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5 Maximizing several cuts simultaneously

Daniela Kühn Deryk Osthus

Abstract

Consider two graphs G1 and G2 on the same vertex set V and suppose
that Gi has mi edges. Then there is a bipartition of V into two classes A
and B so that for both i = 1, 2 we have eGi

(A,B) ≥ mi/2 −
√
mi. This

answers a question of Bollobás and Scott. We also prove results about
partitions into more than two vertex classes.

1 Introduction

Given a graph G with m edges, the Max-Cut problem is to determine (the
size of) the maximum cut in G. For complete graphs, the largest cut has size
m/2+o(m). On the other hand, it is well known that a cut of size at least m/2
in a graph G can be found using the natural greedy algorithm. Improving this,
Edwards [6, 7] showed that every graph with m edges has a cut of size

m/2 +

√

m

8
+

1

64
− 1

8
,

which is best possible. The Max-Cut problem is equivalent to finding a biparti-
tion V1, V2 of the vertex set of G which minimizes eG(V1)+eG(V2), where eG(Vi)
denotes the number of edges in the subgraph of G induced by Vi. The related
problem when one is looking for a partition into k classes V1, . . . , Vk which mini-
mizes all eG(Vi) simultaneously, i.e. which minimizes max{eG(V1), . . . , eG(Vk)},
was studied by Bollobás and Scott [2, 3, 5] as well as Porter [11, 12, 13], see
also [4] for a survey.

Here, we suppose that we are given several graphs on the same vertex set
and we want to find a bipartition which maximizes the sizes of the cuts for all
these graphs simultaneously. This problem was posed by Bollobás and Scott [5].
More precisely, they asked the following question: What is the largest integer
f(m) such that whenever G1 and G2 are two graphs with m edges on the same
vertex set V , there exists a bipartition of V in which for both i = 1, 2 at
least f(m) edges of Gi go across (i.e. their endvertices lie in different partition
classes). They suggested that perhaps even f(m) = (1 − o(1))m/2, i.e. that
we can almost do as well as in the case where we only have a single graph.
Theorem 1 shows that this is indeed the case.

Given a graph G and disjoint subsets A,B of its vertex set, let eG(A,B)
denote the number of edges between A and B.
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Theorem 1 Consider graphs G1, . . . , Gℓ on the same vertex set V and suppose

that Gi has mi edges. Then there is a bipartition of V into two classes A and

B so that for all i = 1, . . . , ℓ we have

eGi
(A,B) ≥ mi

2
−

√

ℓmi/2.

Rautenbach and Szigeti [14] observed that even for ℓ = 2 we cannot guarantee
that eGi

(A,B) ≥ mi/2 for all i. Indeed, let G1 and G2 be two edge-disjoint
cycles of length 5 on the same vertex set. (So G1∪G2 = K5.) They also proved
that f(m) ≥ m/2 −∆3 if ∆(Gi) ≤ ∆ for i = 1, 2. (This answers the problem
of Bollobás and Scott if (∆(Gi))

3 = o(m) for i = 1, 2.)
The following result for partitions of graphs into more than two parts shows

that simultaneously for all graphs we can ensure that the number of crossing
edges is almost as large as one would expect in a random partition (and almost
the value one can ensure if one partitions only a single graph).

Theorem 2 Let k ≥ 2. Consider graphs G1, . . . , Gℓ on the same vertex set

V and suppose that Gi has mi edges. Then there is a partition of V into k
classes V1, . . . , Vk so that for all i = 1, . . . , ℓ the number of edges spanned by the

k-partite subgraph of Gi induced by V1, . . . , Vk is at least

(k − 1)mi

k
−
√

2ℓmi.

In fact, if ∆(Gi) = o(mi) for each i, then we can strengthen the conclusion:
The next theorem shows that there is a partition of V into k classes where each
of the

(

k
2

)

bipartite graphs spanned by two of the partition classes contains
almost 2mi/k

2 edges for all i = 1, . . . , ℓ simultaneously. Again, this is about
the number of edges which one would expect in a random partition.

Theorem 3 Let k ≥ 2 and 0 < ε ≤ 1/(9ℓ2k4). Consider graphs G1, . . . , Gℓ on

the same vertex set V . Suppose that Gi has mi edges and that ∆(Gi) ≤ εmi for

all i = 1, . . . , ℓ. Then there is a partition of V into k classes V1, . . . , Vk so that

for all i = 1, . . . , ℓ and for all s, t with 1 ≤ s < t ≤ k we have

eGi
(Vs, Vt) ≥

2mi

k2
− ε1/4mi

and

eGi
(Vs) ≥

mi

k2
− ε1/4mi.

Note that even for ℓ = 1 the condition that ∆(Gi) ≤ εmi cannot be omitted
completely. For example, the result is obviously false if G is a star. On the
other hand, a result of Bollobás and Scott [5, Thm. 3.2] implies that in the case
when the maximum degree of each Gi is bounded by a constant ∆, the bound on
eGi

(Vs, Vt) in Theorem 3 can be improved to 2mi/k
2−C where C = C(ℓ,∆) (and

similarly for eGi
(Vs)). Note that this implies that if G has bounded maximum

degree, then one can achieve a bounded error term in Theorems 1 and 2 as well.
The proofs of Theorems 1–3 can be derandomized to yield polynomial time

algorithms which find the desired partitions (see Section 4).
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2 An open problem

Consider an r-uniform hypergraph H with m hyperedges. It is easy to see that
there is a partition V1, . . . , Vr of the vertex set of H such that at least r!m/rr

hyperedges of H meet every Vi (in other words, each r-uniform hypergraph
contains an r-partite subhypergraph with at least r!m/rr hyperedges). To
verify this, consider the expected number of hyperedges which meet every Vi in
a random partition of the vertices. We believe that one does not loose much if
one considers several hypergraphs simultaneously:

Conjecture 4 Suppose that H1, . . . ,Hℓ are r-uniform hypergraphs on the same

vertex set V such that Hi has mi hyperedges. Then there exists a partition of

V into r classes V1, . . . , Vr such that for all i = 1, . . . , ℓ at least r!mi/r
r− o(mi)

hyperedges of Hi meet each of the classes V1, . . . , Vr.

Given an r-uniform hypergraph H and distinct vertices x, y ∈ H, denote by
NH(x, y) the number of hyperedges which contain both x and y. Let ∆2(H)
denote the maximum of |NH(x, y)| over all pairs x 6= y. One can adapt our proof
of Theorem 3 to show that Conjecture 4 holds in the case when ∆2(Hi) = o(mi)
for each i. We omit the details.

3 Proofs

The proofs all proceed by considering a random partition and analyzing this
using the second moment method.

Lemma 5 Let c ∈ R with c > 1/2. Suppose that G is a graph with m edges

whose vertex set is V . Consider a random bipartition of V into two classes A
and B which is obtained by including each v ∈ V into A with probability 1/2
independently of all other vertices in V . Then with probability at least 1−1/(2c)
we have

eG(A,B) ≥ m

2
−

√

cm/2.

If we apply the above result with c = ℓ (say) to the graphs in Theorem 1, the
failure probability for each of them is less than 1/(2ℓ). Summing up all these
failure probabilities immediately implies Theorem 1.

Proof of Lemma 5. For every edge e of the graph G, define an indicator
variable Xe as follows: if one endvertex of e is in A and the other one is in B,
then let Xe := 1, otherwise let Xe := 0. Clearly, P[Xe = 1] = 1/2. Also, for
e, e′ ∈ E(G) with e 6= e′, we have

E[Xe ·Xe′ ] = P[Xe = 1, Xe′ = 1] =
1

2
P[Xe = 1 | Xe′ = 1] =

1

4
.

Note that the final equality holds regardless of whether e and e′ have an end-
vertex in common or not. Now let X :=

∑

e∈E(G)Xe. Thus X counts the
number of edges between A and B and EX = m/2. Let

∑

e,e′∈E(G)

e6=e′

denote the
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sum over all ordered pairs e, e′ of distinct edges in G. Then, using the fact that
E[X2

e ] = E[Xe], we have

E[X2] =
∑

e∈E(G)

E[Xe] +
∑

e,e′∈E(G)

e6=e′

E[Xe ·Xe′ ]

= E[X] +
∑

e,e′∈E(G)

e6=e′

1

4
=

m

2
+

m(m− 1)

4
=

m(m+ 1)

4
.

This in turn implies that the variance of X satisfies VarX = E[X2]− (EX)2 =
m/4. The result now follows from a straightforward application of Chebyshev’s
inequality:

P[X ≤ m/2−
√

cm/2] ≤ P[|X − EX| ≥
√

cm/2] ≤ 2VarX

cm
=

1

2c
.

�

Proof of Theorem 2. As in Lemma 5, we first consider a single graph G with
m edges and vertex set V . Consider a random partition of V into k disjoint
sets Vj which is obtained by including each v ∈ V into Vj with probability
1/k independently of all other vertices. Let Xe := 0 if the edge e has both its
endpoints in some Vj and let Xe := 1 otherwise. So P[Xe = 1] = (k − 1)/k.
Also, it is easy to check that E[Xe · Xe′ ] = (k − 1)2/k2. Again, this holds
regardless of whether e and e′ have an endvertex in common or not. Let X
denote the number of edges whose endvertices lie in different vertex classes.
Thus EX = k−1

k m and

E[X2] =
∑

e∈E(G)

E[Xe] +
∑

e,e′∈E(G)

e6=e′

E[Xe ·Xe′ ]

=
k − 1

k
m+m(m− 1)

(k − 1)2

k2
≤ m+ (E[X])2.

Therefore VarX ≤ m and so Chebyshev’s inequality implies that

P[X ≤ k − 1

k
m−

√
2ℓm] ≤ P[|X − EX| ≥

√
2ℓm] ≤ VarX

2ℓm
≤ 1

2ℓ
.

Theorem 2 now follows by summing up this bound on the failure probability
for each of the graphs Gi. �

Proof of Theorem 3. Let ε be as in the statement of the theorem. As in
the previous proof, we first consider a single graph G, this time with m edges
and maximum degree ∆ ≤ εm. Consider a random partition of V := V (G)
into k disjoint sets Vj which is obtained by including each vertex v ∈ V into
Vj with probability 1/k independently of all other vertices. Fix some s and t
with 1 ≤ s < t ≤ k. This time let Xe := 1 if one endvertex of e is contained
in Xs and the other in Xt. Put Xe := 0 otherwise. So P[Xe = 1] = 2/k2 =: α.
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Now the value of E[Xe · Xe′ ] depends on whether e and e′ have an endvertex
in common or not: If they do have an endvertex in common, we will use the
trivial bound E[Xe ·Xe′ ] ≤ 1 < 1 + α2. Note that the number of ordered pairs
e, e′ of distinct edges for which this can happen is trivially at most 2∆m. If e
and e′ have no vertex in common, then it is easy to see that

E[Xe ·Xe′ ] = P[Xe = 1]P[Xe′ = 1] = α2.

Let X :=
∑

e∈E(G)Xe. Thus E[X] = 2m/k2 = αm. Moreover

E[X2] =
∑

e∈E(G)

E[Xe] +
∑

e,e′∈E(G)

e6=e′

E[Xe ·Xe′ ]

< E[X] + 2∆m+
∑

e,e′∈E(G)

e6=e′

α2

≤ αm+ 2∆m+ α2m2 ≤ 3∆m+ (E[X])2.

Thus VarX ≤ 3∆m ≤ 3εm2. So we can conclude that

P[X ≤ αm− ε1/4m] ≤ P[|X − EX| ≥ ε1/4m] ≤ VarX√
εm2

≤ 3
√
ε ≤ 1

ℓk2
.

In exactly the same way one can show that P[eG(Vs) ≤ m/k2−ε1/4m] ≤ 1/(ℓk2).
(This time α := 1/k2.) Now sum up these failure probabilities for all the

(k
2

)

pairs s, t and all the k values of s to see that the probability that a random
partition does not have the required properties for G is at most 3/(4ℓ). Again,
Theorem 3 follows from summing up this probability for all Gi. �

We remark that at the expense of increasing the error terms the partition
classes in Theorems 1–3 can be chosen to have almost equal sizes. Indeed,
Chernoff’s inequality implies that in a random partition of the vertex set as
considered in the proofs with high probability the vertex classes have almost
equal sizes.

4 Algorithmic aspects

Papadimitriou and Yannakakis [10] showed that the Max-Cut problem is APX-
complete. On the other hand, as mentioned in the introduction, the obvious
greedy algorithm always guarantees a cut whose size is at least m/2. More-
over, the proofs described in the previous section can be derandomized to yield
polynomial algorithms which construct partitions satisfying the bounds in The-
orems 1–3. As the derandomization argument is similar for all three results, we
only only describe it for Theorem 1. More background information on deran-
domization can be found for instance in the books [1, 9] and in Fundia [8] (in
particular, the framework described in the latter applies to our situation). For
simplicity, we consider Theorem 1 only for ℓ = 2, i.e. in the case of two graphs.

So let G1 and G2 be two graphs whose vertex set is V with e(Gi) = mi.
Consider a random partition of V into sets A and B as described in the proof of
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Theorem 1 (cf. Lemma 5). For i = 1, 2 define random variables Xi := eGi
(A,B)

and put µi := mi/2 = E[Xi]. Set

Zi :=
µ2
i − 2µiXi +X2

i

mi

for i = 1, 2 and Z := Z1 + Z2. The proof of Theorem 1 shows that for each i

P[Xi < µi −
√
mi] ≤

VarXi

mi
< 1/2.

But E[Zi] = VarXi/mi and so E[Z] = E[Z1] + E[Z2] < 1. Let v1, . . . , vn be an
enumeration of the vertices in V . Let Ai denote the event that the vertex vi is
contained in A. Then

1 > E[Z] = (E[Z | A1] + E[Z | Ac
1])/2 ≥ min{E[Z | A1],E[Z | Ac

1]}.

Thus at least one of E[Z | A1], E[Z | Ac
1] has to be less than 1. Let C1 ∈ {A1, A

c
1}

be such that E[Z | C1] < 1. Note that both E[Z | A1] and E[Z | Ac
1] can be

computed in polynomial time and so also C1 can be determined in polynomial
time. Now

1 > E[Z | C1] = (E[Z | C1 ∩A2] + E[Z | C1 ∩Ac
2])/2.

So similarly as before there exists C2 ∈ {A2, A
c
2} such that E[Z | C1 ∩ C2] < 1

and C2 can be determined in polynomial time. We continue in this fashion until
we have obtained events Ck ∈ {Ak, A

c
k} for all k = 1, . . . , n such that

E[Z | C1 ∩ · · · ∩ Cn] < 1.

The proof of Chebyshev’s inequality shows that for each i = 1, 2 and for any
event U which has positive probability, we have

P[Xi < µi −
√
mi | U ] ≤ µ2

i − 2µiE[Xi | U ] + E[X2
i | U ]

mi
= E[Zi | U ]

(the above also follows from Corollary 4 in [8]). Taking U := C1 ∩ · · · ∩Cn this
implies that

∑

i=1,2

P[Xi < µi −
√
mi | U ] ≤

∑

i=1,2

E[Zi | U ] = E[Z | U ] < 1. (1)

But U := C1 ∩ · · · ∩ Cn means that for each vertex vk ∈ V we have decided
whether vk ∈ A or vk ∈ B. So the left hand side of (1) is either 0 or 1, i.e. it has
to be 0. This means that the unique partition corresponding to C1 ∩ · · · ∩Cn is
as desired in Theorem 1. Since each Ck can be determined in polynomial time
this gives us a polynomial algorithm.
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