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Abstract 

Face recognition is increasingly employed by public safety 
organizations in decision support systems for video 
surveillance, to detect the presence of individuals of interest. 
In the context of spatiotemporal face recognition, tracking is 
an important function used to locate, follow and regroup faces 
of different individuals in a scene. Techniques for face 
tracking in video surveillance should be robust to changes in 
pose, expression and illumination, as well as occlusion in 
cluttered scenes. Given these challenges, trackers based on 
adaptive appearance modelling (AAM) typically improve 
target’s state estimation because they initiate and update an 
internal face model per individual according to changes in 
facial appearance. In this paper, the performance of three 
AAM trackers – Incremental Visual Tracking (IVT), Tracking 
Learning Detection (TLD) and Discriminative Sparse Coding 
based Tracking (DSCT) – are compared for face tracking with 
video surveillance applications in mind. These methods are 
evaluated according to area overlap error, tracking error and 
time complexity using Chokepoint videos collected in 
uncontrolled video-surveillance environments, where 
individuals walk through portals. Results indicate that IVT 
outperforms the others in its ability to accurately track faces 
in the presence of occlusion, and under variations in pose, 
scale and lighting. Further characterization of IVT indicates 
that using a small batch size and forgetting factor during 
update provide better tracking accuracy when face tracks 
changes in their capture conditions. When conditions change 
more gradually, IVT benefits from assessing facial quality 
before updating face models. 

1 Introduction 

Given the current demand for security and surveillance 
technologies, decision support systems for video surveillance 
are being considered by many public safety organizations for 
enhanced situation analysis. In many applications, automated 
face recognition is increasingly employed to alert a human 
operator as to the presence of individuals of interest appearing 
in either live (real-time monitoring) or archived (post-event 
analysis) videos. Face recognition is relevant in a range of 

video surveillance applications still-to-video face recognition 
(e.g., watch-list screening) and video-to-video face 
recognition (e.g., person re-identification). In practice, face 
recognition in video surveillance (FRiVS) is challenging 
because accurate responses are required for faces captured 
under semi-constrained (e.g., inspection lane, portal and 
checkpoint entry) and unconstrained (e.g., cluttered free-flow 
scene at an airport or casino) conditions.  

In the recent years, face tracking has become an 
important tool for recognition. It is used to locate and follow 
faces of different individuals in motion, and regroup the facial 
information for spatiotemporal face recognition. This 
information is useful to generate reliable facial models; 
mitigate effects of non-cooperative capture conditions; model 
facial behaviour; generate better facial models from multiple 
views; and accumulate decision on multiple frames to achieve 
improved recognition [1]. However, variations in pose, scale, 
expression, and illumination, and the occlusions in cluttered 
scenes can degrade tracking performance. To address these 
challenges, many robust face tracking methods have been 
proposed, although only partial solutions to these key issues 
exist. Beyond the need for reliable face tracking, efficient 
techniques are required for various real-time applications 
because video surveillance networks are comprised of a 
growing number of cameras, and potentially cluttered scenes.  

Face tracking involves (1) facial model (FM) 
representation, (2) prediction filtering (PF), and (3) data 
association (DA). In FM, facial captures are represented with 
distinctive features in order to be located and tracked from 
frame to frame, whereas PF allows predicting the state (size 
and location) of a face in the current frame based on 
information from previous frames and on some underlying 
state transition model. Finally, DA allows to link facial 
captures to predicted face locations in order to actually locate 
different faces of a frame.  

Among state-of-the-art trackers, adaptive appearance 
modelling (AAM) methods have been shown to efficiently 
address current challenges of face tracking since they adapt 
internal face models for enhanced PF as well as DA [2]. 
These methods employ some off-line and on-line learning 
algorithms to adapt changes in facial appearance in a scene. 
However, AAM methods are computationally expensive and 
seek to fulfil the contradicting goals of rapid learning and 
stable memory for the AAMs, which is often referred to as the 
stability-plasticity dilemma. Finally, AAMs carry the risk of 
adapting to inputs from other targets or the background, 
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leading tracks to drift from the target. This is referred to as 
knowledge corruption. These key issues must be considered 
when selecting an AAM method that is suitable for FRiVS. 

This paper presents an empirical comparison of 
performance for trackers based on AAM. State-of-the-art 
methods are reviewed, and an algorithmic description is 
presented for three representative AMM trackers – 
Incremental Visual Tracking (IVT) [3], Tracking-Learning-
Detection (TLD) [4], and Discriminative Sparse Coding–
Based Tracking (DSCT) [5] highlighting their pros and cons 
for FRiVS. Among all AAM–based trackers, IVT, TLD and 
DSCT are considered as the baseline trackers representing 
three subgroups of the AAM taxonomy. These trackers are 
compared according to tracking quality and computation time 
using the Chokepoint video dataset for unconstrained video 
surveillance applications. Since IVT outperforms the other 
trackers, this paper also characterizes the impact of its key 
parameters (i.e., batch size and forgetting factor) on IVT 
tracking quality. In addition, this paper explores the benefits 
of updating IVT’s internal FM using quality assessment 
provided by a core module in all systems for FRiVS – the 
face detection module.  

2 Adaptive Appearance Model-Based Trackers 

Trackers based on AAM use an internal FM of different 
individuals, and can adapt these models to changes in the 
scene. The main benefit of using AAM for FRiVS 
applications is to improve accuracy for DA in changing face-
capture condition. According to DA mechanisms, AAM 
trackers in literature are categorized into two main groups: 
generative and discriminative. AAM trackers with generative 
DA typically use 1-class classification (or density estimation) 
to model only target face samples, whereas the discriminative 
typically use 2-class classification to model faces in a scene 
with target and non-target samples. Typically, generative 
modelling requires more (target) samples to attain a high level 
of performance. 

Generative methods learn the appearance of faces and 
track them by searching for the region most similar to the 
target face appearances in each frame. They do not exploit 
any background information for DA. In this category, Eigen 
tracker [6] learns a low dimensional subspace offline for FM 
of each target at some fixed views, whereas the sum of 
squared difference is used for DA. Wandering-Lost-Stable 
Model–based Tracker [7] uses a Gaussian Mixture Model 
(estimated with an online Expectation Maximization 
algorithm) for FM in order to handle appearance variations 
during tracking. Euclidean distance along with a robust 
estimator is used for DA. Methods in [6] and [7] do not 
involve PF. IVT [3] presents grey-scale intensities of target 
faces in a low dimensional subspace for FM which is updated 
adaptively using the faces tracked in the previous frames. 
Particle filter is used for PF, and Euclidean and Mahalanobis 
distances are used for DA. Riemannian Manifold tracker [8] 
presents an online subspace learning algorithm for face 
representation, which is based on a covariance matrix 
descriptor. In this method, particle filtering is used for PF and 
Log Euclidean-Riemannian metric is used for DA. 

With discriminative methods, trackers localize the target 
using a classifier that learns a decision boundary between the 
appearance of target and that of background and non-target 
samples. In this category, Support Vector Machine–based 
Tracker [9] trains SVMs off-line for DA, and uses histogram 
of oriented gradient and the RGB colour components for FM 
representation. In addition, Ensemble tracker [10] presents an 
online boosting algorithm to classify pixels belonging to 
foreground and background. Multiple-Instance-Learning 
tracker [11] performs multiple instance learning to handle 
ambiguously labelled target and non-target samples from the 
scene to reduce visual drift caused by classifier update. Haar-
like features are used for facial representation and AdaBoost 
algorithm is used for DA. DSCT [5] uses target and non-
target samples to generate sparse codes for face representation 
and compares them using adaptive and a static observation 
model to achieve robust DA. All the above methods use 
particle filtering for PF. Finally, TLD [4] performs tracking 
by refining the results obtained from a tracker and a detector. 
Target and non-target image patches are used as FM. A 
learning component exploits p-expert and n-expert to select 
target and non-target patches during to update FM and 
detector online. A classifier based on random forest is used 
for DA. 

Considering the challenges of real world video 
surveillance applications, both generative and discriminative 
trackers face several issues. For generative trackers, 
numerous scaled and aligned facial samples from consecutive 
frames are required in order to learn a FM online; otherwise, 
the drift problem is likely to occur if the appearance of an 
individual’s face changes significantly in the scene. Since 
these trackers do not use background and non-target 
information, the FMs that they generate are less discriminant 
and may cause interchange of the tracks in multi-face 
tracking. Discriminative trackers outperform in such 
conditions if sufficient reference samples are available for 
design. However, having enough data of the target, and the 
background and non-target information in advance is also not 
realistic. Both generative and discriminative trackers suffer 
from tracking drift problem when FMs are updated with noisy 
and potentially misaligned samples through online learning.  

In this paper, IVT [3], TLD [4], and DSCT [5] are 
selected for further analysis. IVT and TLD are selected as 
baseline AAM trackers in the generative and discriminative 
categories. Also from the discriminative category, DSCT is 
selected as a representative of a broad subgroup of tracking 
techniques based on sparse coding.  

2.1 Incremental Visual Tracking: 

The IVT method (see Algorithm 1) incrementally updates 
FMs in a low dimensional sub-space, and adapts changes in 
capture condition during tracking. Incremental update is 
performed using Sequential Karhunen–Loeve (SKL) [12]. 
Once a new face is initially detected in the scene, IVT tracks 
the face in the first n frames using template matching, and  
then defines a data block A = {p1, …, pn}, where components 
are the vectors representing the tracked face regions with 
states {X1, …, Xn}. The initial FM of the target is represented 



as a eigenspace U, computed from the singular value 
decomposition (SVD) of the centered data matrix of A. To 
find face correspondence, particle filter–based affine motion 
parameters are used in a Bayesian framework, where 
Euclidean and Mahalanobis distances are used for DA. When 
a new data block B = {pn+1, …, pn+m} becomes available after 
tracking for m more frames, the updated appearance ′U  of 
the FM is obtained by using the augmented data matrix [A B], 
where the update exploits computationally efficient SKL 
algorithm.  Two key parameters – forgetting factor, f, and 
batch size, m, determine the plasticity of FM. The parameter 
m defines the number of observations whereas f the amount of 
contribution from older observations to be considered in 
updating the face model for tracking. 
Algorithm 1: IVT for a single face in a scene. 
Input: Frames { }1,..., ∞I I . The target face is labelled in the first frame I1 

using a face detection. 
Output: States { }1 , ..., ∞X X of the target face in the frames. 

1: for t = 2, …, ∞ do 

2:  if t n≤ then 
3:   –Perform template based tracking and define the state 

t
X . 

4:  
 

 
 

–Construct data block A with the tracked facial region 
t

p  

t
← +A A p  

5:  end if 

6:  
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8:  if t n> then 

9:  
 
 

 
 
 

–Predict states ˆ
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t
I  by modelling the affine parameters
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–Given a facial region 
t

p (defined by ˆ
tX ), compute the 

probability of 
t

p  being generated from U and centered at µ :  
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–Estimated 
tX  as a hidden state using Bayes’ theorem, given 

that a set of observed image patches { }1,...,tΓ = tp p : 

( ) ( ) ( ) ( )1 1 1 1| | | |t t t t t t t t tP P P P d− − − −Γ ∝ Γ∫X p X X X X X
 

12:   if  ( )|t tP δΓ <X  then        // δ is a predefined threshold 

13:    –Drop the track and exit. 
14:   else 
15:    –Update data block B with 

t
→ +B B p  

16:    if size of B becomes equal to m then update U : 
17:     

1
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20:     
 SVD of 

SVD
T=R :R UΣV% % %  

21:     ′  =  U U B U% % and ′ =Σ Σ%  

22:    end if 

23:   end if       

24:  end if 

25: end for 

In IVT, the face representation based on eigenspaces is 
robust to illumination and pose changes and clutter. 
Moreover, the on-line learning incrementally updates FMs 
according to the changes in the scene. However, IVT is 
susceptible to drift as it can gradually adapt to non-targets 
regions since this FMs representation is built solely on target 
samples from previous tracked frames. Moreover, IVT lacks 
mechanisms for detecting and correcting drift as it does not 
incorporate global constraints on the overall appearance of the 
target FM. Such constraints can be learned from a set of 
generic (non specific) well-cropped and well aligned face 
images that span possible variations in pose, illumination and 
expressions [13]. However, it requires off-line training, and 
performance would rely heavily on the training datasets. 

2.2 Tracking-Learning-Detection: 

With the TLD method (see Algorithm 2), FM is represented 
with a collection of target and non-target patches observed, 

{ }1 2 1 2, ,..., ; , ,...,m n

+ + + − − −=M p p p p p p . Two similarity measures – the 
relative similarity ( )rS S S S+ + −= +  and conservative 
similarity ( )50% 50%

c
S S S S

+ + += +  – are employed throughout 
TLD to measure the similarity of an arbitrary patch p to the 
appearance in the FM, M, where S, S

+ , S
− , and 50%S +  are 

defined as follows: 

( ) ( )( ), 0.5 , 1i j i jS NCC= +p p p p    (1) 

( ) ( ){ }, max , :i i j jS S+ + += ∈p M p p p M   (2) 

( ) ( ){ }, max , :i i j jS S− − −= ∈p M p p p M   (3) 

( ) ( ){ }50% , max , : 2i iS p S p p p M i m
+ + += ∈ ∧ ≤M        (4) 

Here, NCC refers to the normalized cross-correlation of the 
image patches. 

The TLD framework consists of three main components: 
tracking, detection, and learning. The tracking component 
uses median-flow tracker [14] to find the face correspondence 
in frames. The detection component employs a three layer 
cascaded classifier, where at each layer a number of candidate 
patches are refined. Finally, detection selects the patch most 
similar to the target FM, M, using a nearest neighbour 
classification, where the similarity is measured using rS . 
Among the two regions obtained from detection and tracking, 
the maximally confident region is selected as the tracking 
target, where the confidence is determined using conservative 
similarity cS . The learning component employs p-expert and 
n-expert to select reliable target and non-target patches to 
update M, where the reliability is determined using c

S . 
Since the TLD framework uses a threshold to update FM, 

this method tracks faces as long as the appearance does not 
differ considerably from the appearance observed so far in 
previous frames. Moreover, by using a 2-class classifier, this 
method learns the appearance of the target with respect to 
non-target samples, and thus can automatically determine the 
presence or disappearance of the faces in the scene. In low-
clutter scenes, the vulnerability of TLD to drift is lower, at the 
expense of being less adaptive. Moreover, TLD performs an 
exhaustive search of faces through the whole image which 
also increases its processing time. Tracking failure may occur 
if an object with similar appearance to the target face is 
present in the scenario. 



Algorithm2: TLD for a single face in a scene. 
Input: Frames { }1,..., ∞I I . The target face is labelled in the first frame I1 

using a face detection. 
Output: States { }1 , ..., ∞X X of the target face in the frames. 

1: for t = 1, …, ∞ do 

2:  if 1t = then 
3:   –Define 1X with the labeled face. A set of target 1 ,..., m

+ +
p p  

and non-target 1 ,..., n

− −p p  patches are collected using 
1X  

4:  
 

 
 

 –Initial FM is represented as { }1 1 2,..., , , ,...,m n

+ + − − −=M p p p p p  

5:  else 

  A. Detection 

6.   –Detect {p1, …, pz} by varying  the location and size of a 
search window in It 

7.   –Reject the patches with 
1

( ) ( ) 2
tiV V
−

< Xp p , where 
1t−Xp is 

the patch defined by 
1t −X and ( ) 2 2( ) ( )i i iV E E= −p p p  

8.   –Reject the patches whose posterior probability generated by 
an ensemble classifier C is less than 0.5 

9.   –Select pt as the new location of  FM in It which generates 
minimum Sr 

  B. Tracking 

10.   –Estimate FM location in It using median flow tracker [14] 
11.   –Drop a track if median|di-dm|>10, where di and dm are a 

single displacement and median displacement of the FM 

  C. Integrator 

12.   –Integrate detection and tracking results by selecting the 
window with maximum Sc. 

13.   –Define Xt of the FM at It with the selected window 

  D. Learning 
14.   –P-Expert selects target patches from reliable tracks, where a 

track is considered reliable if c
S δ>  

15.   –N-Expert selects non-target patches, where the overlap 
between the target and non-target patches is less than 0.2 

16.   – Update M and C with the selected patches  
17.  end if 

18. end for 

2.3 Discriminative Sparse Coding–Based Tracking: 

DSCT (see Algorithm 3) uses sparse codes to represent the 
target FM for tracking. When a face is initially detected, a set 
of positive samples are drawn from the locations Ipos specified 
by a Gaussian perturbation of the target location in the first 
frame I1 that satisfy ||lpos-l1||<γ, and a set of negative samples 
are drawn from the locations that satisfy γ<||lneg-l1||<η, where 
the γ and η are the thresholds that define the area for 
collecting the positive and negative samples, respectively. 
The image patches specified by the locations lpos and lneg are 

then cropped and computed the sparse codes { } 1
,

m

i i i
y

=
z , where 

2n d

i

+∈ ℜz , { }1, 1iy ∈ + − , m is the number of training samples, 

d is the dimensionality of the image vectors, and n is the 
number of image vectors. With this data, a linear classifier is 
trained to identify the target in future frames. This is known 
as a static observation model. The DSCT also exploits an 
adaptive observation model which is constructed by 
accumulating several of the most recent frames. The sample 
in the following frame is first processed by adaptive 
observation model and then further examined with the static 
observation model to achieve tracking in the DSCT. 

Both the observation models in DSCT depend on the 
strong assumption that all future states are similar to some 

extent to the ground truth in the first frame, which is not 
necessarily true in video surveillance. Furthermore, the 
adaptive model often fails, which leads to malfunctioning of 
the static model. The dimensionality of feature vectors in 
DSCT is high which translates to high computational 
complexity, especially when these vectors are further used to 
train a classifier. 
Algorithm 3: Discriminative Sparse Coding–Based Tracking (DSCT) for a 
single face in a scene. 
Input: Frames { }1,..., ∞I I . The target face is labeled in the first frame I1 

using a face detection 
Output: States { }1 ,..., ∞X X of the target face in the frames 

1: for t = 1, …, ∞  do 
2:  if t = 1 
3:   –Construct an initial over-complete dictionary Dt 
4:  

 
 
 

–Learn a linear classifier with the sparse-codes extracted 
from Dt and parameter wt 

5:  else 
6:   –Perform particle filtering to estimate target state *

tX  by 
using the previous tracking result Xt-1, and the adaptive 
observation model parameterized by Dt-1 and wt-1 

7:   –Set *
1

ˆ
t t− ←X X .  

8:   –Perform particle filtering again with 1
ˆ

t−X  and the static 

observation model parameterized by Dt and wt to determine 
the final state Xt 

9:   if tracking quality δ< then  // δ is a predefined threshold 

10    –Drop the track and exit 
11:   else 

12:  
 

 
 

 
 

–Update the adaptive tracker to get Dt and wt with the 
tracking result 

tX  
13:   end if 
14:  end if 

15: end for       

3 Performance Analysis 

3.1 Experimental Setup 

To compare the performance of the 3 trackers, 18 video 
sequences – 9 from entering and 9 from leaving (see Table 1) 
– are used from the Chokepoint dataset [15]. Each sequence 
views 5 individuals walking through the portal, one at a time. 
The Viola-Jones face detection algorithm [16] is used to 
initiate new tracks. These video sequences are recorded for 
face recognition applications under real world surveillance 
conditions, where an array of 3 cameras was placed above 
several portals (natural choke points of pedestrian traffic) to 
capture subjects walking through portals. The sequences are 
named according to the recording conditions (e.g., 
P2E_S1_C3), where P, S, and C stand for portal, sequence 
and camera, respectively. E and L indicate subjects either 
entering or leaving the portal.  

Entering Seq. Frame Count Leaving Seq. Frame Count 

P1E_S1_C1  
1023 

P1L_S1_C1  
905 P1E_S1_C2  P1L_S1_C2  

P1E_S1_C3 P1L_S1_C3 

P1E_S2_C1  
1035 

P1L_S2_C1  
860 P1E_S2_C2  P1L_S2_C2  

P1E_S2_C3 P1L_S2_C3 
P2E_S2_C1  

1073 
P2L_S2_C1  

1000 P2E_S2_C2  P2L_S2_C2  
P2E_S2_C3 P2L_S2_C3 

 Table 1: Video sequences selected for performance analysis. 



Both qualitative and quantitative evaluations are 
presented for performance analysis. In each case, tracker 
parameters were optimized to achieve best accuracy on the 
security feeds. In qualitative evaluation, the robustness and 
failure modes are observed visually under different face 
tracking challenges. The 3 following performance metrics are 
used for quantitative evaluation.  
(i) Area Overlap Error (AOE) for a frame is computed by the 
ratio of the overlapping in the facial regions of the target face 
defined by the tracker to that of the ground truth as  

( ) ( )1 2 T GT T GTAOE B B B B= − ∩ +    (5) 

where BT and BGT represent the set of pixels in the tracking 
window and the window obtained from ground truth data, 
respectively. Here, AOE equals 0 in case of perfect overlap 
and 1 is case of no overlap at all. In the experiments, average 
AOE is computed for all the frames of a video sequence.                                                                                                                                  

(ii) Tracking Error (TE) is computed for a video by taking the 
ratio of the number of correct face-correspondences achieved 
by a tracker and the total number of face-correspondences in 
the sequence as follows: 

1 C ATE T T= −

 

   (6) 

where TC is the number of correct face-correspondences and 
TA is the total number of face-correspondences that extend 
from the first to the last frame in the sequence. A face-
correspondence is considered as a correct if AOE > ∂ , where 

[0,1]∂ ∈  is a predefined threshold.  

(iii) Computation Time (CT) refers to the time needed by a 
tracker to process of one face in a frame. Trackers are 
implemented in Matlab code, and in order to compare the 
performance in terms of CT, the experiments are conducted 
on a 3.40 GHz Intel Core-i7 processor and 8 GB memory. 

3.2 Experimental Results 

To observe the behaviour of trackers under changes in scale, 
pose and illumination, the tracking results on the sequence 
P1L_S1_C1 are shown in Figures 1(a)-(c). In this sequence 
the illumination, pose, and the scale of the face region 
changes gradually. The IVT and TLD perform better on this 
sequence. Due to strong assumption that future states should 
be similar that of the ROI with a face of the first frame, the 
DSCT cannot adapt to changes of the capture condition and 
starts drifting as seen in Figure 1(c). To observe tracking 
performance under occlusion and clutter, the results on the 
sequence P2L_S5_C1 are shown in Figures 1(d)-(f). DSCT 
drifts and TLD stops tracking when a partial occlusion occurs 
as seen in Figure 1(e). In Figure 1 (f), TLD incorrectly 
retrieves a dropped track because features used as the face 
descriptor are less discriminant. IVT outperforms the other 
trackers over the whole sequence.  

Table 2 shows the accuracy (AOE and TE) for the 
trackers on the 6 entering and 6 leaving sequences in Table 1, 
where the TE is computed by selecting the face-
correspondences with 0.7AOE > . Since AOE  is sensitive 
to small misalignment of the bounding boxes, 0.7AOE ≤  is 
considered as a satisfactory tracking result in this experiment. 
According to the average AOE and TE, it can be seen that 

IVT outperforms other methods. The robust tracking 
performance of IVT can be attributed to the eigenface 
representation of the face model which is robust to 
illumination change, pose change and clutter, and to the 
update mechanism [12] which incrementally updates the FM 
to adapt it with the changes of the scene. It is to be noted that, 
for all the tracking methods, the average AOE and TE are 
higher in the “entering” sequences than the “leaving” 
sequences; this is because the entering sequences are more 
challenging in terms of pose, scale and illumination changes. 

   
(a) Frame 161 (b) Frame 171 (c) Frame 184 

   
(d) Frame 1000 (e) Frame 1021 (f) Frame 1111 

Figure 1: Face tracking provided by IVT, TLD, and DSCT on selected frames 
of P1L_S1_C1 and P2L_S5_C1 sequences. 

For a fair analysis, instead of fixing 0.7∂ = , this 
threshold is varied in the range [0, 1], and the corresponding 
TE and average AOE for the entering and leaving sequences 
are plotted in Figures 2(a) and (b), respectively. Note that an 
ideal tracker is represented by the point (0, 0) in these figures. 
In the sequences, when large variations in face appearance 
occurs due to any challenging condition, TLD stops tracking, 
whereas IVT and DSCT usually continue tracking with 
generating larger AOE. This results in higher average AOE for 
IVT and DSCT than TLD in the area of Figure 2(a) where TE 
is greater than 0.3. In real-world video surveillance 
applications, a face tracking method generating TE > 0.25 
may not be suitable. In the areas of Figures 2(a) and (b), 
where 0.25TE ≤ , IVT performs the best among methods.  

 Entering Sequences Leaving Sequences 

AAM Avg. AOE TE Avg. CT Avg. AOE TE Avg. CT 

IVT 0.34 0.005±  0.14 0.08 0.001±  0.30 0.005±  0.17 0.09 0.001±  

TLD 0.39 0.008±  0.26 1.03 0.002±  0.37 0.007±  0.24 0.97 0.002±  

DSCT 0.49 0.007±  0.38 6.18 0.001±  0.50 0.007±  0.42 6.22 0.002±  
Table 2: Avg. AOE, TE, and CT (in sec.) for the face tracking methods along 
with standard errors. 

In terms of CTs, IVT also outperforms the other methods 
(Table 2). The computational effort required by the trackers is 
mainly found in processing steps for face model update and 
data association. For model update, IVT uses the SKL 
algorithm [12], which is computationally efficient. For DSCT, 
the large dimensionality of the final feature vector causes 
high computational cost when they are used to update a 
classifier [17]. TLD accumulates some positive and negative 
samples from a reliable tracking trajectory to update a random 
forest classifier to improve detection, which is 
computationally complex. For data association, IVT and 
DSCT generate 600 particles (candidate samples) each using 
particle filters, whereas TLD generates 50,000 candidate 



patches for an image (240×320 pixels) by varying scale, size, 
and shifting parameters of an initial window, although these 
candidate patches are further refined by employing a cascaded 
classifier. The processing time for all the trackers depends on 
the update frequency. It is predefined for IVT and DSCT, but 
is adaptive for TLD according to changes observed in face 
tracks. 

(a) Entering sequences (b) Leaving sequences 
Figure 2: TE vs. average AOE of the trackers by varying [0,1]∂ ∈  

Since IVT outperformed others in terms of tracking 
accuracy and time complexity, further analysis is now 
presented. In particular, this section considers how this face 
tracking algorithms can be exploited within a system for 
FRiVS. One of the main limitations of IVT is track drift 
which occurs due to the integration of non-facial regions into 
the facial model during its update process. By controlling the 
plasticity of face models and assessing the quality of the 
facial regions that may be used to update a model, the 
problem of track drift can be mitigated. In the IVT, batch size, 
m, and forgetting factor, f, determine the plasticity of facial 
models. In addition, within a system for FRiVS, a face 
detection module may be exploited for facial quality 
assessment before a facial model is updated.  

In IVT, batch-size, m refers to the number of frames used 
before updating a face model during tracking. In the original 
implementation of IVT (available in the authors’ website, 
http://www.cs.toronto.edu/~dross/ivt/), this m is set to 5. 
However, this value affects a trade-off between computational 
efficiency and quality of facial modeling. Increase of m 
makes IVT computationally faster at the expense of being less 
adaptive, and vise-versa. 
 Entering Sequences Leaving Sequences 

Batch Avg. AOE Avg. CT Avg. AOE Avg. CT 

5 0.338 0.005±  0.081 0.001±  0.304 0.005±  0.091 0.001±  

10 0.357 0.006±  0.077 0.005±  0.312 0.006±  0.073 0.003±  

15 0.368 0.005±  0.071 0.003±  0.337 0.008±  0.066 0.004±  

20 0.379 0.007±  0.063 0.008±  0.341 0.003±  0.062 0.007±  
Table 3: Average AOE and CT required by IVT for different batch sizes, m. 

Table 3 presents the average AOE and average CT for six 
“leaving” and six “entering” sequences of Chokepoint dataset 
when batch sizes are m = 5, 10, 15, and 20. As m increases, 
the average AOE also increases while the CT decreases, 
because the internal facial models are updated less frequently. 
It is however not necessarily true that adapting face models 
more frequently can lead to higher tracking accuracy for all 
sequences. Rather, frequent updates may gradually 
incorporate non-facial regions and cause tracks to drift. For 
best tracking accuracy, when a video scene captures faces that 
move rapidly or abruptly, the face models should be adapted 

more frequently (with smaller batches) at the expense of CT. 
Moreover, the “entering” sequences result in higher AOE than 
the “leaving” sequences. This is due to the fact that the 
“entering” sequences include more variations in face 
appearances (pose, scale and illumination changes). 

IVT exploits a parameter known as forgetting factor,  f ∈
[0, 1], where f = 0  is set to forget all previous observation, 
while f = 1 is set to remember them. This parameter 
determines the contributions of earlier observations while 
updating a face model. Figure 3 presents the AOE for the 
twelve videos of Chokepoint dataset when f is set to 0.00, 
0.0.20, 0.40, 0.60, 0.80, and 1.00. This figure shows that, for 
most sequences, the AOE decreases, as the f increases. Results 
suggest that, though recent observations are more indicative 
of the current facial appearance, a contribution from both the 
recent and older observations in updating face model can be 
beneficial. Small m and f values are most suitable for abrupt 
changes, while larger m and f values are most suitable for 
tracks with gradual changes. 

 
Figure 3: Average AOE of IVT for different forgetting factors. 

Face detection is the front end of any system for FRiVS 
[18]. For quality assessment, the Viola-Jones face detection 
algorithm was considered. Figure 4 presents the AOE for the 
original IVT, as well as for IVT with detection on Chokepoint 
videos. In both of these cases, the face model is only updated 
for frames where the detection module finds a facial ROI that 
has significant overlap with the facial region predicted by the 
tracker. Figure 4(left) shows results when the FM is updated 
with the facial region obtained from the tracker, whereas in 
Figure 4(right) the update procedure is performed with the 
facial ROIs obtained by the face detection module. In both 
figures, it can be seen that the tracking accuracy for IVT with 
detection improves for sequences P1E_S1_C1, P1E_S1_C2, 
P1E_S2_C1, P1E_S2_C2, P1E_S2_C3, P2E_S2_C3, 
P1L_S1_C1, P1L_S2_C1, P1L_S2_C2, P1L_S2_C3 and 
P2L_S2_C1, where tracks are exposed to gradual changes. 
The detection module finds faces in most frames, and updates 
the facial model accordingly. Faces are modelled with a 
considerable number of high quality facial regions, and the 
tracker performs accurate DA, resulting in improved tracking 
accuracy.  

In sequences P1L_S1_C2, P1L_S1_C3, P2E_S2_C1, 
P2E_S2_C2, P2L_S2_C2 and P2L_S2_C2, the pose, size, and 
illumination vary more abruptly and tracking accuracy is 
degraded. The detection module does not find faces in many 
frames, thus cannot efficiently update the facial models, 
leading to increased AOE. Both IVT and IVT with detection 
drift at the beginning of this sequence, resulting in large AOE. 
Comparing the results presented in Figure 4(left) with Figure 



4(right), faces updated with ROIs (from the detection module) 
provide higher quality facial regions than the tracker. 
Although IVT with detection cannot perform well in all the 
sequences, the results in Figures 4(left) and (right) for the 
sequences P1E_S1_C1, P1E_S1_C2, P1L_S1_C1, 
P2E_S2_C3 and P2L_S2_C1 suggest that, by assessing the 
quality of facial regions before updating a facial model, it can 
improve tracking performance. 

Figure 4: AOE of IVT and IVT with detection, where updating is 
driven by the face detection. (left) Face model is updated with the 
facial region obtained from tracker; (right) Face model is updated 
with the facial ROI obtained from face detection module. 

4 Conclusion 

This paper presents a comparison of three state-of-the-art 
AAM trackers – IVT, TLD, and DSCT – for FRiVS 
applications. The performance results for these trackers on 
Chokepoint video data indicates that IVT is the more suitable 
tracker since it outperforms the other methods in terms of 
tracking accuracy and computation time. The low 
discriminant power of the TLD face descriptor and the 
computational complexity of DSCT are the main limitations 
of these methods. An analysis of IVT has revealed the impact 
of its key parameters (i.e., batch size and forgetting factor) on 
its tracking quality. Results suggest that small batch size and 
forgetting factor values are most suitable for tracks with 
abrupt changes, while larger values are most suitable for 
tracks with larger ones. The quality of IVT’s internal facial 
model is also shown to benefit from quality assessment of the 
face detection (i.e., the front-end face detection) module when 
face tracks are more gradual. 

Although IVT performs better than TLD and DSCT, it 
still has some limitations. As with other generative AAM 
trackers, IVT relies on limited amount of data to learn and 
update the initial appearance FM. Many misaligned samples 
are likely to be learned incrementally which degrades the 
appearance model and causes track drift. Like all other 
AAM–based trackers, IVT is rather complex, yet lacks 
mechanism for detecting and correcting tracking error online 
as it sets no global constraints on the overall appearance of 
the target model. Their computational complexity grows with 
the number of facial tracks, size of faces, camera resolution 
and frame rate, and the number of cameras used by the 
surveillance system.  

To improve the performance of IVT, face tracking can be 
triggered by the facial captures of a face detection module 
(e.g. Viola-Jones algorithm). ROIs from face detection can be 
used to construct and validate more reliable FM for IVT. 
Recently, contextual information has been exploited 
effectively in visual tracking [19] and can play an important 
role for the further improvement to IVT. Finally, this paper 
underscores the need for more empirical benchmarking 

studies to compare the numerous tracking methods presented 
in literature.  
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