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Abstract

Natural products with diverse chemical scaffolds have been recognized as an invaluable source of 

compounds in drug discovery and development. However, systematic identification of drug targets 

for natural products at the human proteome level via various experimental assays is highly 

expensive and time-consuming. In this study, we proposed a systems pharmacology infrastructure 

to predict new drug targets and anticancer indications of natural products. Specifically, we 

reconstructed a global drug-target network with 7,314 interactions connecting 751 targets and 

2,388 natural products and built predictive network models via a balanced substructure-drug-target 

network-based inference approach. A high area under receiver operating characteristic curve of 

0.96 was yielded for predicting new targets of natural products during cross-validation. The newly 
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predicted targets of natural products (e.g., resveratrol, genistein and kaempherol) with high scores 

were validated by various literatures. We further built the statistical network models for 

identification of new anticancer indications of natural products through integration of both 

experimentally validated and computationally predicted drug-target interactions of natural 

products with the known cancer proteins. We showed that the significantly predicted anticancer 

indications of multiple natural products (e.g., naringenin, disulfiram and metformin) with new 

mechanism-of-action were validated by various published experimental evidences. In summary, 

this study offers powerful computational systems pharmacology approaches and tools for 

development of novel targeted cancer therapies by exploiting the polypharmacology of natural 

products.

Graphical Abstract

INTRODUCTION

Natural products and their derivatives, with diverse chemical structures, contribute greatly to 

the landscape of new chemical entities (NCEs) for drug discovery and development in the 

past several decades.1–3 Recent studies have suggested that Food and Drug Administration 

(FDA)-approved or clinically investigational natural products often target multiple proteins, 

called polypharmacology.4 However, polypharmacology of natural products are 

characterized with both therapeutic effects and unwanted adverse effects. Hence, systematic 

identification of drug-target interactions (DTIs) for natural products at the human proteome 

would provide unexpected opportunities for identification of new indications (e.g., drug 

repositioning) and reducing toxicity of natural products in de novo drug discovery and 

development.5–8

Traditionally experimental assays for identification of DTIs of natural products are highly 

expensive and time-consuming, which is not feasible for thousands of natural products 

available currently. Computational (in silico) approaches have been demonstrated as 

invaluable tools for prediction of DTIs of natural products, such as molecular docking,9 

chemical similarity search,10, 11 and machine learning approaches.12, 13 Although 

remarkable advances of those computational approaches have been achieved, several 

potential limitations still have to be recognized. For example, most of the current approaches 

rely on the availability of three-dimensional (3D) structure of target protein (e.g., molecular 

docking) or chemical structures of ligands (e.g., chemical similarity and machine learning). 

However, the limited number of high-quality 3D structures of proteins and the structural 

complexity of natural products (e.g., multiple chiral atoms) restrict the application of current 

molecular docking and ligand 3D shape similarity approaches.14 In addition, most of 
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machine learning approaches (except for k-nearest neighbor) require negative samples, while 

lack of high-quality negative samples further limit the accuracy of current machine learning-

based models.6,15 It is urgently needed to develop new computational approaches for 

exploring the space of drug targets for natural products at the human proteome.

Recent advances in network-based approaches have provided useful tools for prediction of 

DTIs and assessment of drug safety profiles.16–24 These approaches have illustrated a great 

promise in drug discovery and development, since they do not rely on either 3D structures of 

target proteins or negative samples. For example, Cheng et al. proposed several network-

based approaches, such as network-based inference (NBI)16 and the edge-weighted/node-

weighted NBI17 for prediction of DTIs and drug repositioning. However, neither NBI nor 

the weighted NBIs can predict targets of NCEs whose targets are absent in the known drug-

target network. To overcome this drawback, they further proposed a novel network-based 

approach, named substructure-drug-target network-based inference (SDTNBI),20 to identify 

potential targets for NCEs via integrating molecular fingerprints of drugs into drug-target 

network. As an improvement of SDTNBI, they further developed a balanced substructure-

drug-target network-based inference (bSDTNBI) for identification of targets for both old 

drugs and NCEs by introducing three tunable parameters to balance the weights of each 

nodes and edges in networks. Via bSDTNBI, they identified several novel antagonistic or 

agonistic estrogen receptor alpha (ERα) ligands, and dual-effect ERα ligands by in vitro 
assays for the development of potential therapies in breast cancer or osteoporosis.21 

Therefore, systematic identification of new target spaces of natural products via network-

based approaches would provide unexpected opportunities for drug discovery and 

development by exploiting the pharmaceutical wealth of natural products.

In this study, we proposed a systems pharmacology infrastructure for in silico identification 

of drug targets and anticancer indications of natural products (Figure 1). Specifically, we re-

constructed a global drug-target network of natural products and built the predictive network 

models via our previous network-based approach, named bSDTNBI.21 Then, we developed 

the statistical network models for identification of new anticancer indications of natural 

products through integration of both experimentally validated and computationally predicted 

DTIs with the known cancer proteins. We computationally identified multiple anticancer 

indications for several typical natural products with new mechanism-of-actions (MOA) 

across 13 cancer types. Altogether, this study offers a powerful systems pharmacology 

infrastructure for identification of new targets and anticancer indications of natural products.

Materials and Methods

Constructing Drug-target Network of Natural Products

We firstly built a catalog of natural products with diverse chemical structures by integrating 

data from six publicly available natural product data sources: Traditional Chinese Medicine 

database (TCMDb),25 Chinese Natural Product database (CNPD),26 Traditional Chinese 

Medicine integrated database (TCMID),27 Traditional Chinese Medicine Systems 

Pharmacology (TCMSP),28 Traditional Chinese Medicine database@Taiwan 

(TCM@Taiwan),29 and Universal Natural Product Database (UNPD).30 For each data 

source, we changed its initial structure format (e.g., mol2) into unified SDF format using 
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molecular operating environment (MOE) software.31 Subsequently, all chemical structures 

were stored in a single SDF file via merging six SDF files from the six data sources. 

InChIKey, a fixed length (25 character) condensed digital representation of the InChI, was 

calculated for each molecule using Open Babel (version 2.3.2).32 Finally, 259,547 unique 

natural products were collected after removing the duplicates according to InChIKey. The 

details are provided in a recent study.4

To construct a global drug-target network of natural products, we collected experimentally 

validated DTIs from two commonly used databases: ChEMBL (v21)33 and BindingDB 

(accessed in June 2016).34 All chemical structures were prepared and converted into 

canonical SMILES using Open Babel toolkit (version 2.3.2).32 In the preparation process, 

salt ions were removed and dative bonds were standardized. Herein, we only used the high-

quality DTIs based on the following 5 criteria: (i) inhibitory constant (Ki), dissociation 

constant (Kd), half maximal inhibitory concentration (IC50) or half maximal effective 

concentration (EC50) ≤ 10 μM; (ii) the target is a human protein; (iii) the target can be 

represented by a unique UniProt accession number; (iv) each drug can be successfully 

represented by canonical SMILES format; and (v) each drug has more than one carbon 

atoms. Subsequently, we mapped 259,547 unique natural products into the abovementioned 

data items to extract experimentally validated DTIs using the ‘InChIKey’.

In order to focus on DTI networks of FDA-approved or investigational natural products, we 

extracted natural products via mapping global DTI network into 7,109 drugs in DrugBank 

(accessed in Sep 2016).35 In total, we reconstructed a local DTI network with 1,796 

interactions connecting 276 natural products (including 146 FDA-approved drugs and 130 

investigational drugs) and 453 targets.

To evaluate the model performance, we further reconstructed three independent DTI 

networks as external validation sets by integrating data from STITCH,36 Herbal Ingredients’ 

Targets Database (HIT),37 and the Comparative Toxicogenomics Database (CTD).38 For 

STITCH, the thickness of each interaction pair represented the confidence scores of DTIs. 

Only DTIs from Homo sapiens were downloaded, and high-confidence interactions (score ≥ 

0.7) were retained in this study as the validation set A.36 We also extracted DTIs from HIT 

using a web crawler approach as the validation set B.37 Moreover, we constructed an 

additional DTI network as the validation set C by integrating data from CTD (accessed in 

June 2017).38 The duplicated DTIs between the global networks and three independent 

validation networks were excluded.

Description of Molecular Fingerprints

Here, we calculated substructure items of each compound using four types of molecular 

fingerprints from PaDEL-Descriptor (version 2.18),39 including Substructure (FP4), 

Klekota-Roth (KR), MACCS, and PubChem (PubChem).

Prediction of New Drug-target Interactions of Natural Products

In this study, we built predictive network models via bSDTNBI21 to predict targets of natural 

products. Specifically, bSDTNBI utilizes resource-diffusion processes in the substructure-

drug (or NCE)-target network to prioritize potential targets for natural products. The 
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substructure-drug (or NCE)-target network was constructed by integrating the known DTI 

network, drug-substructure associations and NCE-substructure associations (Figure 1B). 

Three tunable parameters were introduced into the resource-diffusion processes to improve 

the method performance.

To describe the resource-diffusion processes mathematically, assuming that the substructure-

drug (or NCE)-target network used for prediction contains: (i) NC denotes NCEs without 

known targets, (ii) ND denotes drugs with known targets, (iii) NS denotes substructure items 

of molecular fingerprints, and (iv) NT denotes targets, we defined several matrices. For the 

NCE-substructure associations, we define a matrix: MCS(i, j) = 1 if NCE Ci contains 

substructure Sj (0 < i ≤ NC, 0 < j ≤ NS), otherwise = 0. For the drug-substructure 

associations, we define a matrix: MDS(i, j) = 1 if drug Di contains substructure Sj (0 < i ≤ 

ND, 0 < j ≤ NS), otherwise = 0. For the DTIs, we define a matrix: MDT(i, j) = 1 if drug Di 

has known interaction with target Tj (0 <i ≤ ND, 0 < j ≤ NT), otherwise = 0.

As shown in Figure 1B, the first parameter α ∈ [0,1) was introduced to balance the initial 

resource allocation of different node types (e.g., high vs. low connectivity). For each drug or 

NCE node, a total amount = α of initial resource was equally allocated to the substructure 

nodes linked with it, and a total amount = 1 − α of resource was equally allocated to the 

target nodes linked with it. By varying the value of α, we can adjust the importance of 

different node types (substructure nodes and target nodes) in initial resource allocation.

Mathematically, for NCE-substructure associations, an initial resource matrix can be defined 

as below (0 < i ≤ NC, 0 < j ≤ NS).

ACS(i, j) = α ·
MCS(i, j)

∑l = 1
NS MCS(i, l)

(1)

For drug-substructure associations, an initial resource matrix can be defined as below (0 < i 

≤ ND, 0 < j ≤ NS).

ADS(i, j) = α ·
MDS(i, j)

∑l = 1
NS MDS(i, l)

(2)

For DTIs, an initial resource matrix can be defined as below (0 < i ≤ ND, 0 < ≤ j ≤ NT).

ADT(i, j) = (1 − α) ·
MDT(i, j)

∑l = 1
NT MDT(i, l)

(3)
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Using these matrices, the initial resource matrix for the substructure-drug (or NCE)-target 

network can be represented as:

A =

O O ACS O

O O ADS ADT

ACS
T ADS

T O O

O ADT
T O O

(4)

Then, the second parameter β ∈ [0,1) was introduced to balance the weighted values of 

different edge types. Specifically, the weighted values of all drug-substructure associations 

were set to β, while the weighted values of all DTIs were set to 1 − β. By varying the value 

of β, we can adjust the importance of different edge types in resource-diffusion processes. In 

addition, the third parameter γ ∈(−∞,+∞) was imported to balance the influence of hub 

nodes in resource-diffusion processes. A positive/negative value of γ will strengthen/weaken 

the influence of hub nodes. Using the parameters β and γ, the aforementioned initial 

resource matrix A can be transformed into a final resource matrix as below.

Let B, C, and W be three square matrices, defined as below (0 < i ≤ NC + ND + NS + NT, 0 < 

j ≤ NC + ND + NS + NT):

B =

O O O O
O O β · MDS (1 − β) · MDT

O β · MDS
T O O

O (1 − β) · MDT
T O O

(5)

C(i, j) = B(i, j) · [∑l = 1
NC + ND + NS + NT B(l, j)]

γ
(6)

W(i, j) =
C(i, j)

∑l = 1
NC + ND + NS + NT C(i, l)

i f C(i, j) ≠ 0

0 otherwise

(7)

The final resource matrix (score matrix) is calculated by the following equation:

F = A × Wk (8)
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where k is the number of resource-diffusion processes. The score of the interaction between 

NCE Ci and target Tj is the value of F(i, NC + ND + NS + j) (0 < i ≤ NC, 0 < j ≤ NT). The 

score of the interaction between drug Di and target Tj is F(NC + i, NC + ND + NS + j) (0 < i 

≤ ND, 0 < j ≤ NT).

The parameters (α = β = 0.1, γ = −0.5, and k = 2) of bSDTNBI were used here based on 

our previous study.21

Performance Evaluation

In this study, both 10-fold cross validations and the external validation were used to evaluate 

the model performance. Four evaluation indications depending on the top prediction lists 

(e.g., L = 20), including precision (P), recall (R), precision enhancement (eP), and recall 

enhancement (eR) were calculated as below.

P(L) = 1
M · ∑

i = 1

M Xi(L)
L (9)

R(L) = 1
M · ∑

i = 1

M Xi(L)
Xi

(10)

eP(L) = P(L) · M · N
X (11)

eR(L) = R(L) · N
L (12)

Where M and N are the number of drugs and targets participated in performance evaluation, 

Xi(L) is the number of the correctly predicted DTIs which were ranked in the top L places of 

Di’s newly predicted target list, Xi is the number of Di’s DTIs which were divided into test 

set, X is the total number of DTIs which were divided into test set.

Furthermore, another evaluation indicator independent of the L value, the area under the 

receiver operating characteristic curve (AUC), were calculated by computing the true 

positive rates and false positive rates under different L values. The details of these evaluation 

indicators were described in previous studies.16, 17, 20

We performed 10-fold cross validation via leaving out 10% of DTIs from the total links. For 

external validation, we only kept the novel DTIs not shared by the global DTI network that 

was used for model building. For each model, the processes of 10-fold cross validation were 
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repeated 10 times, and the mean values and standard deviations (mean±SD) of each 

evaluation indicator were calculated to measure the model performance. Finally, three 

external test sets were employed to assess the generalization ability of in silico network 

models.

Curation of Cancer Proteins for 13 Cancer Types

We collected the products (proteins) of cancer-associated genes across 13 cancer types from 

4 public available databases: the Online Mendelian Inheritance in Man (OMIM) database,40 

HuGE Navigator,41 PharmGKB,42 and Comparative Toxicogenomics Database (CTD).38 

The 13 major cancer types include leukemia, bladder cancer (bladder), breast cancer 

(breast), colon cancer (colon), glioblastoma multiforme (GBM), kidney cancer (kidney), 

lung cancer (lung), ovarian cancer (ovarian), prostate cancer (prostate), melanoma, stomach 

cancer (stomach), thyroid cancer (thyroid), and uterine cancer (uterine).The details are 

provided in Supporting Information, Table S1.

Prioritizing Anticancer Indications for Natural Products

Here, we developed the integrated statistical network models to prioritize new anticancer 

indications of natural products through incorporating both experimentally validated and the 

computationally predicted DTIs of natural products and the curated cancer proteins across 

13 cancer types. The statistical network models assert that a natural product with multiple 

targets (named polypharmacological profiles) exhibits a high possibility to treat a particular 

cancer type if its targets are more likely to be cancer proteins in this specific cancer. A 

permutation testing was proposed to evaluate the statistical significance of a natural product 

to be prioritized for a specific cancer indication.

The null hypothesis supposes that the targets of a natural product randomly locate at cancer 

proteins in the human proteome, while the alternative hypothesis asserts that targets of a 

natural product are inclined to be cancer proteins than other proteins when this natural 

product shows potential treatment in this cancer type. The permutation testing was 

calculated as below:

P =
# {Sm(p) > Sm}

# {total permutations} (13)

A nominal P was computed for each natural product by counting the number of observed 

cancer proteins in a specific cancer type greater (Sm (p)) than the permutations (Sm). Herein, 

we performed 100,000 permutations by randomly selecting a set of proteins with the same 

number of cancer proteins in a cancer type from the genome-wide simulation (20,462 human 

protein-coding genes from the NCBI database, Supporting Information, Table S2). Then, the 

resulting P-values obtained from the permutation tests were corrected as adjusted P-values 

(q) using R based on Benjamini-Hochberg approach.43

In addition, a Z-score was also computed for each natural product across each specific 

cancer type during permutation testing in Equation 14, where x is the real number of cancer 

proteins targeted by a given natural product in a specific cancer type, μ is the mean number 
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of cancer proteins targeted by a given natural product during 100,000 permutations, and σ is 

the standard

Z = x − u
σ (14)

Network Visualization and Statistical Analysis

The statistical analysis was performed using the Python (v3.2, http://www.python.org/) and 

R platforms (v3.01, http://www.r-project.org/). Networks were visualized using Cytoscape 

(v3.2.0, http://www.cytoscape.org/).

Results

Reconstruction of Drug-target Network for Natural Products

In this study, we reconstructed a global drug-target network of natural products by 

integrating the high-quality experimental data (see Methods and Materials). As shown in 

Table 1, this network contains 7,314 interactions connecting 2,388 unique natural products 

and 751 targets. The average degree (i.e., connectivity) of a natural product is 3.06, while the 

sparsity value for the global network is 0.41%. The detailed DTI pairs of this network are 

provided in Supporting Information, Table S3.

We examined the target coverage and chemical diversity of natural products in the global 

network. As presented in Figure 2A, the entire targets (n = 750) can be divided into five 

categories via mapping it to Therapeutic Target Database (TTD),44 including successful 

target (n = 131), clinical trial target (n = 113), research target (n = 142), discontinued target 

(n = 15) and others (n = 349), and the number of corresponding DTI pairs for the five 

categories was 1,631, 878, 1,446, 59 and 3,300, respectively (Figure 2B).

Clustering analysis was performed to examine chemical scaffolds of natural products in the 

global network. The total 2,388 natural products are clustered into 10 groups based on 

FCFP_6 fingerprint using the Cluster ligands module in Discovery Studio 4.0,45 and each 

group has similar chemical features (Figure 2C). Among them, cluster 9 (Cluster center: 

chrysoeriol) shows the largest numbers of compounds (665 natural products), following by 

cluster 7 (Cluster center: 8-prenylnaringenin) with 307 natural products. The structures of 

each cluster center are shown in Figure 2D. Ten cluster centers are maslinic acid, 4-

hydroxybenzoic acid, betaine, ZINC00083317, tetradecanoic acid, dronabinol, 8-

prenylnaringenin, benzamide, chrysoeriol, and lactic acid, respectively. Other compounds in 

the same cluster share similar chemical scaffolds with the structure of cluster center. For 

instance, the structures in cluster 1 are mainly represented as steroids while the structures in 

cluster 4 are largely represented as unsaturated aliphatic hydrocarbon or unsaturated fatty 

acid. Taken together, current global DTI network covers wide FDA-approved or clinically 

investigational drug targets (Figure 2B) and diverse chemical scaffolds of various natural 

products (Figure 2D), offering a useful resource for natural product-focused drug discovery.
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Prediction of New Targets for Natural Products

Here we built multiple predictive network models based on the above global DTI network 

for computational identification of new targets of natural products (Figure 1). To evaluate the 

performance of the predictive network models, 10-fold cross validation was used via 

implementing four different types of molecular fingerprints: FP4, KR, MACCS, and 

PubChem. Under the prior parameters of α = β = 0.1, γ = −0.5, and k = 2, the average 

AUC values of 0.955±0.005, 0.958±0.005, 0.954±0.005 and 0.953±0.005 were yielded for 

the models of bSDTNBI_FP4, bSDTNBI_KR, bSDTNBI_MACCS, and 

bSDTNBI_PubChem, respectively (Figure 3). The details of other evaluation indicators in 

10-fold cross validation are given in Table 2. From these evaluation indicators, 

bSDTNBI_KR reveals the best performance with the highest value of P (0.049±0.001), R 

(0.754±0.016), eP (27.03±0.63), eR (27.30±0.64), and AUC (0.958±0.005).

We further evaluated the generalization ability of the predictive network models using three 

external validations sets (Supporting Information, Table S3): (i) the external validation set A 

with 3,164 interactions connecting 714 natural products and 466 targets, (ii) the external 

validation set B with 1,164 interactions covering 375 natural products and 318 targets, and 

(iii) the external set C with 3,352 interactions connecting 348 natural products and 386 

targets. As shown in Supporting Information, Figure S1, S2 and S3, the AUC value ranges 

from 0.661 to 0.671 for the external validation set A, 0.654 to 0.668 for the external 

validation set B, and 0.669 to 0.672 for the external validation set C. The detailed 

performance of the predictive network models on three independent external validation 

network sets are given in Table 3. As shown in Table 3, bSDTNBI_KR achieves the best 

performance with the highest value of P (0.023), R (0.152), eP (3.88), eR (5.71) for 

validation set A, P (0.014), R (0.128), eP (3.35), eR (4.82) for validation set B, as well as P 

(0.043), R (0.113), eP (3.37), eR (4.24) for validation set C. Figure 4 shows the precision-

recall curves of four models evaluated by three independent drug-target networks, 

suggesting a reasonable accuracy for our predictive network models. Taken together, 

bSDTNBI_KR shows high performance during both cross-validation and reasonable 

accuracy in the external validation.

Discovery of New Targets for Natural Products

In total, we computationally predicted 42,225 new DTIs between 2,388 unique natural 

products and 680 targets using top 20 as a cut off (Supporting Information, Table S4). To 

examine how the network predictive model helps to identify new drug targets of natural 

products, we selected 3 typical FDA-approved or investigational natural products 

(kaempherol, resveratrol and genistein) as example drugs. In addition, we also investigated 

how the new prediction for these three natural products contributed to decipher the new 

mechanism-of-action (MOA) of natural products for treatment of various complex diseases, 

such as cancer.

As shown in Figure 5, the DTI bipartite network contains 124 DTIs (76 known DTI pairs 

and 48 predicted DTI pairs) connecting 3 natural products and 80 targets (48 cancer proteins 

and 32 non-cancer proteins). We systematically searched previously reported literatures in 

PubMed for the 48 predicted DTI pairs to kaempherol, resveratrol, and genistein. Among the 
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48 predicted DTI pairs, 19 (19/48, 39.6% success rate) had been experimentally validated in 

previously published data (Supporting Information, Table S5), suggesting a reasonable 

accuracy of our network model. The remaining 29 predicted DTIs are needed to be validated 

by experimental assays in the future.

Kaempherol, a natural flavonol, is mainly found in plants and plant-derived foods such as 

apples.46 Kaempherol possesses various anticancer effects in breast cancer47 and ovarian 

cancer.48 As shown in Figure 5, kaempherol interacts with 39 known (20) and predicted (19) 

targets (including 23 cancer proteins as well as 16 non-cancer proteins). For example, the 

two cancer proteins (MAPK10 and CBR1) were predicted as the targets of kaempherol. 

Recent studies have suggested that Kaempferol was a weak inhibitor of MAPK10 (19.1 

μM)49 as well as a strong inhibitor of CBR1 (0.13 μM),50 indicating the potential MOAs of 

kaempferol in cancer.

Genistein, an isoflavonoid derived from soy products, has been reported to show the 

chemopreventive properties against several cancer types,51 including breast cancer 

(NCT00244933), bladder cancer (NCT00118040), and prostate cancer (NCT01325311). 

Figure 5 indicated that genistein was predicted to bind with 15 targets potentially. For 

example, nuclear factor-kappa B (NF-kB), playing crucial roles in tumor cell proliferation, 

survival, and angiogenesis,52 was predicted to be interacted by genistein. A recent study has 

suggested that genistein inhibited the proliferation of human multiple myeloma (MM) cells 

via suppressing the expression of NF-kB.53

Resveratrol, a non-flavonoid polyphenol derived from the skin of grapes, exerts a wide 

range of anticancer effects.54 Currently, approximate 20 clinical trials (http://

clinicaltrials.gov/) are being conducted to treat various cancers by resveratrol, such as colon 

cancer (NCT00256334), and liver cancer (NCT02261844). The exact MOAs of anticancer 

activities by resveratrol are still unclear. In Figure 5, resveratrol interacts with 23 cancer 

proteins and 21 non-cancer proteins, consisting of 30 known and 14 predicted ones. 

Interestingly, 15-lipoxygenase (ALOX15) and estrogen receptor-β (ERβ encoded by ESR2) 

are the two predicted cancer proteins for resveratrol by our predictive network model. 

Recent studies have showed that resveratrol acted as a competitive weak inhibitor of 

ALOX15 with an IC50 value of 25 μM55 and inhibited ERβ to suppress cancer cell growth,56 

indicating potential anticancer mechanism of resveratrol. A previous study has suggested 

that natural products often interacted with human proteins with moderate or weak binding 

affinities at micromolar level.57 A recent analysis on the binding affinities of natural 

products also suggests that therapeutic efficacy is not necessarily related to high binding 

affinity.58

Taken together, aforementioned examples show that our predictive network models provide 

useful computational tool to identify new potential drug targets that were involved in 

potential anticancer mechanisms of multiple natural products. Systems pharmacology-based 

integration of drug-target networks and the known cancer proteins would provide useful 

mechanism-based approaches to uncover new anticancer indications of natural products.
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Discovery of New Anticancer Indications for Natural Products

We further built the statistical network models for identification of new anticancer 

indications of natural products annotated in the DrugBank35 (accessed in Sep 2016) by 

integrating DTIs of natural products into the known cancer proteins. Considering a lack of 

statistical power if the target number of a given natural product is 2 or 1, we excluded the 

natural products of which known target number was lower than 3. Based on this cutoff, we 

reconstructed an experimentally validated DTI network (named ExpNet) with 1,479 

interactions connecting 163 natural products and 409 targets (Supporting Information, Table 

S6). To cover more potential targets of natural products, we further reconstructed the second 

network (named Exp&ComNet) by pooling both experimentally validated DTIs and the 

computationally predicted DTIs from the best predictive network model (bSDTNBI_KR). In 

order to increase the data quality of the computationally predicted DTIs, we only used the 

predicted targets ranked in top 5 candidates from the best network model (bSDTNBI_KR) 

described in our previous studies.20, 21 In total, Exp&ComNet contains 1,623 known and 

1,259 predicted DTIs (Supporting Information, Table S7) connecting 275 natural products 

and 525 targets.

Table 4 illustrates two predicted drug-cancer indication networks of natural product drugs. 

Using the threshold of adjusted p-value (q) < 0.05, we computationally identified 635 

anticancer indications of 124 natural products (Figure 6A) via the known DTIs (ExpNet). 

We further identified 993 anticancer indications (q < 0.05) of 196 natural products (Figure 

6B) by pooling both the known DTIs and the computationally predicted DTIs 

(Exp&ComNet) via our predictive network model. The detailed predictions are provided in 
Supporting Information, Table S8. Among 196 natural product drugs having the significantly 

predicted anticancer indications (Figure 6B), 99 drugs cannot be predicted to have 

significant anticancer indication in any cancer type based on ExpNet only. We further 

compared natural products having at least 5 predicted anticancer indications in ExpNet and 

Exp&ComNet networks, resulting in 54 natural products (using ExpNet) and 85 natural 

drugs (using Exp&ComNet), respectively. We systematically searched previously reported 

data from PubMed for the 54 natural products against 13 cancer types. The detailed 

predictions are provided in Supporting Information, Table S9. Among 500 predicted 

anticancer indications, 232 (with a success rate of 46.4 % [232/500]) could be found to have 

the reported experimental data. This suggests a reliable accuracy of our proposed network-

based model. The remaining 268 pairs without known experimental data need to be 

validated by various experimental assays in the future. Heat maps given in Figure 7 show Z-

scores of the predicted indications using the experimentally validated DTIs only (Figure 7A) 

and the pooling data of the experimentally validated and computationally predicted DTIs 

(Figure 7B) against 13 cancer types. Compared with Figure 7A, Figure 7B shows the 

significantly predicted anticancer indications for 37 additional natural products based on 

Exp&ComNet. Collectively, we demonstrated that integration of the computationally 

predicted DTIs could help to uncover more new anticancer indications of natural products 

via overcoming the incompleteness of drug-target interactions
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Uncovering New Anticancer Indications for Three Typical Natural Products

To further investigate the accuracy of the statistical network models, we selected 3 typical 

natural products (naringenin, disulfiram, and metformin) as case studies to illustrate their 

anticancer profiles with new MOAs.

Naringenin (DB03467), a flavanone, is mainly found in grapefruit, oranges, and tomatoes. It 

has been reported to possess various anticancer activities in breast, colon, pancreatic, lung, 

and prostate cancers.59 Figure 8 shows that naringenin is predicted to have potential 

indications for 6 cancer types: bladder (Z=12.12, q <1 ×10−5), lung (Z=9.59, q <1 × 10−5), 

uterine (Z=10.00, q <1 × 10−5), colon (Z=8.35, q <1 × 10−5), prostate (Z=7.83, q <1 × 10−5), 

and breast (Z=4.73, q =0.047). Among of them, breast, prostate and colon are the three new 

anticancer indications with non-significance based on ExpNet only. Previous studies have 

suggested that naringenin showed strong anticancer activities in three cancer types.60–63 For 

example, a previous study showed that naringenin prolonged the survival in breast cancer 

mice model.61 In addition, naringenin was reported to induce apoptotic cell death via 

regulating activation of PI3K/AKT and MAPK signaling pathways in prostate cancer cells.63

Disulfiram (DB00822), a FDA-approved carbamate derivative for the treatment of chronic 

alcoholism, has showed potential in treating several cancer types.64 In this study, disulfiram 

was predicted to have potential indications for 8 cancer types. Five of them are the new 

anticancer indications using Exp&ComNet only, including breast (Z=6.10, q <1 × 10−5), 

colon (Z=6.51, q =0.0055), lung (Z=7.23, q <1 × 10−5), thyroid (Z=7.23, q =0.0026), and 

uterine (Z=6.39, q=0.0179). Our prediction is consistent with several previous in vitro or in 
vivo studies of disulfiram in cancer: (1) induce cell apoptosis in breast cancer cells through 

suppressing the activity of proteasome,65 and (2) elicit apoptosis and exclude cancer stem-

like cells via the suppression of HER2/Akt signaling pathway in HER2-positive breast 

cancer.66–67

Metformin (DB00331) is a biguanide (mainly found in Galegaofficinalis) oral agent for 

treating type 2 diabetes. Nowadays, several clinical trials of metformin are being conducted 

to treat several cancer types, such as breast (NCT01266486), lung (NCT02109549), and 

ovarian (NCT01579812). In this work, none of cancer types was predicted using ExpNet 

only. Among top 5 predicted targets for metformin, and 3 targets were cancer proteins 

(TSHR, BLM, and ALDH1A1). Via Exp&ComNet, metformin was predicted to have 

potential in treating two cancer indications: breast (Z=6.41, q <1 × 10−5) and ovarian 

(Z=6.35, q=0.0106). Previous in vitro and clinical studies have suggested that metformin 

showed potential in treating breast cancer.68 In addition, metformin exerted anti-cancer 

effect in ovarian cancer cells via targeting AMPK/GSK3β signaling axis.69

Collectively, three case studies (naringenin, disulfiram, and metformin) demonstrated that 

our predictive network models showed promising to uncover new anticancer indications of 

natural products, despite the prediction are needed to be tested by experimental assays in the 

future. Interestingly, integration of both computationally predicted DTIs and known DTIs 

provide more comprehensive data for identifying new anticancer indications compared to 

using known DTIs alone. In addition, new predicted targets of natural products provide 

testable hypothesis to further investigate of MOAs of their anticancer activities.
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Discussion

Quantitative and systems pharmacology is an emerging approach to combine computational 

and experimental methods for discovering new therapeutic agents and understanding of the 

therapeutic mechanisms of complex diseases.6, 70,71 In this study, we demonstrated a 

computational systems pharmacology framework for systematic identification of new drug 

targets and anticancer indications of natural products. Specifically, we developed predictive 

network models based on a global DTI network connecting natural products and their known 

targets. Compared with traditional molecular docking approaches or machine learning-based 

models, our network-based models have several advantages. For example, molecular 

docking-based methods always rely on high-quality 3D structures of proteins. Here, our 

network models is independent of 3D structures of targets, providing powerful approaches 

for targets without known 3D structures yet (e.g., membrane proteins). In addition, network-

based models were built using the known DTIs (positive samples) only, whereas negative 

samples are not needed. The lack of high-quality negative samples often limits the accuracy 

and coverage of the machine learning models that are built using both positive and negative 

samples.15

Several potential limitations should be recognized in the current systems pharmacology 

framework. At first, potential data bias of the external validation sets as well as the 

incompleteness of known drug-target network of natural products may influence the model 

performance evaluation. In current study, external validation sets A and B were derived from 

STITCH36 and HIT,37 respectively. STITCH and HIT involved in a large number of DTI 

pairs of which experimental evidence (direct or indirect) were uncertain. Compared to 

validation sets A and B, a smooth recall vs. precision curve on validation set C (Figure 4C) 

was observed, suggesting a low quality of the external validation sets collected from 

STITCH and HIT. In the future, the independent test sets that only covered direct DTI pairs 

should be further evaluated. Secondly, the structure diversity of compounds in global DTI 

network may influence the performance of network-based models. In this study, the structure 

diversity of natural products is much less than that of synthesized compounds,21 which 

explains the marginal improvement of different molecular fingerprints in both cross-

validations (Figure 3) and external validations (Figure 4). Thirdly, over 1,400 cancer proteins 

across 13 major cancer types were used in this study. The data quality and redundancy of the 

cancer proteins might directly influence our prediction results. For example, cancer proteins 

often have different biological effects, such as loss-of-function or gain-of-function. 

Inhibitors target cancer proteins with loss-of-function may cause adverse cancer effects. In 

the future, cancer proteins with specific biological functions should be considered in our 

updated systems pharmacology infrastructure. For example, integration of large-scale gene 

expression profiles of cancer genes in specific cancer types may provide reasonable 

biological effects of cancer proteins. Fourthly, in this study we focused on three well-known 

natural products because we can found more literature-reported data for validation. Further 

experimental assays should be performed to validate the predicted DTIs and anticancer 

effects for NCEs. Finally, integration of human protein protein interaction network, and drug 

microarray data such as the Connectivity Map (CMap)72 of natural products, may contribute 

to develop novel cancer targeted therapies in the future.73

Fang et al. Page 14

J Chem Inf Model. Author manuscript; available in PMC 2018 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

In this study, we developed an in silico systems pharmacology framework for systematic 

prediction of drug-target interactions of natural products. Multiple predictive network 

models with high accuracy were built based on a global DTI network linking natural 

products to known target proteins. Network analyses provide testing hypothesis for 

exploring molecular mechanisms of therapeutic indications of natural products. 

Furthermore, we built the statistical network models to uncover new anticancer indications 

of natural products through integration of drug-target interaction network and well-known 

cancer proteins. We demonstrated that integration both computationally predicted drug-

target interactions and experimentally validated ones could overcome the data 

incompleteness of current available experimental data. In summary, this study provides a 

powerful in silico systems pharmacology framework for the development of novel targeted 

cancer therapies by exploiting the polypharmacology of natural products in the post-

genomics era.
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Figure 1. Schematic diagram of a systems pharmacology infrastructure for identification of new 
targets and anticancer indications of natural products
(A) Re-construction of drug-target network for natural products; (B) Building predictive 

network models via bSDTNBI for systematic prediction of new targets of natural products; 

(C) Performing network analyses for validating the new predicted drug-target interactions 

and for identifying testable hypothesis of new therapeutic effects of natural products; (D) 

Building the statistical network models for prioritizing new anticancer indication via 

integration of the computationally predicted (B) and known drug-target interaction network 

of natural products into the curated cancer-associated genes (proteins).
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Figure 2. Analysis of target coverage and chemical diversity of natural products in the 
reconstructed global drug-target interaction network
Classification of drug targets (A) and drug-target interactions (B) across five types of target 

proteins annotated in TTD.44 (C) Chemical structure clustering of 2,388 natural products 

based on FCFP_6 fingerprint. (D) The representative structures of 10 cluster centers.
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Figure 3. Receiver operating characteristic (ROC) curves of four models in 10-fold cross 
validation
For each model, the processes of 10-fold cross validation were repeated 10 times, and the 

mean values and standard deviation (mean±SD) of each evaluation indicator were calculated 

to measure the model performance. The shadow of each curve denotes the SD.
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Figure 4. Precision-recall curves of four models evaluated by three independent drug-target 
networks: validation set A (A), validation set B (B), and validation set C (C)
The detailed information of three independent validation drug-target networks is described 

in Table 1 and Table S3.
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Figure 5. Known and predicted drug-target network via the best model (bSDTNBI_KR) for 3 
typical natural products (kaempherol, genistein and resveratrol)
This network includes 124 drug-target interactions connecting 3 natural products and 80 

targets (48 cancer proteins and 32 non-cancer proteins [see Methods and Materials]).
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Figure 6. Discovered drug-cancer indication networks
(A) The predicted drug-cancer indication network based on the experimentally validated 

drug-target interaction (ExpNet) only, containing 635 significant drug-cancer indications 

pairs (SDCs) between 124 natural products and 13 cancer types. (B) The predicted drug-

cancer indication network based on both experimentally validated and computationally 

predicted drug-target interactions (Exp&ComNet), containing 993 SDCs between 196 

natural products and 13 cancer types. The 13 major cancer types are: leukemia, bladder, 

breast, colon, glioblastoma multiforme (GBM), kidney, lung, ovarian, prostate, melanoma, 

stomach, thyroid, and uterine cancers.

Fang et al. Page 25

J Chem Inf Model. Author manuscript; available in PMC 2018 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Heat maps show the predicted indications for FDA-approved or clinical investigational 
natural products against 13 cancer types
(A) Predicted indications of 54 FDA-approved or clinical investigational natural products 

based on the experimentally validated drug-target interaction (ExpNet) only. (B) Predicted 

indications of 84 FDA-approved or clinical investigational natural products based on both 

experimentally validated and computationally prediction drug-target interactions 

(Exp&ComNet). The red asterisk in B reveals that a natural product does not show statistical 

significance based on ExpNet only (A). The area in gray represents the non-available value 

since no cancer proteins are overlapped with the known targets of a specific natural product. 

Color keys denote the predicted Z-scores. The area in red represents the natural product 

having the high Z-score across specific cancer indications. Abbreviates of 13 major cancer 

types are provided in the legend of Figure 6.
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Figure 8. A discovered drug-target-disease network of 3 typical natural products
The predicted indications for 3 typical natural products (naringenin, disulfiram, and 

metformin) against 13 cancer types and their corresponding targets are shown. The predicted 

anticancer indications are based on the pooling data of the experimentally validated and 

computationally predicted drug-target interactions. The thickness of red line and dotted red 

line is proportional to the predicted Z-score. Abbreviates of 13 major cancer types are 

provides in the legend of Figure 6.
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Table 1

The statistics of four independent drug-target interaction networks used for network model building and 

validation.

Data set ND NT NDTI Sparsity (%)

Global network 2,388 751 7,314 0.41

Validation set A 714 466 3,164 0.95

Validation set B 375 318 1,164 0.98

Validation set C 348 386 3,352 2.50

ND: the number of natural products, NT: the number of targets, NDTI: the number of drug-target interactions, Sparsity: the ratio of NDTI to the 

number of all possible drug-target interactions.
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Table 4

Summary of the newly predicted anticancer indications of natural products using the experimentally validated 

DTIs (ExpNet) only and the combination of the experimentally validated and network-based predicted DTIs 

(ExpNet&ComNet) respectively.

Data source # of DTIs (# targets, # drugs) # SDCs (#drugs) (q<0.05) # SDCs (# drugs) (q<1/10−5)

ExpNet 1,479(409,163) 635 (124) 254 (66)

ExpNet&ComNet 2,882 (525, 275) 993 (196) 519 (141)

SDCs denote to significant drug-cancer indication pairs
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