Figure 4 presents the AOE for the
original IVT, as well as for IVT with detection on Chokepoint
videos. In both of these cases, the face model is only updated
for frames where the detection module finds a facial ROI that
has significant overlap with the facial region predicted by the
tracker. Figure 4(left) shows results when the FM is updated
with the facial region obtained from the tracker, whereas in
Figure 4(right) the update procedure is performed with the
facial ROIs obtained by the face detection module. In both
figures, it can be seen that the tracking accuracy for IVT with
detection improves for sequences P1E_S1_C1, P1E_S1_C2,
P1E_S2_C1, P1E_S2_C2, P1E_S2_C3, P2E_S2_C3,
P1L_S1_C1, P1L_S2_C1, P1L_S2_C2, P1L_S2_C3 and
P2L_S2_C1, where tracks are exposed to gradual changes.
The detection module finds faces in most frames, and updates
the facial model accordingly. Faces are modelled with a
considerable number of high quality facial regions, and the
tracker performs accurate DA, resulting in improved tracking
accuracy.

In sequences P1L_S1_C2, P1L_S1_C3, P2E_S2_C1,
P2E_S2_C2, P2L_S2_C2 and P2L_S2_C2, the pose, size, and
illumination vary more abruptly and tracking accuracy is
degraded. The detection module does not find faces in many
frames, thus cannot efficiently update the facial models,
leading to increased AOE. Both IVT and IVT with detection
drift at the beginning of this sequence, resulting in large AOE.
Comparing the results presented in Figure 4(left) with Figure

4(right), faces updated with ROIs (from the detection module)
provide higher quality facial regions than the tracker.
Although IVT with detection cannot perform well in all the
sequences, the results in Figures 4(left) and (right) for the
sequences P1E_S1_C1, P1E_S1_C2, P1L_S1_C1,
P2E_S2_C3 and P2L_S2_C1 suggest that, by assessing the
quality of facial regions before updating a facial model, it can
improve tracking performance.

Figure 4: AOE of IVT and IVT with detection, where updating is
driven by the face detection. (left) Face model is updated with the
facial region obtained from tracker; (right) Face model is updated
with the facial ROI obtained from face detection module.

4 Conclusion

This paper presents a comparison of three state-of-the-art
AAM trackers – IVT, TLD, and DSCT – for FRiVS
applications. The performance results for these trackers on
Chokepoint video data indicates that IVT is the more suitable
tracker since it outperforms the other methods in terms of
tracking accuracy and computation time. The low
discriminant power of the TLD face descriptor and the
computational complexity of DSCT are the main limitations
of these methods. An analysis of IVT has revealed the impact
of its key parameters (i.e., batch size and forgetting factor) on
its tracking quality. Results suggest that small batch size and
forgetting factor values are most suitable for tracks with
abrupt changes, while larger values are most suitable for
tracks with larger ones. The quality of IVT’s internal facial
model is also shown to benefit from quality assessment of the
face detection (i.e., the front-end face detection) module when
face tracks are more gradual.

Although IVT performs better than TLD and DSCT, it
still has some limitations. As with other generative AAM
trackers, IVT relies on limited amount of data to learn and
update the initial appearance FM. Many misaligned samples
are likely to be learned incrementally which degrades the
appearance model and causes track drift. Like all other
AAM–based trackers, IVT is rather complex, yet lacks
mechanism for detecting and correcting tracking error online
as it sets no global constraints on the overall appearance of
the target model. Their computational complexity grows with
the number of facial tracks, size of faces, camera resolution
and frame rate, and the number of cameras used by the
surveillance system.

To improve the performance of IVT, face tracking can be
triggered by the facial captures of a face detection module
(e.g. Viola-Jones algorithm). ROIs from face detection can be
used to construct and validate more reliable FM for IVT.
Recently, contextual information has been exploited
effectively in visual tracking [19] and can play an important
role for the further improvement to IVT. Finally, this paper
underscores the need for more empirical benchmarking

studies to compare the numerous tracking methods presented
in literature.

Acknowledgements

This work was partially supported by the Natural Sciences
and Engineering Research Council of Canada, and the
Ministère du développement économique, de l’innovation et
de l’exportation du Québec.

References

[1] R. Chellappa, M. Du, P. Turaga and S. K. Zhou, "Face tracking and
recognition in video," in Hand Book of Face Recognition, Springer-
Verlag, 2011, pp. 323-351.

[2] S. Salti and A. Cavallaro, "Adaptive appearance modeling for video
tracking: survey and evaluation," IEEE Trans. on Image Processing,

vol. 21(10), pp. 4334-4348, 2012.

[3] D. A. Ross, J. Lim, R.-S. Lin and M.-H. Yang, "Incremental learning for
robust visual tracking," International Journal of Computer Vision, vol.
77(1), pp. 125-141, 2008.

[4] Z. Kalal, K. Mikolajczyk and J. Matas, "Tracking-Learning-Detection,"
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 34(7),
pp. 1409-1422, 2012.

[5] Q. Wang, F. Chen, W. Xu and M.-H. Yang, "Online discriminative
object tracking with local sparse representation," in IEEE Workshop on

Appl. of Computer Vision, Beijing, China, January 2012.

[6] M. J. Black and A. D. Jepson, "EigenTracking: Robust matching and
tracking of articulated objects using a view-based representation,"
International Journal of Computer Vision, vol. 26(1), pp. 63-84, 1998.

[7] A. D. Jepson, D. J. Fleet and T. F. El-Marahgi, "Robust online
appearance models for visual tracking," IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 25(10), pp. 1296-1311, 2003.

[8] X. Li, W. Hu, Z. Zhang, X. Zhang and M. Zhu, "Visual tracking via
incremental log-euclidean riemannian subspace learning," in IEEE Conf.

on Computer Vision and Pattern Recognition, Alaska, USA, June 2008.

[9] S. Avidan, "Support vector tracking," IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 26(8), pp. 1064-1072, 2004.

[10] S. Avidan, "Ensemble tracking," IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 29(2), pp. 261-271, 2007.

[11] B. Babenko, M.-H. Yang and S. Belongie, "Visual tracking with online
multiple instance learning," in IEEE Conf. on Computer Vision and

Pattern Recognition, California, USA, June 2009.

[12] A. Levy and M. Lindenbaum, "Sequential karhunen–loeve basis
extraction and its application to images," IEEE Trans. on Image

Processing, vol. 9(8), pp. 1371-1374, 2000.

[13] M. Kim, S. Kumar, V. Pavlovic and H. Rowley, "Face tracking and
recognition with visual constraints in real-world videos," in IEEE Conf.

on Computer Vision and Pattern Recognition, Alaska, USA, June 2008.

[14] Z. Kalal, K. Mikolajczyk and J. Matas, "Forward-backward error:
automatic detection of tracking failure," in IEEE International Conf. on

Pattern Recognition, Istanbul, Turkey, August 2010.

[15] Y. Wong, S. Chen, S. Mau, C. Sanderson and B. C. Lovell, "Patch-
based probabilistic image quality assessment for face selection and
improved video-based face recognition," in IEEE Computer Vision and

Pattern Recognition Workshops, Colorado, USA, June 2011.

[16] P. Viola and M.J. Jones, "Robust real-time face detection," International

Journal of Computer Vision, vol. 57(2), pp. 137-154, 2004.

[17] S. Zhang, H. Yao, X. Sun and X. Lu, "Sparse coding based visual
tracking: review and experimental comparison," Pattern Recognition,

vol. 46(7), p. 1772–1788, 2013.

[18] J. F. Connolly, E. Granger and R. Sabourin, "An adaptive classification
system for video-based face recognition," Information Sciences, vol.
192, pp. 50-70, 2012.

[19] F. Li, X. Zhou, J. Ma and S. T. C. Wong, "Multiple nuclei tracking
using integer programming for quantitative cancer cell cycle analysis,"
IEEE Trans. on Medical Imaging, vol. 29, no. 1, pp. 96-105, 2010.

