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THE SHARP THRESHOLD FOR MAXIMUM-SIZE SUM-FREE SUBSETS

IN EVEN-ORDER ABELIAN GROUPS

NEAL BUSHAW, MAURÍCIO COLLARES NETO, ROBERT MORRIS, AND PAUL SMITH

Abstract. We study sum-free sets in sparse random subsets of even-order abelian groups.

In particular, we determine the sharp threshold for the following property: the largest such

set is contained in some maximum-size sum-free subset of the group. This theorem extends

recent work of Balogh, Morris and Samotij, who resolved the case G = Z2n, and who

obtained a weaker threshold (up to a constant factor) in general.

1. Introduction

In recent years, great advances have been made in the study of the extremal and structural
properties of sparse random sets. For example, the threshold functions for many classical
theorems, such as Szemerédi’s theorem on arithmetic progressions and Turán’s theorem in
extremal graph theory, have been determined (see [7, 11, 17, 30, 31]), and in a few cases sharp
thresholds have been shown to exist (see, e.g., [8, 16]). In this paper we will determine the
sharp threshold for the maximum sum-free subset problem in an arbitrary even-order abelian
group. Our main theorem improves some recent results of Balogh, Morris and Samotij [6],
who resolved the case G = Z2n, and obtained weaker bounds in the general setting.

Given an abelian group G, we say that a subset A ⊂ G is sum-free if A∩ (A+A) = ∅, or,
equivalently, if there is no solution to the equation x + y = z with x, y, z ∈ A. The study of
such sets was introduced by Schur [32] in 1916, and their extremal and structural properties
have been extensively studied over the past several decades (see, e.g., [3]). For example, it
is easy to see that if |G| = 2n then the largest sum-free subset of G has size n (consider
the odd coset of a subgroup of index 2), and in 1969 Diananda and Yap [13] extended this
simple fact by solving the extremal problem whenever |G| has a prime divisor q with q 6≡ 1
(mod 3). Nevertheless, more than 30 years passed before the classification was completed by
Green and Ruzsa [20]. The structure of a typical sum-free subset of an even-order abelian
group was determined by Lev,  Luczak and Schoen [24] and Sapozhenko [28], and similar
results in the set {1, . . . , n} were obtained by Green [19] and Sapozhenko [29]. We refer the
reader to [1, 2] for some more recent sparse refinements of these results.

The study of sparse random analogues of classical extremal and Ramsey-type results was
introduced for graphs by Frankl and Rödl [14] and Babai, Simonovits and Spencer [5], and
for additive structures by Kohayakawa,  Luczak and Rödl [23], and notable early progress
was made by Rödl and Ruciński [25, 26]. The first result of this type for sum-free sets
was obtained by Graham, Rödl and Ruciński [18], who determined the threshold function
for Schur’s theorem. More precisely, they showed that if p ≫ 1/

√
n, then almost every
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p-random1 subset A ⊂ Zn has the following property: every 2-colouring of A contains a
monochromatic Schur triple, i.e., a triple with x + y = z. On the other hand, if p ≪ 1/

√
n

then with high probability there exist 2-colourings of A that avoid such triples.
In this paper we consider the extremal version of this question, that is, how large is a

maximum-size sum-free set in a p-random subset of an abelian group? For the group Z2n,
this problem was resolved (asymptotically) by Conlon and Gowers [11] and Schacht [31],
who determined the following threshold:

max
{

|B| : B ⊂ A = (Z2n)p is sum-free
}

=

{
(

1 + o(1)
)

· 2pn if p ≪ 1/
√
n

(

1/2 + o(1)
)

· 2pn if p ≫ 1/
√
n

(1)

with high probability as n → ∞. More precisely, one can show using the methods of [11, 31]
(see [6, 27]), and also using those of [7, 30], that (with high probability) the maximum-size
sum-free subsets of A contain only o(pn) even numbers. Moreover, a corresponding result
holds for any even-order abelian group. This fact will be a key tool in the proof below.

We will be interested in the following more precise question, which was first studied
by Balogh, Morris and Samotij [6]. Given an even-order abelian group G, note that the
maximum-size sum-free subsets of G are exactly the odd cosets of subgroups of index 2, and
that a p-random subset A ⊂ G has a sum-free subset of (expected) size

max
{

|A ∩O| : O is the odd coset of a subgroup of index 2
}

>

(

1

2
+ o(1)

)

p|G|. (2)

For which functions p = p(n) is it true that, with high probability, the size of the largest
sum-free subset of A is equal to the left-hand side of (2)? In other words, for which densities
does the exact extremal result in G transfer to the sparse random setting? Proving such
exact extremal results is often extremely difficult; for example, the threshold for Mantel’s
theorem was determined only very recently by DeMarco and Kahn [12]. Nevertheless, it was

shown in [6] that the threshold for this property is
(

logn
n

)1/2
for every even-order2 abelian

group, and moreover that there is a sharp threshold at
(

logn
3n

)1/2
in the group Z2n. In other

words, writing SF(A) for the collection of maximum-size sum-free subsets of A, and O2n for
the set of odd numbers in Z2n, they proved that for every ε > 0,

P

(

SF
(

(Z2n)p
)

=
{

(Z2n)p ∩O2n

}

)

→







0 if p 6
(

1 − ε
)

√

logn
3n

1 if p >
(

1 + ε
)

√

logn
3n

as n → ∞. For more on the general theory of the existence of (sharp) thresholds, we refer
the reader to [9, 15, 21], and to [16] for an example involving monochromatic triangles.

Since Balogh, Morris and Samotij [6] were able to prove such a sharp threshold for the
group Z2n, but only a weaker threshold result for other even-order abelian groups, it is
natural to ask whether one can also obtain a more precise result in the general setting. In

1The p-random subset of a set X , often denoted Xp, is obtained by including each element with proba-

bility p, independently of all other elements.
2In fact Theorem 1.1 of [6] is more general: it determines the threshold for any abelian group whose order

has a (fixed) prime factor q with q ≡ 2 (mod 3). Here, as before, we set |G| = qn.
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this paper we answer this question in the affirmative, by determining the sharp threshold
for every even-order abelian group. In order to state our main theorem, we shall need the
following function, which determines the location of the sharp threshold.

Definition 1.1. Given an abelian group G with |G| = 2n, let r(G) denote the number of
elements x ∈ G such that x = −x, and set

α(G) :=
log r(G)

logn
and β(G) :=

r(G)

n
.

Now, given δ > 0, define λ(δ)(G) as follows:

λ(δ)(G) :=











1/3 if α(G) 6 5/6

α(G) − 1/2 if α(G) > 5/6 and β(G) < δ

2/
(

4 − β(G)
)

if β(G) > δ.

We encourage the reader to think of δ as a function going to zero slowly, and n as a
function going to infinity much faster. The following theorem is our main result.

Theorem 1.2. For every ε > 0, and every sufficiently small 0 < δ < δ0(ε), there exists

n0(ε, δ) ∈ N such that the following holds for every n > n0(ε, δ). Let G be an abelian group

of order 2n, and let p ∈ (0, 1) with p > (log n)2/n. If A is a p-random subset of G, then

P

(

A ∩ O ∈ SF(A) for some O ∈ SF(G)
)

=







o(1) if p 6
(

1 − ε
)

√

λ(δ)(G) logn
n

1 + o(1) if p >
(

1 + ε
)

√

λ(δ)(G) logn
n

.

Here, as usual, o(1) denotes a function that tends to zero as n → ∞. We shall refer to the
two bounds as the 0- and 1-statements respectively.

The proof of Theorem 1.2 uses the method of [6], but we will require several substantial
new ideas in order to overcome various obstacles which do not occur in the case G = Z2n.
Many of these arise from the fact that SF(G) can be quite large (as big as |G| in the case
of the hypercube), which means that we must obtain much stronger bounds than in [6] if
we wish to apply the union bound. For the 0-statement we shall do this using a recent
concentration inequality of Warnke [33], which allows us to deduce for almost all O ∈ SF(G)
that, with very high probability, the set A ∩ O is not a maximal sum-free set. For the
1-statement, however, such a straightforward strategy is not feasible, since the threshold for
the event that A ∩ O is maximal for every odd coset O ∈ SF(G) is not given by λ(δ)(G).

In order to avoid this problem, we need to show that A ∩ O is a maximal sum-free set
for each O ∈ SF(G) such that |A ∩ O| is maximal. Unfortunately, conditioning on the size
of A ∩ O introduces significant dependence between odd cosets, and our first attempts to
prove the 1-statement failed as a consequence. We resolve this issue by fixing the number

of elements of A (i.e., coupling with the hypergeometric distribution), which essentially
eliminates the positive correlation between the quantities |A ∩O| for different cosets.
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A third issue involves the analysis of the Cayley graphs GS for each S ⊂ E , where E
is a subgroup of index 2, V (GS) = O (the corresponding odd coset) and xy ∈ E(GS) if
either x + y ∈ S or x − y ∈ S. Although counting the edges in these graphs precisely is
not entirely trivial, we are fortunate that we can absorb most of the resulting mess into an
error term. However, we still need to do some rather careful (and delicate) counting of the
number of sets S that contain a given number of edges of HW , the Cayley graph of the set
W = {a + a : a ∈ O}, since this controls the size of e(GS), see Section 3.

The remainder of the paper is organized as follows. In Section 2, we recall the structural
version of (1) for even-order abelian groups from [6], and collect some probabilistic tools and
simple group-theoretic facts that will be needed later. In Section 3 we analyse the Cayley
graph GS for each set S ⊂ E , where E is a subgroup of index 2, and count the number of
such sets S whose Cayley graph has fewer edges than expected. In Section 4 we deduce the
0-statement from Warnke’s concentration inequality (see Section 2.2), together with some
of the more straightforward bounds from Section 3. Finally, in Section 5 we prove the 1-
statement of Theorem 1.2 using the method of [6], combined with the coupling argument and
careful counting described above. We end the paper with a short Appendix, which contains
a somewhat technical calculation involving the hypergeometric distribution.

2. Preliminaries

In this section we shall lay the groundwork necessary for the proof of our main theorem. In
particular, we will recall the asymptotic stability version of Theorem 1.2, which was proved
in [6] using the method of [7, 11, 27, 30, 31]. We will also recall the FKG inequality and the
concentration inequalities of Warnke and Janson, and state some simple facts about abelian
groups that will be useful in the proof.

2.1. Sparse stability for sum-free sets. We begin by recalling the following theorem
from [6], which determines the asymptotic structure of the maximum-size sum-free subsets
in a p-random subset of an even-order abelian group. The theorem follows by either the
method of Conlon and Gowers [11], or that of Schacht [31] (as modified by Samotij [27]), or
that of Balogh, Morris and Samotij [7] and Saxton and Thomason [30], in each case using
results of Lev,  Luczak, and Schoen [24] and Green and Ruzsa [20]. We refer the reader to
Sections 2 and 3 of [6] for the details.

Theorem 2.1 (Theorem 3.1 of [6]). For every sufficiently small δ > 0, there exists a constant

C = C(δ) > 0 such that the following holds. Let G be an abelian group of order 2n. If

p >
C√
n
,

then, with high probability as n → ∞, for every sum-free subset B ⊂ Gp with

|B| >
(

1

2
− δ

)

p|G|,

there is an O ∈ SF(G) such that |B \ O| 6 δpn.

We remark that the probability of failure in Theorem 2.1 is exponentially small in pn.
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2.2. Probabilistic tools. Our main tool for the 0-statement will be the following concen-
tration inequality, recently proved3 by Warnke [33, Theorem 4].

Warnke’s inequality. Given N ∈ N, let Γ ⊂ {0, 1}N be an event and f : {0, 1}N → R be a

function. Let p > 0 and X = (X1, . . . , XN), where Xk ∈ {0, 1} and P(Xk = 1) = p for each

k ∈ [N ], all independently, and set µ = E
[

f(X)
]

. Suppose that, for some c, d > 0,

|f(x) − f(y)| 6
{

c if x ∈ Γ,

d otherwise

whenever x, y ∈ {0, 1}N with |x− y| = 1, and let γ ∈ (0, 1).
There exists an event B = B(Γ, γ) ⊂ {0, 1}N , with ¬B ⊂ Γ, such that

P
(

X ∈ B
)

6
N

γ
· P
(

X 6∈ Γ
)

,

and moreover, setting C = c + γ
(

d− c
)

, we have

P
(

f(X) 6 µ− t and ¬B
)

6 exp

(

− t2

2C2pN + Ct

)

for any t > 0.

We also recall two well-known probabilistic inequalities: Janson’s inequality and the FKG
inequality. We refer the reader to [4] for various more general statements and their proofs.

Janson’s inequality. Suppose that {Bi}i∈I is a family of subsets of a finite set X and let

p ∈ [0, 1]. Let

µ =
∑

i∈I
p|Bi|, and ∆ =

∑

i∼j

p|Bi∪Bj |,

where i ∼ j denotes the fact that i 6= j and Bi ∩ Bj 6= ∅. Then,

P
(

Bi 6⊂ Xp for all i ∈ I
)

6 e−µ+∆.

Furthermore, if 2cµ 6 ∆ with c 6 1/4, then

P
(

Bi 6⊂ Xp for all i ∈ I
)

6 e−cµ2/∆.

The FKG inequality. Suppose that {Bi}i∈I is a family of subsets of a finite set X and let

p ∈ [0, 1]. Then

P
(

Bi 6⊂ Xp for all i ∈ I
)

>
∏

i∈I
P
(

Bi 6⊂ Xp

)

.

3In fact the theorem stated here is only a special case of Warnke’s inequality; for the sake of simplicity,

we have chosen to state only the version we need.
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2.3. Group-theoretic facts. In order to avoid repetition, we shall assume throughout the
paper that G is a finite abelian group of order 2n. Given a subset X ⊂ G, we write

• R(X) for the collection of elements x ∈ X for which x = −x, and r(X) = |R(X)|.
• m(X) for number of two-element subsets of X that are of the form {x,−x}.

We will need a few basic facts about finite abelian groups. The first one is well-known.

Fact 2.2. There exist integers 1 6 a1 6 . . . 6 ak and an odd-order group J such that

G ∼= Z2a1 ⊕ · · · ⊕ Z2ak ⊕ J.

The second fact we need is a characterization of the index 2 subgroups of G.

Fact 2.3. Let I ⊂ {1, . . . , k}. Writing x ∈ G as (x1, . . . , xk, y) via the isomorphism of

Fact 2.2, the subgroup HI =
{

x ∈ G :
∑

i∈I xi ≡ 0 (mod 2)
}

is isomorphic to

Z2a1 ⊕ · · · ⊕ Z2ai−1 ⊕ · · · ⊕ Z2ak ⊕ J,

where i = min I. Moreover, every subgroup of G of index 2 is equal to HI for some I 6= ∅.
Proof. Without loss of generality, assume that J = {0} (and thus omit the last coordinate
of elements of G) and I = {1, . . . , k}. Then the image of the (injective) homomorphism

f : HI → Z2a1 ⊕ · · · ⊕ Z2ak

(x1, . . . , xk) 7→ (x1 + . . . + xk, x2, . . . , xk)

consists of the elements of G whose first coordinate is even. Observe that the addition above
is well-defined because there is a natural projection from Z2ai to Z2a1 for any 1 6 i 6 k.

Conversely, given a subgroup H of index 2, observe that 1Hc is a homomorphism onto
Z2, which implies that 1Hc(x1, . . . , xk) ≡ ∑k

i=1 xi1Hc(ei) ≡ ∑

i:ei /∈H xi (mod 2), and thus

H =
{

x ∈ G :
∑

i:ei /∈H xi ≡ 0 (mod 2)
}

. �

Note that Fact 2.3 implies that G has exactly r(G) − 1 index 2 subgroups. Finally, we
make a simple but useful observation.

Fact 2.4. For any subgroup H of G of index 2, either r(H) = r(G) or r(H) = r(G \H).

Proof. For any x ∈ R(G \H), y 7→ y + x is a bijection between R(H) and R(G \H). �

3. Edge counts in Cayley graphs

In order to bound the probability of the event “A∩O ∈ SF(A)” for some fixed maximum-
size sum-free set O ∈ SF(G) and its corresponding set of evens E = G \ O, we will need to
consider events of the form

“
(

(A ∩O) ∪ S
)

\ T is sum-free”

where S ⊂ A ∩ E , T ⊂ A ∩ O and |S| > |T |. This event is contained in the event that
(A ∩ O) \ T is an independent set in the Cayley graph GS, defined below, and to bound its
probability we will need to analyse carefully the number of edges in this Cayley graph for
each such set S of evens. In particular, there may be an exceptional collection of sets S with
too few edges for our purposes (that is, for our application of the union bound over all sets
S), and we will need to bound the size of this collection.
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Let us begin by stating precisely the main results we will prove in this section. We fix
throughout an arbitrary ε > 0, a sufficiently small δ > 0 and a sufficiently large n ∈ N.4 We
also fix an abelian group G of order 2n, an odd coset O ∈ SF(G), and its corresponding set
of evens E = G \ O, which is a subgroup of G of index 2. For each set S ⊂ E , we define the
Cayley graph GS of S to have vertex set O and edge set

E(GS) =

{

{y, z} ∈
(O

2

)

: y + z ∈ S or y − z ∈ S

}

,

where (for simplicity) we do not permit GS to have loops. Recall that we write r(X) for the
number of order 2 elements in X ⊂ G, and m(X) for the number of pairs {x,−x} ⊂ X .

We will prove the following propositions.

Proposition 3.1. Let k ∈ N. For every 0 6∈ S ⊂ E with |S| = k and m(S) = 0, we have
(

3k − r(S)

2

)

n−O
(

r(G) · k2
)

6 e(GS) 6

(

3k − r(S)

2

)

n.

Moreover, if r(G) 6 δn and 4δ 6 a 6 1, then there are at most
(

6/δ2
)k(

n/k
)k−(a/2−δ)k

sets

0 6∈ S ⊂ E with

e(GS) 6

(

3k − r(S)

2
− ak

)

n

such that |S| = k and m(S) = 0.

When r(G) > δn the edge counts are slightly different.

Proposition 3.2. If r(G) > δn, then, for every k ∈ N and 0 6 s 6 k, there are at most
(

12/δ
)k(

n/k
)s

sets 0 6∈ S ⊂ E with

e(GS) <
(

s + 1
)

(

n− r(O)

2

)

(3)

such that |S| = k and m(S) = 0.

In order to prove Propositions 3.1 and 3.2, we will first count edges in Gx = G{x} for each
x ∈ E , and then study the intersections between these graphs. These will depend on the
parameter r(S), as the reader can see from the statement. However, they will also depend
on the intersection of S with the set

W = {a + a : a ∈ O},
and with its Cayley graph. We will use several times the fact that |W | = n/r(E).

3.1. Edge counts in Gx. We begin with the relatively simple task of counting the edges in
the Cayley graph of a single vertex x. To be precise, we will prove the following lemma.

Lemma 3.3. For every 0 6= x ∈ E ,

e(Gx) = n− r(O)

2
− r(E)

2
1

[

x ∈ W
]

+

(

n− r(O)

2

)

1

[

x /∈ R(G)
]

,

and ∆(Gx) 6 3.

4We think of δ as a function of n which tends to zero sufficiently slowly as n → ∞.
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Proof. Let us denote by G+
x the edges of the form x = y+z, and by G−

x the edges of the form
x = y− z, so Gx = G+

x ∪ G−
x . Note first that the graph G−

x has a very simple structure, since
every vertex has degree either one or two. More precisely, if x 6∈ R(G) then it is a union of
cycles, and so e(G−

x ) = n; if x ∈ R(G) then it is a matching, and so e(G−
x ) = n/2.

In order to count the edges of G+
x \ G−

x , let us partition the vertex set O into (up to) four
parts, as follows:

(a) Set O1 = {a ∈ O : a + a = x}. If |O1| 6= 0, then x ∈ W , and moreover |O1| = r(E),
since the property a ∈ O1 is invariant under the addition of an order 2 element.
Moreover O1 contains no edges of G+

x , and O1 ∩R(O) = ∅, since x 6= 0.
(b) Set O2 = R(O), the collection of order 2 elements in O. If x ∈ R(G) then O2 induces

a matching in G+
x , since a ∈ R(O) if and only if b = x− a ∈ R(O).

(c) Set O3 = {b ∈ O \ O2 : x − b ∈ R(O)}, and observe that if x ∈ R(G) then
|O3| = 0 (as above), whereas if x 6∈ R(G) then |O3| = |O2|, since if a ∈ R(O) then
b = x− a 6∈ R(O). Moreover G+

x contains one edge for each element of O3.
(d) Set O4 = O \

(

O1 ∪O2 ∪ O3

)

, and note that G+
x induces a perfect matching on O4.

Now, observe that an edge of G+
x is also contained in G−

x if and only if it has an endpoint
in R(G), since if a + b = x then b ∈ R(G) if and only if a− b = x. Therefore

e(Gx) =
(

1 + 1

[

x 6∈ R(G)
])n

2
+

|O4|
2

and
|O4| = n− 1

[

x ∈ W
]

r(E) −
(

1 + 1

[

x 6∈ R(G)
])

r(O),

and so the lemma follows. �

Lemma 3.3 has the following simple consequence, which we shall use several times.

Observation 3.4. For every 0 6= x ∈ E , we have e(Gx) > max{n − r(G), n/2}. Moreover,

if 0 /∈ S ⊂ E satisfies m(S) = 0, then e(GS) >
∑

x∈S e(Gx)/2.

Proof. If x 6= 0, Lemma 3.3 implies that

e(Gx) > n− r(O)

2
− r(E)

2
1[x ∈ W ]

and, in particular, e(Gx) > n − r(G). In addition, either r(O) 6 r(E) 6 n/2 or |W | =
n/r(E) = 1, and so e(Gx) > n/2. Further, when m(S) = 0, the set {x ∈ S : {a, b} ∈ E(Gx)}
contains at most two elements for any edge {a, b}. �

Before continuing to the proof of Proposition 3.1, let us note how to obtain (heuristically)
the function λ(δ)(G) from Lemma 3.3. We call an element 0 6= x ∈ E safe if (A ∩ O) ∪ {x}
is sum-free, and let SE(A) denote the collection of safe elements in E . Note that an element
x ∈ E is safe if5 and only if A ∩ O is an independent set in Gx.

We need one more definition, whose slightly odd appearance will be motivated by the
lemmas below.

Definition 3.5. A subgroup E ⊂ G is nice if either r(G) 6 δn or r(O) = r(E).

5This is only true if we ignore sums of the form x = y+y. However, such sums will never play a significant

role in any of the calculations below.
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The next lemma says that almost all index 2 subgroups are nice.

Lemma 3.6. G has at most 2/δ index 2 subgroups that are not nice.

Proof. Clearly if r(G) 6 δn then all subgroups are nice, so let us assume r(G) > δn. By
Fact 2.2, we can write G ∼= Z

k
2⊕H , where H = Z2a1⊕. . .⊕Z2aℓ⊕J with 2 6 a1 6 · · · 6 aℓ and

|J | odd. Since r(G) = 2k+ℓ and |G| > 2k+2ℓ, Fact 2.3 implies that there are at most 2ℓ 6 2/δ
subgroups E ⊂ G of index 2 that are not isomorphic to Z

k−1
2 ⊕ H . But if E ∼= Z

k−1
2 ⊕ H ,

then r(O) = r(E), as required. �

We now prove the following bound on the expected number of safe elements, which we
will use in the proof of the 0-statement of Theorem 1.2.

Lemma 3.7. If logn
n

≪ p 6
(

1 − ε
)

√

λ(δ)(G) logn
n

and E is nice, then

E
[

|SE(A)|
]

≫ log n

p
.

Proof. Suppose first that r(G) 6 δn, and to simplify the notation let us write δ = o(1) (as
noted above, we may assume that this holds as n → ∞), and thus r(G) = o(n). It follows
from Lemma 3.3 that

e(Gx) =

{

n + o(n) if x ∈ R(G)

3n/2 + o(n) if x 6∈ R(G).
(4)

Now, by the FKG inequality, the expected number of safe elements x ∈ E is at least

E[|SE(A)|] >
∑

x∈E

(

1 − p2
)e(Gx)

> r(E)e−p2(n+o(n)) +
(

n− r(E)
)

e−p2(3n/2+o(n)) ≫ log n

p
.

To see the final step, it suffices to check that the claimed inequality holds at the endpoints
of the claimed range of p, since xe−cx2

is unimodal. At the lower end this is immediate; at

the upper end, note that e−p2n > n(1−ε)2λ(δ)(G) and r(E) = nα(G)+o(1), and that

max

{

α(G) − λ(δ)(G), 1 − 3λ(δ)(G)

2

}

=
1

2
,

since λ(δ)(G) = max
{

1/3, α(G) − 1/2
}

.
When r(G) > δn, the (asymptotic) number of edges of Gx depends on both whether

x ∈ R(G) and whether x ∈ W . Indeed, the following table summarizes the content of
Lemma 3.3.

x ∈ R(G) x /∈ R(G)

x ∈ W n− r(O)

2
− r(E)

2

3n

2
− r(O) − r(E)

2

x 6∈ W n− r(O)

2

3n

2
− r(O)

Table 1. Summary of Lemma 3.3
9



Fortunately, however, |W | = n/r(E) = O(1/δ). We can therefore easily deduce a lower
bound on E[|SE(A)|] for nice subgroups. Indeed, since r(O) = r(E) = β(G)n/2, and again

using the unimodality of xe−cx2
, it follows from Table 1 above that

E
[

|SE(A)|
]

>
∑

x∈R(E)

(

1 − p2
)e(Gx)

= Ω
(

r(E)e−p2(n−r(O)/2)
)

≫ log n

p
, (5)

as required, where the last step follows since 1 −
(

1 − β(G)/4
)

λ(δ)(G) = 1/2. �

3.2. Intersections between the graphs Gx and edge counts in GS. We now return to
the proof of Proposition 3.1. In order to deduce the claimed bounds on e(GS), we will need
to control the size of the intersections between different graphs Gx. Recall that we have fixed
an odd coset O ∈ SF(G), and that W = {a + a : a ∈ O}. The following observation is key.

Observation 3.8. Let x, y ∈ E with x 6∈ {y,−y}. If E(Gx) ∩ E(Gy) 6= ∅, then x + y ∈ W .

Proof. Suppose the edge {a, b} lies in both Gx and Gy. Then, without loss of generality, we
have a + b = x and a− b = y, and so x + y = a + a, as claimed. �

Moreover, we can bound the size of each intersection.

Observation 3.9.
∣

∣E(Gx) ∩ E(Gy)
∣

∣ 6 2 · r(E) for every x, y ∈ E with x 6∈ {y,−y}.
Proof. Consider {a, b}, {c, d} ∈ E(Gx) ∩ E(Gy). Since x 6∈ {y,−y}, we may assume that
{a + b, a − b} = {x, y} = {c + d, c − d}. It follows that a + a = x + y = c + c, and thus
c − a ∈ R(E). Moreover d ∈ {x − c, y − c}, and therefore, given {a, b}, there are at most
2 · r(E) choices for {c, d}, as claimed. �

Let us denote by HW the graph on vertex set E with edge set {xy : x+ y ∈ W}, and note
that we have ∆

(

HW

)

6 d, where d := |W | = n/r(E). By Observations 3.8 and 3.9, we have
∑

x,y∈S,x 6=y

∣

∣E(Gx) ∩ E(Gy)
∣

∣ 6 2 · r(E) · e(HW [S]) (6)

for every S ⊂ E with m(S) = 0. Since, by Lemma 3.3, we have good bounds on the sum of
e(Gx) over x ∈ S, the following lemma is all we need to complete the proof of Proposition 3.1.

Lemma 3.10. For every δ 6 a 6 1/2, there are at most
(

6/δ2
)k(

n/k
)k−(1−δ)ak

sets S ⊂ E
with |S| = k and

e
(

HW [S]
)

>
akn

r(E)
. (7)

Proof. We shall first bound the number of sequences (v1, . . . , vk) ∈ Ek such that the set
S = {v1, . . . , vk} satisfies |S| = k and (7). Given such a sequence, let us say (for each
j ∈ [k]) that the vertex vj is of ‘low degree’ if it is connected (by edges of HW ) to fewer than
δad = δan/r(E) vertices of the set {v1, . . . , vj−1}, and say it is of high degree otherwise.

Since ∆(HW ) 6 d, it follows from (7) that in each such sequence there must be at least
(1−δ)ak high-degree vertices, since the low-degree vertices contribute fewer than δakd edges.
Moreover, since there are at most (j − 1)d < kd edges of HW leaving the set {v1, . . . , vj−1},
there are at most k/δa choices for a high-degree vertex, given the collection of vertices which
have already been chosen.

10



Now, given a set J ⊂ [k] of size at least (1−δ)ak, corresponding to the positions of vertices
which are required to have high degree, there are at most

(

k

δa

)|J |
nk−|J |

possible sequences, and this value is maximised when |J | is minimised. Therefore, considering
all possible choices for J , it follows that there are at most

2k

(

k

δa

)(1−δ)ak

nk−(1−δ)ak

sequences with the desired properties.
Finally, note that each set appears exactly k! times as a sequence, and therefore the

number of sets S ⊂ E with |S| = k satisfying (7) is at most
(

2e

k

)k (
k

δa

)(1−δ)ak

nk−(1−δ)ak 6

(

2e

δ2

)k(
n

k

)k−(1−δ)ak

,

since a > δ, as required. �

We are now ready to prove the two propositions.

Proof of Proposition 3.1. Let 0 6∈ S ⊂ E with |S| = k and m(S) = 0. By Lemma 3.3 and (6),
and noting that |W | = n/r(E), we have

e(GS) >
∑

x∈S

(

n− r(O)

2
− r(E)

2
1

[

x ∈ W
]

+

(

n− r(O)

2

)

1

[

x /∈ R(G)
]

)

− 2 · r(E)e(HW [S])

> k
(

n− r(G)
)

+

(

n− r(O)

2

)

(

k − r(S)
)

− 2 · r(E)e(HW [S])

>

(

3k − r(S)

2

)

n− O
(

r(G) · k2
)

,

as required, and the upper bound follows similarly. Moreover, the same calculation implies

that if e(GS) 6
(3k−r(S)

2
− ak

)

n and r(G) 6 δn, then

e
(

HW [S]
)

>
(a− 3δ/4)kn

2 · r(E)
,

and by Lemma 3.10 there are at most
(

6/δ2
)(

n/k
)k−(a/2−δ)k

such sets S ⊂ E with |S| = k. �

Proof of Proposition 3.2. The proof is similar to that of Lemma 3.10, but for completeness we
give the details. We will count sequences (v1, . . . , vk) ∈ Ek such that the set S = {v1, . . . , vk}
satisfies |S| = k and (3). Let Sj = {v1, . . . , vj}, and observe that, since m(S) = 0, each
0 6= x 6∈ W that sends no edges of HW into Sj adds at least n − r(O)/2 edges to GS, by
Lemma 3.3 (see Table 1) and Observation 3.8. There are therefore at most s such ‘bad’
vertices, since e(Gs) < (s + 1)(n− r(O)/2).

Now, since ∆(HW ) 6 |W | = n/r(E) 6 2/δ and |Sj| = j < k, it follows that there are at
most 2k/δ vertices in W ∪ NHW

(Sj), and hence at most this many choices for each ‘good’
vertex. Note that there are at most 2k choices for the indices j such that vj is bad, and each

11



set S is counted k! times as a sequence. Thus, the number of sets 0 6∈ S ⊂ E with |S| = k
satisfying (3) is at most

2k

k!
·
(

2k

δ

)k−s

ns
6

(

4e

δ

)k(
n

k

)s

,

as claimed. �

4. Proof of the 0-Statement

In this section we will prove that if A ⊂ G is a p-random set and

logn

n
≪ p 6

(

1 − ε
)

√

λ(δ)(G)
log n

n
, (8)

then A ∩ O 6∈ SF(A) for every O ∈ SF(G) with high probability as n → ∞. The main step
will be proving the following proposition.6

Proposition 4.1. For every ε > 0, the following holds for every sufficiently large n ∈ N.

Let G be an abelian group of order 2n, let O ∈ SF(G) and suppose that E = G \ O is nice

and that p ∈ (0, 1) satisfies (8). If A is a p-random subset of G, then

P
(

A ∩ O ∈ SF(A)
)

6
1

n2
.

Recall also that at most O(1/δ) of the index 2 subgroups of G are not nice. We will use
the following simple-sounding lemma to deal with these subgroups.

Lemma 4.2. Let M denote the collection of odd cosets O ∈ SF(G) such that |A ∩ O| is
maximal. Then with high probability there is an O ∈ M such that E = G \ O is nice.

The proof of Lemma 4.2, although not difficult, is surprisingly technical, and so we shall
postpone it to the appendix. Note that the 0-statement in Theorem 1.2 follows from Propo-
sition 4.1 and Lemma 4.2 by taking a union bound over nice subgroups.

Recall that an element x ∈ E is called safe if (A ∩ O) ∪ {x} is sum-free, and that SE(A)
denotes the collection of safe elements in E . We will bound the probability of the event
A ∩ O ∈ SF(A) by the probability that there exists no safe element x ∈ A ∩ E . Since the
random variable SE(A) is independent of the set A ∩ E , it follows that

P

(

(

A ∩O ∈ SF(A)
)

∩
(

|SE(A)| > 3 logn

p

))

6
(

1 − p
)(3 logn)/p

6
1

n3
, (9)

and so it is enough to consider the event that |SE(A)| 6 (3 logn)/p.
We will bound the probability of this event using Warnke’s concentration inequality, which

was stated in Section 2.2. The first step – showing that |SE(A)| has large expected value –
was already carried out in the previous section. Indeed, we have

E
[

|SE(A)|
]

≫ log n

p
(10)

whenever p ∈ (0, 1) satisfies (8), by Lemma 3.7. Our main task will be to prove the following
lemma, which shows that |SE(A)| is concentrated around its expected value.

6We remark that the bound 1/n2 could easily be replaced by 1/nC for any C > 0.
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Lemma 4.3. If p ∈ (0, 1) satisfies (8), then

P

(

|SE(A)| 6 E
[

|SE(A)|
]

2

)

6
1

n3
.

We will prove Lemma 4.3 by applying Warnke’s inequality to the function A 7→ |SE(A)|.
In order to do so, we need to define an event Γ ⊂ P(O), and prove the ‘typical Lipschitz
condition’

∣

∣|SE(A)| − |SE(B)|
∣

∣ 6

{

c(E , p) := n−(1/4+δ) · E
[

SE(A)
]

if A ∈ Γ,
n otherwise

(11)

for every A,B ⊂ O with |A△B| = 1 (note that c(E , p) ≫ 1, by (10)). We define the event
Γ so that (11) holds by definition:

Γ :=
{

A ⊂ O : max
{
∣

∣|SE(A)| − |SE(B)|
∣

∣ : |A△B| = 1
}

6 c(E , p)
}

. (12)

We would like to show that P
(

A 6∈ Γ
)

6 n−5, since this will imply the desired upper bound
on the probability of the event B given by Warnke’s inequality.

The main technical step in the proof of Lemma 4.3 is proving such a bound on the prob-
ability that A 6∈ Γ. To do so, note first that if A /∈ Γ then there exists u ∈ O such that
∣

∣|SE(A)| − |SE(A∆{u})|
∣

∣ > c(E , p). Let Γc(u) be the set of choices of A for which this
property holds, so that Γc =

⋃

u∈O Γc(u), and note that, by symmetry,7

P
(

A ∈ Γc(u)
∣

∣u ∈ A
)

= P
(

A ∈ Γc(u)
∣

∣u 6∈ A
)

. (13)

We will bound P
(

A ∈ Γc(u)
)

for each fixed u ∈ O, and then sum over u.
Motivated by (13), let us fix u ∈ O, assume that u 6∈ A, and write

Y E
u (A) = SE(A) \ SE(A ∪ {u}).

Observe that A ∈ Γc(u) if and only if |Y E
u (A)| > c(E , p). We will prove the following lemma.

Lemma 4.4. For every k satisfying 25 < k 6
√

1/δ,

P
(

A 6∈ Γ
)

6 c(E , p)−k
∑

u∈O
E

[

∣

∣Y E
u (A)

∣

∣

k
]

≪ 1

n5

as n → ∞.

Note that the first inequality follows from the comments above and Markov’s inequality.
The intuition behind the second inequality is based on our expectation that |Y E

u (A)| =
Θ(p

∣

∣SE(A)|
)

, and that the events
{

z ∈ Y E
u (A) : z ∈ E

}

are more or less independent of one

another. We expect |Y E
u (A)| to take roughly this value since Y E

u (A) ⊂ SE(A), and moreover
for each z ∈ Y E

u (A) there is a v ∈ O with uv ∈ E(Gz) such that v ∈ A.
In order to make this argument precise, the following notion will be crucial. Fix u ∈ O,

and say that a set 0 6= Z ⊂ E is covered by Y ⊂ O if for each z ∈ Z there is a y ∈ Y such
that uy ∈ E(Gz). Say that Z is cover-maximal if |Y | > |Z| for every set Y that covers Z,
and for each Z ⊂ E choose a maximum-size cover-maximal subset g(Z) ⊂ Z. Note that
since any singleton in Z is cover-maximal, g(Z) is non-empty. The following lemma is key.

7Indeed, if B = A∆{u} then A ∈ Γc(u) ⇔ B ∈ Γc(u) ⇔
∣

∣|SE(A)| − |SE(B)|
∣

∣ > c(E , p).
13



Lemma 4.5. For each Z ⊂ E , there are at most 12|Z| sets Z ′ ⊂ E such that g(Z ′) = Z.

Proof. Consider a set Z ′ ⊂ E such that g(Z ′) = Z. Then for any z ∈ Z ′ \Z, there must exist
some set Y ⊂ O of size |Z| that covers Z ∪ {z} (and hence also covers Z), otherwise the set
Z ∪ {z} contradicts the maximality in the definition of g(Z ′).

We claim that there are at most 3|Z| sets Y ⊂ O of size |Z| covering Z. Indeed, since
Z is cover-maximal, Y must contain exactly one element of NGz

(u) for each z ∈ Z, and
these neighbourhoods must be disjoint. Since ∆(Gz) 6 3, it follows that we have at most
3|Y | = 3|Z| choices for Y . But each such set Y covers at most 3|Z| elements (since each is in
(Y ± u)∪ (u− Y )), and each z ∈ Z ′ \Z must be covered by some such Y , by the comments
above. We therefore have at most 3|Z| ·22|Z| = 12|Z| possible pre-images of Z, as claimed. �

We also need the following simple observation, which follows easily from the definition.

Observation 4.6. If Z is cover-maximal and {a,−a} ⊂ Z, then a = −a.

Proof. The element u + a ∈ O covers both a and −a, and so if {a,−a} ⊂ Z and a 6= −a
then there exists a set Y with |Y | 6 |Z| − 1 which covers Z. �

We are ready to prove Lemma 4.4.

Proof of Lemma 4.4. Consider the family Mk of non-empty cover-maximal sets Z ⊂ E with
|Z| = k, and note that if Z ′ ⊂ Z, then trivially

P
(

Z ′ ⊂ Y E
u (A)

)

> P
(

Z ⊂ Y E
u (A)

)

.

Thus, by Lemma 4.5, we have

∑

Z6|k|
P
(

Z ⊂ Y E
u (A)

)

6 12k

k
∑

ℓ=1

∑

Z∈Mℓ

P

(

(

|A ∩NGZ
(u)| > |Z|

)

∩
(

Z ⊂ SE(A)
)

)

,

since each set Z contains a non-empty cover-maximal set g(Z), and each such set is counted
at most 12k times. Now, since |NGZ

(u)| 6 3|Z|, the right-hand side is at most

12k
k
∑

ℓ=1

∑

Z∈Mℓ

23ℓpℓ · P
(

Z ⊂ SE(A)
)

, (14)

by the FKG inequality, since
{

Z ⊂ SE(A)
}

is decreasing in A, whereas
{

|A∩NGZ
(u)| > |Z|

}

is clearly increasing.
We will apply Janson’s inequality to bound P

(

Z ⊂ SE(A)
)

for each Z ∈ Mℓ. Note that

m(Z) = 0, by Observation 4.6, and that Z ⊂ SE(A) implies that A ∩ O is an independent
set in GZ , and suppose first that r(G) 6 δn. Then,

µ := p2e(GZ) >

(

p2
∑

z∈Z
e(Gz)

)

− O
(

δℓ2p2n
)

and ∆ := p3
∑

v∈O

(

dGZ
(v)

2

)

= O
(

ℓ2p3n
)

,

since
∣

∣E(Gy) ∩ E(Gz)
∣

∣ 6 2 · r(E) = O(δn) for every y, z ∈ Z by Observation 3.9. Therefore,

since e(Gz) > n/2 for every 0 6= z ∈ E by Observation 3.4, and ℓ 6 k 6 1/
√
δ, it follows by
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Janson’s inequality and (8) that

P
(

Z ⊂ SE(A)
)

6 nO(δℓ2) exp

(

− p2
∑

z∈Z
e(Gz)

)

= nO(δℓ2)
∏

z∈Z

(

1 − p2
)e(Gz)

,

since 1 − p2 > e−p2−p4 when p is sufficiently small, and p4e(Gz) = o(1). Thus
∑

Z∈Mℓ

P
(

Z ⊂ SE(A)
)

6 nO(δℓ2)
∑

Z∈Mℓ

∏

z∈Z

(

1 − p2
)e(Gz)

6 nO(δℓ2)

(

∑

z∈E

(

1 − p2
)e(Gz)

)ℓ

6 nO(δℓ2) · E
[

|SE(A)|
]ℓ
, (15)

where the final inequality follows by the FKG inequality.
On the other hand, if r(G) > δn then, by Proposition 3.2, there are at most ns+o(1) sets

Z ⊂ E with |Z| = ℓ, m(Z) = 0 and

s

(

n− r(O)

2

)

6 e(GZ) < (s + 1)

(

n− r(O)

2

)

.

Thus, applying Janson’s inequality as before, we obtain8

∑

Z∈Mℓ

P
(

Z ⊂ SE(A)
)

6 no(1)

ℓ
∑

s=1

(

n
(

1 − p2
)n−r(O)/2

)s

= no(1)
(

1 + n
(

1 − p2
)n−r(O)/2

)ℓ

6 no(1) · E
[

|SE(A)|
]ℓ
, (16)

by (5). Combining (14), (15) and (16), it follows that

E

[

∣

∣Y E
u (A)

∣

∣

k
]

6 no(1) ·
k
∑

ℓ=1

∑

Z∈Mℓ

pℓ · P
(

Z ⊂ SE(A)
)

6 nO(δk2)
(

p · E
[

|SE(A)|
]

)k

,

and the lemma follows, since c(E , p)−1 · p · E
[

|SE(A)|
]

≪ n−1/5−ε. �

It is now straightforward to deduce Lemma 4.3, and hence Proposition 4.1.

Proof of Lemma 4.3. We apply Warnke’s inequality to the function A 7→ |SE(A)| and the
event Γ defined in (12), with

c = c(E , p) ≫ 1, d = n, γ =
c(E , p)

n
and t =

E
[

|SE(A)|
]

2
.

We obtain an event B such that

P
(

A ∈ B
)

6
n2

c(E , p)
· P
(

A 6∈ Γ
)

≪ 1

n3
,

8When s = ℓ, we trivially bound the number of sets Z such that e(GZ) > ℓ
(

n− r(O)
2

)

by nℓ.
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where the last inequality follows by Lemma 4.4, such that

P

(

|SE(A)| 6 E
[

|SE(A)|
]

2

)

6 P
(

A ∈ B
)

+ exp

(

− t2

4c(E , p)2pn + 2c(E , p)t

)

6
o(1)

n3
+ exp

(

− nδ
)

6
1

n3
,

as required. �

Proof of Proposition 4.1. We split the event A ∩ O ∈ SF(A) into two parts, depending
on whether or not |SE(A)| 6 (3 logn)/p. By Lemmas 3.7 and 4.3, the probability that
|SE(A)| 6 (3 logn)/p is at most 1/n3. On the other hand, by (9), the probability that
A ∩ O ∈ SF(A) and |SE(A)| > (3 logn)/p is at most 1/n3. Therefore

P
(

A ∩O ∈ SF(A)
)

6 P

(

|SE(A)| 6 3 logn

p

)

+
1

n3
6

1

n2
,

as required. �

The 0-statement now follows immediately.

Proof of the 0-statement in Theorem 1.2. Recall that an abelian group G has at most |G|
index 2 subgroups. Thus, by Proposition 4.1 and the union bound, it follows that with high
probability A∩O 6∈ SF(A) whenever E = G \O is nice. However, by Lemma 4.2, with high
probability there is an odd coset O ∈ SF(G) such that |A∩O| is maximal and E = G \O is
nice. Hence with high probability A ∩ O 6∈ SF(A) for every O ∈ SF(G), as required. �

5. Proof of the 1-statement

In this section we will prove that if A ⊂ G is a p-random set and

p >
(

1 + ε
)

√

λ(δ)(G)
log n

n
,

then every B ∈ SF(A) is equal to A∩O for some O ∈ SF(G), with high probability as n → ∞.
The proof has three steps: an application of Theorem 2.1 to obtain an asymptotic version,
an argument for a given odd coset O ∈ SF(G), using the method of [6] (see Lemma 5.1),
and a comparison with the hypergeometric distribution, which allows us to a partition the
odd cosets depending on the size of A∩O (see Lemma 5.2). Recall throughout that we have
already fixed an arbitrary ε > 0, a sufficiently small δ > 0 and a sufficiently large n ∈ N.

We begin by proving the statement we will require for a given odd coset O ∈ SF(G). For
each k ∈ N, let BO

k (A) denote the event that there exist sets S ⊂ A ∩ E and T ⊂ A ∩ O,
with |S| = k > |T |, such that

(

(A ∩ O) ∪ S
)

\ T is sum-free.

Lemma 5.1. Let G be an abelian group of order 2n, and let O ∈ SF(G). Suppose that

p >
(

1 + ε
)

√

λ(δ)(G)
log n

n
,

and let p1 = (1 − δ)p and p2 = (1 + δ)p. Set A = A1 ∪ A2, where A1 is a p1-random subset

of O and A2 is a p2-random subset of E = G \ O. Then

P
(

BO
k (A)

)

6 max
{

n−δk, e−
√
n
}
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for every 1 6 k 6 δpn.

Let us denote by Pp± = P
O
p± the probability distribution in Lemma 5.1, in which each

element of O is chosen (independently) with probability (1 − δ)p and each element of E is
chosen with probability (1 + δ)p. Note that the event BO

k (A) is increasing in A ∩ E and
decreasing in A ∩ O, so Pp

(

BO
k (A)

)

6 Pp±
(

BO
k (A)

)

for every δ > 0.

Proof of Lemma 5.1. The proof of the lemma follows closely the method of Balogh, Morris
and Samotij [6, Section 5], and so we shall skip some of the details. We will bound the
expected number of good triples (S, T, U) with the following properties:

(i) S ⊂ A ∩ E with |S| = k,

(ii) T, U ⊂ A ∩ O are disjoint sets with |U | 6 |T | 6 k,

(iii) (A ∩O) \ T is an independent set in GS,

(iv) T ⊂ NGS
(U).

It was shown in [6, Claim 2] that if BO
k (A) holds, then there exists such a triple. Indeed, this

follows by first taking T minimal, and then taking a maximal matching M from T to A \ T
in GS. We set U equal to the set of vertices in A \ T that are incident to M .

Let Z(k, ℓ, j,m, r) denote the number of such triples (S, T, U) with |S| = k, |T | = ℓ,
|U | = j, m(S) = m and r(S) = r. We note that by definition 2m + r 6 k, and define

Zk :=
k
∑

ℓ=0

ℓ
∑

j=0

k/2
∑

m=0

k−2m
∑

r=0

Z(k, ℓ, j,m, r).

By the discussion above,

P
(

BO
k (A)

)

6 E
[

Zk

]

=
k
∑

ℓ=0

ℓ
∑

j=0

k/2
∑

m=0

k−2m
∑

r=0

E
[

Z(k, ℓ, j,m, r)
]

, (17)

and therefore it will suffice to bound E[Z(k, ℓ, j,m, r)] for each k, ℓ, j, m and r. Let
p2n = C log n, where C > (1 + ε)λ(δ)(G). We will prove that

E[Z(k, ℓ, j,m, r)] 6

{

n−δk if k 6 δ/p

e−
√
n otherwise.

(18)

Let us fix k, ℓ, j, m and r, and count the triples (S, T, U) that contribute to Z(k, ℓ, j,m, r).
First, for each S ⊂ E and ℓ, j ∈ N, let W (S, ℓ, j) denote the number of disjoint pairs (T, U)
such that T, U ⊂ A ∩ O and T ⊂ NGS

(U), with |T | = ℓ and |U | = j. It was proved in [6]
that if |S| = k and 0 6 j 6 ℓ 6 k 6 δpn, then

E
[

W (S, ℓ, j)
]

6 (3e2p2n)k ≪
(

C log n
)2k

= no(k)

assuming that C = no(1), as we may since the case C ≫ 1 was already dealt with in [6].9

9Alternatively, we may simply carry this factor of C2k through the proof, and perform an easy but tedious

calculation later on.
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Let S(k,m, r) denote the collection of sets S ⊂ E with |S| = k, m(S) = m and r(S) = r.
If (S, T, U) is good, then no edge of the graph

GS,T,U := GS

[

O \ (T ∪ U)
]

has both its endpoints in A. Since the vertex set of GS,T,U is disjoint from S ∪ T ∪ U , it
follows that the events e(GS,T,U [A]) = 0 and S ∪ T ∪ U ⊂ A are independent. Therefore,

E
[

Z(k, ℓ, j,m, r)
]

6
∑

S∈S(k,m,r)

P(S ⊂ A) · E
[

W (S, ℓ, j)
]

· max
T,U

{

P

(

e
(

GS,T,U [A]
)

= 0
)}

6 pk · no(k)
∑

S∈S(k,m,r)

max
T,U

{

P

(

e
(

GS,T,U [A]
)

= 0
)}

, (19)

where the maximum is taken over all pairs (T, U) as in the definition of W (S, ℓ, j). We
will bound the probability that A is an independent set in GS,T,U using Janson’s inequality.
Indeed, let

µ := p2e
(

GS,T,U

)

and ∆ :=
∑

v∈O\(T∪U)

p3
(

d(v)

2

)

,

where d(v) denotes the degree of v in GS,T,U .
We break into two cases, depending on the number of elements of order 2 in G.

Case 1: r(G) 6 δn.

For each S ∈ S(k,m, r) let us choose a subset Ŝ ⊂ S with |Ŝ| = k − m, r(Ŝ) = r and

m(Ŝ) = 0. Applying Proposition 3.1 to Ŝ, it follows that

e(GS,T,U) > e(GŜ) −O(k2) >

(

3(k −m) − r

2

)

n−O
(

r(G) · k2
)

, (20)

and that, for every 4δ 6 a 6 1, the number of sets Ŝ ∈ S(k −m, 0, r) with

e(GŜ) 6

(

3(k −m) − r

2
− ak

)

n (21)

is at most
(

6/δ2
)k(

n/k
)k−(a/2−δ)k

. Moreover, for each such set Ŝ there are at most 2k

corresponding sets S ∈ S(k,m, r). There are three sub-cases to consider:

(a) Suppose first that k 6 min
{
√
δ/p, δn/r(G)

}

. Then, by (20),

µ >

(

3(k −m) − r

2
−O

(

δk
)

)

p2n and ∆ = O
(

k2p3n
)

= O
(
√
δkp2n

)

,

since d(v) 6 3k for every v ∈ V (GS,T,U). Thus, by Janson’s inequality, it follows that

P

(

e
(

GS,T,U [A]
)

= 0
)

6 exp

(

−
(

3(k −m) − r

2
− O

(
√
δk
)

)

p2n

)

,

and hence, by (19),

E
[

Z(k, ℓ, j,m, r)
]

6 pk · r(E)r · nk−m−r+o(k) · exp

(

−
(

3(k −m) − r

2
−O

(
√
δk
)

)

p2n

)

.

18



Since p = n−1/2+o(1), r(G) = nα(G)+o(1) and p2n = C logn, it follows that

logE
[

Z(k, ℓ, j,m, r)
]

logn
6

k

2
−m−

(

1 − α(G)
)

r − C

(

3(k −m) − r

2
− O

(
√
δk
)

)

+ o(k)

6

(

1 − 3C

2

)

k −
(

2 − 3C

2

)

m +

(

α(G) − 2 − C

2

)

r + O
(

C
√
δk
)

6 −εk

4
.

Indeed, the second term is decreasing in m for all C 6 2/3,10 and we have (considering the
cases r = 0 and r = k separately) 1−3C

2
6 −ε/2 and 1−3C

2
+ α(G) − 2−C

2
6 −ε/3, since (by

assumption) we have C > (1 + ε) max
{

1/3, α(G) − 1/2
}

.

(b) Next, suppose that k > δn/r(G) but k 6
√
δ/p. We partition the space according to

the size of e(GŜ): to be precise, we define i = i
(

Ŝ
)

by the inequalities

e(GŜ) ∈
(

3(k −m) − r

2
− δ
(

2i± 1
)(

k −m
)

)

n.

Since (1−δ)(k−m)n/2 6 e(GŜ) 6 (3(k−m)n−r)/2 by Observation 3.4 and Proposition 3.1,

we have 0 6 2δi(k−m) 6 (1 + δ)(k−m)− r/2 for every set Ŝ. Summing over i11, applying
Janson’s inequality as in case (a), and using (21), we obtain

E
[

Z(k, ℓ, j,m, r)
]

6 nO(
√
δk)
∑

i>3

pk
(n

k

)k−m−ai/2

exp

(

−
(

3(k −m) − r

2
− ai

)

p2n

)

,

where ai = 2δi(k −m). Substituting p = n−1/2+o(1) and p2n = C log n, and using the bound
k > n1−α(G)+o(1), it follows that

logE
[

Z(k, ℓ, j,m, r)
]

logn
6 max

a

{

−k

2
+α(G)

(

k−m−a

2

)

−C

(

3(k −m) − r

2
−a

)}

+O
(
√
δk
)

.

To bound the right-hand side, it suffices to check the extremal points. When a = 0, we
note that r 6 k −m and α(G) − C 6 1/2 − ε/3 to obtain a bound of

−k + 2(α(G) − C)(k −m) + O
(
√
δk
)

6 −εk

4
.

At the other extreme, when a = (1 + δ)(k −m) − r/2, we obtain analogously that

−k + (α(G) − C)(k −m) +
α(G)k

2
+ O

(

√
δk
)

6 −εk

4
.

(c) Finally, suppose that k >
√
δ/p. Note first that e(GS,T,U) > e(GŜ) − O(k2) = Ω(kn).

The inequality here is as in (20), whereas the equality is by Observation 3.4. We thus have

µ

∆
= O

(

n

p · e(GS,T,U)

)

= O

(

1√
δ

)

and
µ2

∆
= Ω

(

p · e(GS,T,U)2

k2n

)

= Ω(pn).

10If C > 2/3 then simply note that the previous line is decreasing in C, since 3(k−m)− r > 2k−m > k.
11The case i = O(1) was already covered by the proof in part (a).
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This follows because ∆ = O(k2p3n), since d(v) 6 3k for every v ∈ V (GS,T,U), and ∆ =
Ω
(

p3e(GS,T,U)2/n
)

, by convexity. Janson’s inequality then implies that

P

(

e
(

GS,T,U [A]
)

= 0
)

= e−Ω(pn
√
δ),

from which it follows immediately that

E
[

Z(k, ℓ, j,m, r)
]

6 pk+ℓ+j

(

n

k

)(

n

ℓ

)(

n

j

)

e−Ω(pn
√
δ)

6 p3k
(

n

k

)3

e−Ω(pn
√
δ) 6 e−Ω(pn

√
δ) 6 e−2

√
n,

since k 6 δpn. This completes the proof of (18) in the case r(G) 6 δn.

Case 2: r(G) > δn.

We now repeat the calculation above, replacing the bounds of Proposition 3.1 with those
of Proposition 3.2. Suppose first that k 6

√
δ/p, and partition the space according to the

maximum s ∈ {0, . . . , k} such that

e
(

GŜ

)

> s

(

n− r(O)

2

)

.

By Proposition 3.2, there are at most (12/δ)k(n/k)s = O
(

ns+
√
δk
)

such sets S with |S| = k.
Applying Janson’s inequality, we obtain12

E
[

Z(k, ℓ, j,m, r)
]

6 nO(
√
δk)

k
∑

s=0

pk · ns · exp

(

− p2s

(

n− r(O)

2

))

,

and hence

logE
[

Z(k, ℓ, j,m, r)
]

log n
6 max

s

{

s− Cs

(

4 − β(G)

4

)}

− k

2
+ O

(
√
δk
)

6 −εk

4

since C > (1 + ε) · 2/
(

4 − β(G)
)

. The case k >
√
δ/p is exactly the same as case (c), above.

Having bounded E
[

Z(k, ℓ, j,m, r)
]

in all cases, the result now follows easily by summing
over ℓ, j, m and r. Indeed, by (17), we have

P
(

BO
k (A)

)

6

k
∑

ℓ=0

ℓ
∑

j=0

k/2
∑

m=0

k−2m
∑

r=0

E
[

Z(k, ℓ, j,m, r)
]

6 max
{

n−δk, e−
√
n
}

as claimed. This completes the proof of the lemma. �

In order to deduce the 1-statement in Theorem 1.2 from Lemma 5.1, we cannot simply
apply the union bound over odd cosets O ∈ SF(G), since an even-order abelian group G can
have as many as |G| distinct maximum-size sum-free subsets. On the other hand, Lemma 5.1
(together with Theorem 2.1) does imply that the maximum-size sum-free subset of A contains
(with high probability) only O(1) even elements, and moreover that any given collection of
no(1) odd cosets are all likely to be ‘locally’ maximal.

12When s = k, we trivially bound the number of sets Z such that e(G
Ŝ

) > k
(

n− r(O)
2

)

by nk.
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Motivated by these observations, it is natural to attempt to partition the odd cosets into
two classes, depending on whether or not |A∩O| is within O(1) of maxO′ |A∩O′|. However,
the random variables {|A∩O′| : O′ ∈ SF(G)} are highly correlated with one another, due to
the large (size n/2) overlap between different odd cosets, and for this reason the maximum
is not easy to control.13

We resolve this problem by coupling with the hypergeometric distribution, for which the
positive correlation between the variables |A ∩ O| is greatly diminished. (In fact, these
variables are roughly pairwise independent of one another.) For each 0 6 m 6 2n, let Pm

denote the probability measure on subsets of G obtained by choosing each subset of size
m with equal probability. Note that, since any pair of distinct subgroups E , E ′ ⊂ G of
index 2 intersect in a subgroup of index 4, the information that |A ∩ O| > a (and therefore
|A ∩ E| 6 m− a) has very little influence on the probability that |A ∩ O′| > a.

This crucial property of the hypergeometric distribution is captured by the following
lemma. Given k ∈ N and an odd coset O ∈ SF(G), define MO

k (A) to be the event that
|A ∩O| > k, and let

Xk(A) :=
∑

O∈SF(G)

1

[

MO
k (A)

]

denote the number of odd cosets O ∈ SF(G) for which |A ∩O| > k.

Lemma 5.2. Fix γ > 0 and h ∈ N, and let 1 ≪ m 6 2n. There exists b = b(G,m) ∈ [m]
such that the following holds. If A is chosen according to Pm, then

(a) E
[

Xb(A)
]

6 nγ and

(b) Xb+h(A) > 1 with high probability.

The proof of Lemma 5.2 involves some straightforward but technical approximations of
binomial coefficients, and so we defer it to an Appendix.

Let us denote by CO
k (A) the event that |A ∩O′| < |A ∩O| + k for every O′ ∈ SF(G). We

are now ready to complete the proof of our main theorem.

Proof of the 1-statement in Theorem 1.2. Let ε > 0 be arbitrary, and let 0 < δ < δ0(ε) be
sufficiently small and n > n0(ε, δ) be sufficiently large. Let G be an abelian group with 2n
elements, let C > (1 + ε)λ(δ)(G), set

p =

√

C log n

n
,

and let A be a p-random subset of G. We shall prove that, with high probability as n → ∞,
we have A ∩O ∈ SF(A) for some O ∈ SF(G).

Indeed, let B ∈ SF(A) be a maximum-size sum-free subset of A, and note that, by
Chernoff’s inequality, and since A ∩ O is sum-free for every O ∈ SF(G), we have

|B| >
(

1

2
− δ

)

p|G| (22)

13The behaviour of the random variable maxO′ |A ∩ O′| is in fact somewhat mysterious, and we believe

that it merits further investigation.
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with high probability as n → ∞. Therefore, applying Theorem 2.1, we deduce14 that, with
high probability, we have |B \ O| 6 δpn for some O ∈ SF(G). Therefore,

Pp

(

⋂

O∈SF(G)

{

A ∩O 6∈ SF(A)
}

)

6 Pp

(

⋃

O∈SF(G)

δpn
⋃

k=1

(

BO
k (A) ∩ CO

k (A)
)

)

+ o(1)

6

(1+δ2)2pn
∑

m=(1−δ2)2pn

Pm

(

⋃

O∈SF(G)

δpn
⋃

k=1

(

BO
k (A) ∩ CO

k (A)
)

)

· Pp

(

|A| = m
)

+ o(1), (23)

where we again used Chernoff’s inequality. Let b = b(G,m) ∈ [m] be given by Lemma 5.2
(with h = 1/δ2) so, with high probability, we have |A∩O′| > b+ 1/δ2 for some O′ ∈ SF(G).
Note that if such an O′ exists, then CO

k (A) implies that either |A ∩ O| > b or k > 1/δ2.
Let us first bound the probability when k > 1/δ2. Indeed, by Hoeffding’s inequality (see,

e.g., [10]), we have

Pm

(

BO
k (A)

)

=

m/2+δ2m
∑

i=m/2−δ2m

Pm

(

BO
k (A)

∣

∣ |A ∩ E| = i
)

Pm

(

|A ∩ E| = i
)

+ o

(

1

n3

)

. (24)

Moreover the event BO
k (A) is increasing in A ∩ E and decreasing in A ∩ O, and therefore

(recalling from Lemma 5.1 the definition of Pp±), we have

Pm

(

BO
k (A)

∣

∣ |A ∩ E| = i
)

6 Pp±

(

BO
k (A)

∣

∣

∣

(

|A ∩ E| > i
)

∩
(

|A ∩ O| 6 m− i
)

)

6 2 · Pp±
(

BO
k (A)

)

6 2 · n−1/δ ≪ 1

n3
(25)

for every k > 1/δ2, by Lemma 5.1. Indeed, the first inequality follows since p± chooses
sets A uniformly given |A ∩ E| and |A ∩ O|. To see the second inequality, simply note that
Pp±
(

(|A ∩ E| > i) ∩ (|A ∩O| 6 m− i)
)

> 1/2 for every i 6 m/2 + δ2m 6 pn + 3δ2pn.
Next, let us bound the probability when |A ∩ O| > b. Similarly to above, we have

Pm

(

BO
k (A) ∩

(

|A ∩ O| > b
)

)

=
m−b
∑

i=0

Pm

(

BO
k (A)

∣

∣ |A ∩ E| = i
)

· Pm

(

|A ∩ E| = i
)

,

and moreover

Pm

(

BO
k (A)

∣

∣ |A ∩ E| = i
)

6 2 · Pp±
(

BO
k (A)

)

6 2 · n−δ,

for every k > 1, by (25) and Lemma 5.1, and

Em

[

Xb(A)
]

=
∑

O∈SF(G)

m−b
∑

i=0

Pm

(

|A ∩ E| = i
)

6 nδ/2,

by Lemma 5.2(a). Therefore
∑

O∈SF(G)

Pm

(

BO
k (A) ∩

(

|A ∩ O| > b
)

)

6 2 · n−δ/2 (26)

14Note that p > C/
√
n since n > n0(ε, δ) is sufficiently large.
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for evey k > 1. Combining (24), (25) and (26), it follows that

Pm

(

⋃

O∈SF(G)

δpn
⋃

k=1

(

BO
k (A) ∩ CO

k (A)
)

)

6 2 ·
1/δ2
∑

k=1

n−δ/2 +

δpn
∑

k=1/δ2

∑

O∈SF(G)

1

n3
6 n−δ/3

for every m ∈ (1 ± δ2)2pn, and every sufficiently large n. Hence, by (23), we have

Pp

(

⋂

O∈SF(G)

{

A ∩ O 6∈ SF(A)
}

)

= o(1),

as required. �

Appendix A. Lemmas on the hypergeometric distribution

In this appendix we will prove Lemmas 4.2 and 5.2. We begin with the latter.

A.1. Proof of Lemma 5.2. We are required to prove that there exists b = b(G,m) ∈ [m]
with the following properties: at most no(1) odd cosets are expected to contain at least b
elements of A, but with high probability some odd coset contains at least b + ω elements of
A, where ω → ∞ as n → ∞. For the proof, it will be convenient to shift the notation by
m/2 as follows: For each k ∈ N and each O ∈ SF(G), let us denote by MO

k (A) the event
that |A ∩ O| > m/2 + k, and by

Xk(A) =
∑

O∈SF(G)

1

[

MO
k (A)

]

the number of odd cosets O ∈ SF(G) for which |A ∩ O| > m/2 + k.
The main step in the proof of Lemma 5.2 is the following bound on the correlation between

the events MO
k (A). Here, and throughout this Appendix, we write x ∼ y to mean that

x/y → 1 under the given asymptotics.

Lemma A.1. Let O,O′ ∈ SF(G) be distinct odd cosets, and let k,m ∈ N be such that

1 ≪ k ≪ m ≪ k2. Then

Pm

(

MO
k (A) ∩MO′

k (A)
)

∼ Pm

(

MO
k (A)

)2

as n → ∞.

We begin by calculating Pm

(

MO
k (A)

)

asymptotically, using the following simple bounds.

Lemma A.2. Let a, b, N ∈ N with b3/2 ≪ a ≪ N . Then
(

N
a+b

)(

N
a−b

)

(

2N
2a

) ∼ 1√
πa

exp

(

−b2

a

)

as a,N → ∞.

Proof. This is nothing more than an application of Stirling’s formula

n! ∼
√

2πn
(n

e

)n

,

23



and the partial Taylor series
∣

∣

∣

∣

log(1 + x) − x +
x2

2

∣

∣

∣

∣

6 O
(

|x|3
)

,

which is valid for all sufficiently small |x|. �

Let us denote by M̂O
x (A) the event that |A ∩ O| = m/2 + x, so MO

k (A) =
⋃

x>k

M̂O
x (A).

Lemma A.3. For every O ∈ SF(G),

Pm

(

MO
k (A)

)

∼
√

2

πm

∑

x>k

exp

(

−2x2

m

)

.

Proof. Observe that

Pm

(

MO
k (A)

)

=
∑

x>k

Pm

(

M̂O
x (A)

)

=
∑

x>k

(

n
m/2+x

)(

n
m/2−x

)

(

2n
m

) .

The result now follows by applying Lemma A.2 with N = n, a = m/2 and b = x. �

The following bounds now follow easily.

Lemma A.4. For every O ∈ SF(G),

Pm

(

MO
k (A)

)

= Θ

(√
m

k
exp

(

−2k2

m

))

.

Proof. By Lemma A.3, we have

Pm

(

MO
k (A)

)

= Θ

(

1√
m

exp

(

−2k2

m

)

∑

x>0

exp

(

−4kx

m
− 2x2

m

)

)

.

Now, the asymptotics k ≪ m ≪ k2 imply that
∑

x>0

exp

(

−4kx

m
− 2x2

m

)

= Θ

(

m

k

)

,

and the lemma follows immediately. �

When bounding the probability of MO
k (A)∩MO′

k (A), the following notation will be useful.
Set

Λ :=
{

(x, y, z) ∈ Z
3 : x + y > k, x + z > k

}

,

and given O,O′ ∈ SF(G) and x, y, z ∈ Z, denote by M̂O,O′

x,y,z (A) the event that

|A ∩ O ∩ O′| =
m

4
+ x, |A ∩O ∩ E ′| =

m

4
+ y, and |A ∩ O′ ∩ E| =

m

4
+ z,

where as usual E = G \ O and E ′ = G \ O′.

Lemma A.5. Let O,O′ ∈ SF(G) be distinct odd cosets. Then

Pm

(

MO
k (A) ∩MO′

k (A)
)

∼ 4
√

2

(πm)3/2

∑

(x,y,z)∈Λ
exp

(

− 2

m

(

(x + y)2 + (x + z)2 + (y + z)2
)

)

.
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Proof. Note first that

Pm

(

M̂O,O′

x,y,z (A)
)

=

(

n
m/2+x+y

)(

n
m/2−x−y

)

(

2n
m

)

(

n/2
m/4+x

)(

n/2
m/4+y

)

(

n
m/2+x+y

)

(

n/2
m/4+z

)(

n/2
m/4−x−y−z

)

(

n
m/2−x−y

) .

By Lemma A.2, this is asymptotically equal to

√

2

πm
exp

(

−2(x + y)2

m

)

√

4

πm
exp

(

−(x− y)2

m

)

√

4

πm
exp

(

−(x + y + 2z)2

m

)

,

and this expression is equal to

4
√

2

(πm)3/2
exp

(

− 2

m

(

(x + y)2 + (x + z)2 + (y + z)2
)

)

.

Thus,

Pm

(

MO
k (A) ∩MO′

k (A)
)

=
∑

(x,y,z)∈Λ
Pm

(

M̂O,O′

x,y,z (A)
)

∼ 4
√

2

(πm)3/2

∑

(x,y,z)∈Λ
exp

(

− 2

m

(

(x + y)2 + (x + z)2 + (y + z)2
)

)

,

as claimed. �

We are almost ready to prove Lemma A.1; we need one more well-known fact.

Fact A.6.

∑

x∈Z
exp

(

−2x2

m

)

∼
√

πm

2

as m → ∞.

Proof of Lemma A.1. Observe that (a, b, c) is equal to (x + y, x + z, y + z) for some triple
(x, y, z) if and only if a + b + c is even and

(x, y, z) =

(

a + b− c

2
,
c + a− b

2
,
b + c− a

2

)

.

Letting

Λ′ :=
{

(a, b, c) ∈ Z
3 : a > k, b > k, a + b + c even

}

,

it follows that

∑

(x,y,z)∈Λ
exp

(

− 2

m

(

(x + y)2 + (x + z)2 + (y + z)2
)

)

=
∑

(a,b,c)∈Λ′

exp

(

− 2

m

(

a2 + b2 + c2
)

)

.
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We may split up the right-hand side into separate sums according to the parity of a+ b, and
hence of c. Doing this, we may rewrite the sum as

∑

a>k, b>k,
a+b even

exp

(

−2(a2 + b2)

m

)

∑

c even

exp

(

−2c2

m

)

+
∑

a>k, b>k,
a+b odd

exp

(

−2(a2 + b2)

m

)

∑

c odd

exp

(

−2c2

m

)

.

Since m is large, we have

∑

c odd

exp

(

−2c2

m

)

∼
∑

c even

exp

(

−2c2

m

)

∼ 1

2

∑

c

exp

(

−2c2

m

)

∼ 1

2

√

πm

2
,

where we have used Fact A.6 for the final estimate. We also have

∑

a>k, b>k

exp

(

−2(a2 + b2)

m

)

=

(

∑

a>k

exp

(

−2a2

m

)

)2

∼ πm

2
· Pm

(

MO
k (A)

)2

for an arbitrary odd coset O ∈ SF(G), by Lemma A.3. Putting all this together, we conclude
that

∑

(x,y,z)∈Λ
exp

(

− 2

m

(

(x + y)2 + (x + z)2 + (y + z)2
)

)

∼ (πm)3/2

4
√

2
· Pm

(

MO
k (A)

)2
. (27)

We may now use our estimate for Pm

(

MO
k (A) ∩ MO′

k (A)
)

from Lemma A.5. Together
with (27), this implies that

Pm

(

MO
k (A) ∩MO′

k (A)
)

∼ Pm

(

MO
k (A)

)2
,

as required. �

Lemma 5.2 now follows by a straightforward application of the second moment method.
For completeness we give the details.

Lemma A.7. If E
[

Xk

]

≫ 1, then Xk > 1 with high probability.

Proof. We have

Var
(

Xk

)

= E
[

X2
k

]

− E
[

Xk

]2
=

∑

O,O′∈SF(G)

Pm

(

MO
k (A) ∩MO′

k (A)
)

− E
[

Xk

]2

= E
[

Xk

]

+
∑

O6=O′

Pm

(

MO
k (A) ∩MO′

k (A)
)

− E
[

Xk

]2

= E
[

Xk

]

+
(

1 + o(1)
)

∑

O6=O′

Pm

(

MO
k (A)

)2 − E
[

Xk

]2
,

by Lemma A.1. Therefore,

Var
(

Xk

)

6 E
[

Xk

]

+
(

1 + o(1)
)

E
[

Xk

]2 − E
[

Xk

]2
= o

(

E
[

Xk

]2)
.

Hence, by Chebyshev’s inequality, we have Xk > 1 with high probability as n → ∞. �
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It only remains to show that E
[

Xk

]

does not decay too quickly.

Lemma A.8. For every constant h > 0, we have

∣

∣E
[

Xk

]

− E
[

Xk+h

]
∣

∣ = o
(

E
[

Xk

])

.

Proof. By Lemma A.4, we have

EXk = Ω

(

r(G)
√
m

k
exp

(

−2k2

m

))

.

whereas, by Lemma A.3, we have

E
[

Xk

]

− E
[

Xk+h

]

= O

(

r(G)√
m

k+h
∑

x=k

exp

(

−2x2

m

)

)

= O

(

r(G)√
m

exp

(

−2k2

m

))

.

Since we assumed that k ≪ m, the lemma follows. �

Proof of Lemma 5.2. If r(G) 6 nγ then the lemma is trivial (set b = 0), so assume that
r(G) > nγ and let b = b(G,m) be minimal such that E

[

Xb(A)
]

6 nγ . It follows that

E
[

Xb+h(A)
]

≫ 1, by Lemma A.8, and hence that Xb+h(A) > 1 with high probability, by
Lemma A.7, as required. �

A.2. Proof of Lemma 4.2. Let G be an even-order abelian group, and note that the lemma
is trivial if r(G) 6 δn. Recall that M denotes the collection of odd cosets O ∈ SF(G) such
that |A ∩ O| is maximal. We are required to prove that with high probability there is an
O ∈ M such that E = G \ O is nice. This is an immediate consequence of the following
lemma. Recall that ω = ω(n) is a function such that ω → ∞ slowly as n → ∞.

Lemma A.9. With high probability, the following hold:

(a) |A ∩O| 6 pn + ω
√
pn for every subgroup E = G \ O which is not nice.

(b) There exists a nice subgroup E = G \ O such that |A ∩O| > pn + ω
√
pn.

Proof. Part (a) follows from Chernoff’s inequality and the union bound, since there are at
most O(1/δ) subgroups that are not nice. To prove part (b), we again couple with the
hypergeometric distribution, and apply Lemma 5.2. Indeed, we have |A| > 2pn − ω

√
pn

with high probability, and for each m > 2pn − ω
√
pn there exists a b = b(G,m) such that

E
[

Xb(A)
]

6
√
n and Xb(A) > 1 with high probability in Pm. But, by Lemma A.4, we have

E
[

Xb(A)
]

= n1+o(1) for b = pn + ω
√
pn, and so we are done. �
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