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In this paper we study subtyping for inductive types in dependent type theories in the

framework of coercive subtyping. General structural subtyping rules for parameterised

inductive types are formulated based on the notion of inductive schemata. Certain

extensional equality rules play an important role in proving some of the crucial properties of

the type system with these subtyping rules. In particular, it is shown that the structural

subtyping rules are coherent and that transitivity is admissible in the presence of the

functorial rules of computational equality.

1. Introduction

Coercive subtyping (Luo 1997; 1999) is a general framework for subtyping and abbre-

viation in dependent type theories. In particular, it incorporates subtyping for inductive

types. In this paper, structural subtyping for inductive types is studied in the framework

of coercive subtyping.

Inductive types in dependent type theories have a rich structure and include many

interesting types, such as the types of natural numbers, lists, trees, ordinals and dependent

pairs. In general, inductive types can be considered as generated by inductive schemata

(Dybjer 1991; Paulin-Mohring 1993; Luo 1994), and this gives us a clear guide as to how

to consider natural subtyping rules for the inductive types.

The idea of deriving the general structural subtyping rules from the inductive schemata

was first considered in Luo (1997) and the subtyping rules for typical inductive types

were given in Luo (1999). However, from the Ph.D. work of Y. Luo (Luo 2005), it has

become clear that in an intensional type theory, the structural subtyping rules for some of

the inductive types are not compatible with the notion of transitivity (sometimes called

‘strong transitivity’) as given by the following rule in coercive subtyping:

(Trans)
A <c B B <c′ C

A <c′◦c C
,

† This work is partially supported by the following research grants: UK EPSRC grant GR/R84092, Leverhulme

Trust grant F/07 537/AA and EU TYPES grant 510996.
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Z. Luo and R. Adams 932

which says that the composition c′ ◦ c of two coercions c : (A)B and c′ : (B)C as

functional operations is also a coercion. In particular, in an intensional type theory,

the above transitivity rule is not admissible in the presence of the structural subtyping

rules for many inductive types, although it is admissible for some (Luo and Luo 2001).

For example, consider the type of lists, List(A), parameterised by an element type A. Its

subtyping rule is

A <c B

List(A) <map(c) List(B)

where map(c) : (List(A))List(B) is the usual map operation on lists defined by induction.

With such a subtyping rule, the above rule (Trans) of transitivity is not admissible in

an intensional type theory: when A <c B and B <c′ C , the following two functional

operations from List(A) to List(C) are not computationally equal (although they are

extensionally equal):

— map(c′ ◦ c), obtainable as a coercion by first applying the transitivity rule (Trans) and

then the above subtyping rule for lists; and

— map(c′) ◦ map(c), obtainable as a coercion by first applying the above subtyping rule

for lists (twice) and then the transitivity rule (Trans).

Hence, if we added the transitivity rule (Trans), there would be more than one coercion

between two types – coherence would fail.

With the motivation of dealing with this problem, a notion of ‘weak transitivity’ has

been proposed and studied (Luo and Luo 2005; Luo 2005; Luo et al. 2002). Unlike the

above strong notion of transitivity, weak transitivity only requires that there be a coercion

that is extensionally equal to the composition and does not require that the composition

itself be a coercion. Weak transitivity is admissible for intensional type theories with

structural subtyping for a large class of inductive types including that of lists. However,

it turns out that this is not the case for some inductive types that have a certain form of

dependency between their parameters. Such inductive types include, for example, Σ-types

of dependent pairs and Π-types of dependent functions. A notion of WT-schema has been

developed to capture such a dependency of parameters, or more precisely, the inductive

types generated by the WT-schemata exclude exactly those types that cause problems

for the admissibility of weak transitivity. The structural subtyping rules for inductive

types generated by WT-schemata has been formulated and weak transitivity proved to be

admissible in intensional type theories with structural subtyping for such inductive types.

(See Luo and Luo (2005) for more details.)

From this, it is fair to say that the introduction of the notion of weak transitivity has

not solved the above problem completely – for the types uncovered by WT-schemata, we

still cannot introduce their structural subtyping rules in an adequate way for transitivity

to be admissible. In this paper we consider another approach: instead of introducing a

weaker notion of transitivity, we consider stronger equality rules. For instance, we consider

by brute force in some way that map(c′) ◦map(c) and map(c′ ◦ c) are judgementally equal.

In other words, we extend the underlying type theory by certain extensional rules for the

computational equality. These equality rules express the functorial laws and will be called
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Structural subtyping for inductive types with functorial equality rules 933

χ-rules in this paper†. We shall show that in the presence of the χ-rules, the transitivity

rule (Trans) is admissible for the type system with structural subtyping of all of the

inductive types.

As we are considering inductive types generated by any inductive schema (rather than

just those from the subclass generated by the WT-schemata (Luo and Luo 2005)), a more

general formulation of the subtyping rules is called for that takes care of the dependency

between parameters for some of the inductive types such as Σ-types and Π-types. The

new formulation inserts coercions in the correct positions of the premises of the subtyping

rules. This formulation is also used as the basis for the χ-rules and for proving results

such as those of coherence and admissibility of transitivity.

During the proofs of the properties of the structural subtyping rules, we use the simple

but important property that the inductive type constructors are injective. For instance, for

types of lists, if List(A) = List(B), then A = B. It has not been shown whether this holds

for a type theory with extensional rules such as the χ-rules, as its meta-theoretic properties

such as Church–Rosser are largely unknown. A direct proof of this injectivity result in

the logical framework LF (Luo 1994), which is used as a basis for formulating coercive

subtyping, would require us to analyse difficult cases involving λ-abstractions. To avoid

this difficulty, we prove injectivity in the lambda-free logical framework TF (Aczel 2001;

Adams 2004), and then lift it to LF by using the fact that LF is a conservative extension

of TF.

In contrast to an earlier proof of a more restricted result in Luo and Luo (2001),

the proof of transitivity elimination is done directly by induction on derivations, but by

proving the admissibility of a more general rule. This has overcome a difficulty in the

earlier research effort and avoided the use of a special measure developed in Chen (1998).

In Section 2, we briefly introduce the logical frameworks LF and TF, the notion

of inductive types as generated by inductive schemata, and the framework of coercive

subtyping. The formulations of the structural subtyping rules and the corresponding

functorial equality rules are given in Section 3. Section 4 shows that LF is a conservative

extension of TF and proves the injectivity result. Proofs of properties such as coherence

and admissibility of transitivity are given in Section 5. Future and related work are

discussed with conclusions in Section 6.

2. Logical frameworks, inductive types and coercive subtyping

In this section we give a brief introduction to the logical frameworks LF and TF,

inductive types and coercive subtyping, partly for background and to establish notational

conventions.

2.1. The logical frameworks LF and TF

We shall introduce logical frameworks LF and TF, with more details for the latter as it is

less well known. Technically, in this paper, the logical framework TF is only used in the

† The name comes from Barral et al. (2005), where such equality rules are considered in a simply-typed

λ-calculus with inductive types.
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proof of the injectivity result in Section 4. An understanding of its formal details is only

required for the proofs in Section 4.

2.1.1. The logical framework LF LF (Luo 1994) is a dependent type system that can be

used to specify type theories such as Martin-Löf’s type theory (Nordström et al. 1990) and

UTT (Luo 1994). It is a typed version of Martin-Löf’s logical framework (see Nordström

et al. (1990, Chapter 19) for a presentation of the latter)†.

A presentation of LF and discussions on how it should be used for specifying type

theories can be found in Luo (1994, Chapter 9) or Luo (1999, Section 2). Figure 1

gives the inference rules of LF, which include the general rules for contexts, equality and

substitution, and the rules for the following kinds:

— Type: the kind representing the conceptual universe of types;

— El(A): the kind of objects of type A; and

— (x:K)K ′: the kind representing the dependent product with functional operations f

(such as the abstraction [x:K]k′) as objects that can be applied to objects k of kind K

to form application f(k) or simply fk.

Functional operations of kind (x:K)K ′ are equal if they are βη-equal. A kind is small if it

is of the form El(A) or (x:K)K ′ such that K and K ′ are small. (Put another way, a kind

is small if it does not contain Type.)

LF and the type theories specified in LF satisfy many nice properties. The following

is a proposition that we shall use in this paper, the proof of which can be found in

Adams (2004).

Theorem 2.1 (Subject reduction for β-reduction). Let T be a type theory specified in LF.

If Γ � k : K is derivable in T and k →∗β k′, then Γ � k = k′ : K is derivable in T .

Notation. We shall adopt the following notational conventions:

— We often omit El to write A for El(A) and may write (K1)K2 for (x:K1)K2 when x

does not occur free in K2.

— Equality signs: We shall use M ≡ N for syntactic equality between terms, meaning

that M and N are the same terms up to α-conversion, and use M = N for definitional

or computational equality between terms.

— Substitution: We sometimes use M[x] to indicate that variable x may occur free in M,

and subsequently write M[N] for the substitution [N/x]M when no confusion may

occur.

— Functional composition: g ◦ f =df [x:K1]g(f(x)) : (K1)K3, where f : (K1)K2 and g :

(K2)K3 and x does not occur free in f or g.

We shall also use the following notation for sequences and sequence operations:

— We shall use ā to represent a sequence; for instance, ā ≡ a1, ..., an or ā ≡ 〈a1, ..., an〉.

† The difference between the logical frameworks considered in this paper and the Edinburgh LF (Harper et

al. 1987; 1993) is that the former LFs are intended to be used to specify computation rules and hence type

theories, while the latter is not.
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Contexts and assumptions

〈〉 valid
Γ � K kind x /∈ FV (Γ)

Γ, x:K valid

Γ, x:K,Γ′ valid

Γ, x:K,Γ′ � x : K

General equality rules

Γ � K kind

Γ � K = K

Γ � K = K ′

Γ � K ′ = K

Γ � K = K ′ Γ � K ′ = K ′′

Γ � K = K ′′

Γ � k : K

Γ � k = k : K

Γ � k = k′ : K

Γ � k′ = k : K

Γ � k = k′ : K Γ � k′ = k′′ : K

Γ � k = k′′ : K
Equality typing rules

Γ � k : K Γ � K = K ′

Γ � k : K ′
Γ � k = k′ : K Γ � K = K ′

Γ � k = k′ : K ′

Substitution rules
Γ, x:K,Γ′ valid Γ � k : K

Γ, [k/x]Γ′ valid

Γ, x:K,Γ′ � K ′ kind Γ � k : K

Γ, [k/x]Γ′ � [k/x]K ′ kind

Γ, x:K,Γ � K ′ kind Γ � k = k′ : K

Γ, [k/x]Γ′ � [k/x]K ′ = [k′/x]K ′

Γ, x:K,Γ′ � k′ : K ′ Γ � k : K

Γ, [k/x]Γ′ � [k/x]k′ : [k/x]K ′
Γ, x:K,Γ′ � k′ : K ′ Γ � k1 = k2 : K

Γ, [k1/x]Γ′ � [k1/x]k′ = [k2/x]k′ : [k1/x]K ′

Γ, x:K,Γ′ � K ′ = K ′′ Γ � k : K

Γ, [k/x]Γ′ � [k/x]K ′ = [k/x]K ′′
Γ, x:K,Γ′ � k′ = k′′ : K ′ Γ � k : K

Γ, [k/x]Γ′ � [k/x]k′ = [k/x]k′′ : [k/x]K ′

The kind Type

Γ valid

Γ � Type kind
Γ � A : Type

Γ � El(A) kind

Γ � A = B : Type

Γ � El(A) = El(B)

Dependent product kinds

Γ � K kind Γ, x:K � K ′ kind
Γ � (x:K)K ′ kind

Γ � K1 = K2 Γ, x:K1 � K ′1 = K ′2
Γ � (x:K1)K

′
1 = (x:K2)K

′
2

Γ, x:K � k : K ′

Γ � [x:K]k : (x:K)K ′
Γ � K1 = K2 Γ, x:K1 � k1 = k2 : K

Γ � [x:K1]k1 = [x:K2]k2 : (x:K1)K

Γ � f : (x:K)K ′ Γ � k : K

Γ � f(k) : [k/x]K ′
Γ � f = f′ : (x:K)K ′ Γ � k1 = k2 : K

Γ � f(k1) = f′(k2) : [k1/x]K ′

Γ, x:K � k′ : K ′ Γ � k : K

Γ � ([x:K]k′)(k) = [k/x]k′ : [k/x]K ′
Γ � f : (x:K)K ′ x /∈ FV (f)

Γ � [x:K]f(x) = f : (x:K)K ′

Fig. 1. Inference rules of LF

— Let ā ≡ a1, ..., an, b̄ ≡ b1, ..., bn and Ā ≡ A1, A2[x1], ..., An[x1, ..., xn−1].

– We write ā :: Ā for the sequence a1 : A1, a2 : A2[a1], ..., an : An[a1, ..., an−1].

– We write Γ � ā :: Ā for the sequence of judgements Γ � a1 : A1, Γ � a2 : A2[a1], ...,

Γ � an : An[a1, ..., an−1].

– We write Γ � ā = b̄ :: Ā for the sequence of judgements Γ � a1 = b1 : A1,

Γ � a2 = b2 : A2[a1], ..., Γ � an = bn : An[a1, ..., an−1].
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— Let x̄ be a sequence of variables.

– x̄ ∈M means that some of the variables in x̄ occur in M.

– x̄ �∈M means that none of the variables in x̄ occur in M.

— We shall use ˆ for concatenation of sequences and :: for the operations attaching an

element both to the head and to the tail of a sequence.

2.1.2. The lambda-free framework TF The logical framework TF (TF stands for ‘Type

Framework’) was first conceived by Aczel (Aczel 2001), and its theory was developed in

Adams (2004). It follows from the general results proved in Adams (2004) that LF can

be considered a conservative extension of TF – this is a key property that will allow us

to lift the injectivity result from TF to LF in Section 4.

TF is lambda free in the sense that the entities such as lambda-abstractions and Π-kinds

are not first-class, nor is β-reduction. Its syntax is organised by arities, which are defined

by the grammar

α:: = (α, . . . , α),

with the arity () in the base case (also denoted by 0), the arity of terms and types in

a specified object type theory. The intuition behind arities is that an object of arity

α = (α1, . . . , αn), an α-ary object, is a function that takes n arguments – namely an α1-ary

object, . . . , and an αn-ary object – and returns a term or type of the object theory, the

type theory specified in TF.

Objects in TF are in normal form in the traditional sense. In general, they have the

form [x̄]zM̄, where z is either a variable or a constant. These are exactly the lambda

terms that are in β-normal and η-long form. More formally, every variable or constant is

associated with an arity and the α-ary objects for each arity α can be defined inductively

as follows:

— If z is a variable or constant of arity (α1, . . . , αn), and Mi is an αi-ary object, then

zM1...Mn is a 0-ary object.

— If N is a (β1, ..., βn)-ary object and x an α-ary variable, then [x]N is an (α, β1, ..., βn)-ary

object.

Kinds and contexts are assigned arities as well (for example, Type and El(A) are the only

kinds assigned arity 0). Arities are respected in forming kinds and contexts. For instance,

in any entry x:K in a context, x and K must have the same arity.

Notation. We shall write zη for the η-long form of a variable or constant z. More formally,

if z is an (α1, . . . , αn)-ary variable or constant, then zη ≡ [y1, . . . , yn]z(y1)η...(yn)η , where each

yi is a fresh αi-ary variable.

Instantiation and employment are crucial notions in TF and correspond to substitution

and application, respectively. In TF, the result of a substitution [M/x]N is, in general,

not an object, and the application MN is not an object, either. The intention is that
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the instantiation {M/x}N is the β-normal and η-long form of [M/x]N, and that the

employment M{N} is the β-normal and η-long form of MN.

Definition 2.2 (Instantiation and employment). The two operations

— Instantiation, {M/x}N, resulting in a β-ary object by instantiating x with M in N, for

any α-ary object M, α-ary variable x and β-ary object N, and

— Employment, M{N}, resulting in a (β1, ..., βn)-ary object by employing M on N, for any

(α, β1, ..., βn)-ary object M and α-ary object N,

are defined by mutual induction on the arity α and the structure of N, as follows:

{M/x}zN1 · · ·Nn ≡ z({M/x}N1) · · · ({M/x}Nn) (z �≡ x)
{M/x}xN1 · · ·Nn ≡ M{{M/x}N1} · · · {{M/x}Nn}

{M/x}[y]N ≡ [y]{M/x}N
([x]M){N} ≡ {N/x}M .

We extend the operation of instantiation to kinds in the obvious manner.

There are only three primitive judgement forms in TF:

Γ valid Γ �M : T Γ �M = N : T

where M and N are 0-ary objects and T is a 0-ary kind (that is, T is either Type or

of the form El(A)). Note that this condition on the arities of M, N and T justifies our

assertion that the objects of higher arity are not first-class entities in TF. The judgements

themselves only deal directly with the terms and types of the specified theory. The objects

of higher arity can only occur in contexts or within an object of arity 0.

Having given the forms of primitive judgements, we can now introduce some defined

judgement forms, each of which denotes a sequence of primitive judgements. The defined

judgements help us in presenting and discussing the TF system. Some examples, to be

used later in the paper, are as follows.

— Judgement Γ � K kind can be defined by considering the following two cases:

– K ≡ (x̄ :: K̄)Type.

Then Γ � K kind stands for Γ, x̄ :: K̄ valid.

– K ≡ (x̄ :: K̄)El(A).

Then Γ � K kind stands for Γ, x̄ :: K̄ � A : Type.

— Judgement Γ � [x̄]M : (x̄:K̄)T is defined to be the judgement Γ, x̄:K̄ �M : T .

— Judgement Γ � M̄ :: K̄ is defined to be the following sequence of judgements:

Γ �M1 : K1, Γ �M2 : {M1/x1}K2, ..., Γ �Mn : {M1/x1, ...,Mn−1/xn−1}Kn−1 .

A judgement form Γ � M̄ = N̄ : K̄ can be defined similarly.

The inference rules of TF are given in Figure 2, where T , M, N and P are all of arity 0.

Note that the number of rules is rather small, mainly due to the fact that TF only deals

with terms in β-normal and η-long form.

Some of the basic properties of TF are given in the following proposition, whose proofs

can be found in Adams (2004).
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Contexts

〈〉 valid

Γ � K kind x /∈ FV (Γ)

Γ, x:K valid

Variables and constants (z : (ȳ::K̄)T is either in Γ or declared)

Γ � M̄ :: K̄

Γ � zM̄ : {M̄/ȳ}T
(CA)

Γ � M̄ = N̄ :: K̄

Γ � zM̄ = zN̄ : {M̄/ȳ}T
General equality rules

(R)
Γ �M : T

Γ �M = M : T
(S )

Γ �M = N : T

Γ � N = M : T
(T )

Γ �M = N : T Γ � N = P : T

Γ �M = P : T

Γ �M : El(A) Γ � A = B : Type

Γ �M : El(B)

Γ �M = N : El(A) Γ � A = B : Type

Γ �M = N : El(B)

Fig. 2. Inference rules of TF

Proposition 2.3 (Properties of TF).

1 Basic properties of instantiation:

(a) For any object M, we have {xη/x}M ≡M.

(b) If y is not free in M, then {M/x}{N/y}P ≡ {{M/x}N/y}{M/x}P .

(c) For any object M of arity (α, β1, ..., βn), we have [x](M{xη}) ≡M, where x has arity

α.

(d) For any object M, we have {M/x}xη ≡M.

(e) {M/x}(N{P }) ≡ ({M/x}N){{M/x}P }.
2 Context validity:

Any derivation of Γ1, x:K,Γ2 � J has a subderivation of Γ1 � K kind.

3 Weakening:

If Γ � J , Γ ⊆ Δ and Δ valid, then Δ � J .
4 Instantiation:

If Γ, x:K,Δ � J and Γ �M:K , then Γ, {M/x}Δ � {M/x}J .
5 Functionality:

If Γ, x:K,Δ � P :K ′ and Γ �M = N:K , then

Γ, {M/x}Δ � {M/x}P = {N/x}P :{M/x}K ′ .

6 Equation validity:

(a) If Γ �M = N:K , then Γ �M:K and Γ � N:K .

(b) If Γ � K = K ′, then Γ � K kind and Γ � K ′ kind.
7 Context conversion:

If Γ, x:K,Δ � J and Γ � K = K ′, then Γ, x:K ′,Δ � J .
8 Kind validity:

If Γ �M:K or Γ �M = N:K , then Γ � K kind.
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As in LF, type theories can be specified in TF by declaring a number of constants and

computation rules. The declaration of a constant, where T is of arity 0,

c : (x̄ :: K̄)T

has the effect of adding the following two rules:

Γ � M̄ :: K̄

Γ � cM̄ : {M̄/x̄}T
Γ � M̄ = N̄ :: K̄

Γ � cM̄ = cN̄ : {M̄/x̄}T
The declaration of a computation rule of the form

k = k′ : T for x̄ : K̄,

where k, k′ and T are all of arity 0, has the effect of adding the following rule:

Γ � M̄ :: K̄

Γ � {M̄/x̄}k = {M̄/x̄}k′ : {M̄/x̄}T
.

Remark. This way of declaring type theories in TF is similar to the way type theories are

declared in LF (c.f., Luo (1994, Section 9.1.2)). The restriction disallowing declarations

of computation rules between objects of higher arities conforms with that imposed in

Luo (1999) for LF, that is, that there should be no declarations of equalities between

objects of a dependent product kind.

2.2. Inductive types

Inductive types are generated by inductive schemata (Dybjer 1991; Paulin-Mohring 1993;

Luo 1994) and can be parameterised. We just give a brief introduction here; for more

details, see, for example, Luo (1994, Chapter 9).

Intuitively, an inductive type is introduced by specifying its constructors (or introduction

operators) and their kinds. The values (or canonical objects) of the inductive types are

generated by these constructors. For instance, one can introduce the inductive type of lists

of natural numbers, List(N), by giving its constructors nil(N) and cons(N), which are of

kinds List(N) and (n:N)(l:List(N))List(N), respectively. The values of List(N) are either

the empty list nil(N) or of the form cons(N, n, l).

Formally, the types of these constructors are given by inductive schemata, as given by

the following definition.

Definition 2.4 (Strictly positive operator and inductive schema). Let Γ be a valid context

and X be a type variable such that X does not occur free in Γ.

— A strictly positive operator Φ in Γ with respect to X is of one of the following forms:

1 Φ ≡ X
2 Φ ≡ (x:K)Φ0, where K is a small kind in Γ, and Φ0 is a strictly positive operator in

Γ, x:K with respect to X.

— An inductive schema Θ in Γ with respect to X is of one of the following forms:

1 Θ ≡ X
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2 Θ ≡ (x:K)Θ0, where K is a small kind in Γ, and Θ0 is an inductive schema in

Γ, x:K with respect to X

3 Θ ≡ (Φ)Θ0, where Φ is a strictly positive operator in Γ with respect to X, and Θ0

is an inductive schema in Γ with respect to X.

In this paper, unless stated otherwise, all of the strictly positive operators and inductive

schemata are with respect to X.

Remark. Note that strictly positive operators are special cases of inductive schemata.

Also, the above notions of strictly positive operator and inductive schema can also be

defined by the BNF notation as follows, where K stands for any small kind in which X

does not occur free:

Φ :: = X | (x:K)Φ

Θ :: = X | (x:K)Θ | (Φ)Θ .

A strictly positive operator (or an inductive schema) in the context Γ with respect to X

is then a kind in Γ, X:Type that is generated by the above grammar.

In a valid context, any finite sequence of inductive schemata generates an inductive type,

with its introduction, elimination and computation rules. In this paper, we shall consider

inductive types T parameterised by a sequence of variables Ȳ such that Ȳ :: P̄ , and

generated by a sequence of schemata Θ̄ ≡ 〈Θ1, ...,Θm〉 (m ∈ ω) in Ȳ :: P̄ . For example,

the parameterised inductive type of lists List(A) is parameterised by type A and generated

by the schemata X and (A)(X)X.

Notation. For any strictly positive operator Φ and inductive schema Θ with respect

to X parameterised by Ȳ , we use Φ[Ā, B] and Θ[Ā, B] to stand for the substitutions

[Ā/Ȳ , B/X]Φ and [Ā/Ȳ , B/X]Θ, respectively. To generalise this notation further, if X

does not occur free in K[Ȳ ], then K[Ā, B] is just K[Ā].

In LF, the parameterised inductive type T can be introduced by declaring the constant

expressions:

— T for the type constructor of the parameterised inductive type,

— ιj (j = 1, ..., m) for the constructors (or introduction operators),

— ET for the elimination operator,

together with the associated computation rules. We will now spell out in more detail how

these constants and the computation rules should be declared.

Constants The constant T is declared as

T : (Ȳ :: P̄ )Type .

For the example List, we have

List : (A:Type)Type .
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Constructors The constructors for T are declared as

ιj : (Ȳ :: P̄ )Θj[Ȳ ,T(Ȳ )] (j = 1, ..., m) .

Note that each constructor corresponds to an inductive schema. For the example List, the

constructors are

nil : (A:Type)List(A)

cons : (A:Type)(a:A)(l:List(A))List(A) .

Elimination operators The elimination operator ET expresses an induction principle

stating that, if a property is true for every value of the inductive type, it is true for every

object of the type. It is declared as

ET : (Ȳ :: P̄ )

(C : (T(Ȳ ))Type)

(f1 : Θ◦1[T(Ȳ ), C, ι1(Ȳ )]) ... (fm : Θ◦m[T(Ȳ ), C, ιm(Ȳ )])

(z : T(Ȳ ))C(z)

where C represents the predicate (property) over T(Ȳ ) (which is called the motive in

McBride and McKinna (2004)), fj (j = 1, ..., m) are the methods, each corresponding to a

constructor, and the kind of each method depends on the corresponding schema, defined

as follows.

Definition 2.5. Let Θ ≡ (x̄ :: M̄)X be an inductive schema with respect to X parameterised

by Ȳ , and 〈Φi1 , ...,Φik 〉 be the subsequence of M̄ that consists of all of the strictly positive

operators in M̄. Then, for A : Type, C : (A)Type and z : Θ[Ȳ , A],

Θ◦[A,C, z] =df (x̄ :: M̄[Ȳ , A])

(Φ◦i1 [A,C, xi1 ]) ... (Φ
◦
ik
[A,C, xik ])

C(z(x̄)) .

Note that in the special case when Θ is a strictly positive operator Φ (that is, when X

does not occur free in M̄), Φ◦[A,C, z] ≡ (x̄ :: M̄)C(z(x̄)).

For the example List, the elimination operator is

EList : (A : Type)

(C : (List(A))Type)

(fnil : C(nil(A))) (fcons : (a:A)(l:List(A))(C(l))C(cons(A, a, l)))

(z : List(A)) C(z)

where its two methods (fnil and fcons) have kinds C(nil(A)) and (a:A)(l:List(A))(C(l))

C(cons(A, a, l)), respectively.

Computation rules When the elimination operator is applied to a value constructed by

a constructor, the corresponding method gives the meaning of that application. This is
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specified by the computation rules. Formally, for the parameterised inductive type T, we

have m computation rules, each corresponding to a constructor (or inductive schema). For

Θj ≡ (x̄ :: M̄)X (j = 1, ..., m) with 〈Φi1 , ...,Φik 〉 being the subsequence of M̄ that consists

of all of the strictly positive operators, the jth computation rule is

ET(Ȳ , C, f̄, ιj(Ȳ , x̄)) = fj(x̄,Φ
	
i1
[T(Ȳ ), C,ET(Ȳ , C, f̄), xi1 ],

...,

Φ	
ik
[T(Ȳ ), C,ET(Ȳ , C, f̄), xik ])

: C(ιj(Ȳ , x̄))

where f̄ ≡ f1, ..., fm are the methods and the operation Φ	 is defined as follows.

Definition 2.6. Let Φ ≡ (x̄ :: K̄)X be a strictly positive operator with respect to X. Then

Φ	[A,C, f, z] =df [x̄:K̄]f(z(x̄))

where A : Type, C : (A)Type, f : (x:A)C(x) and z : Φ[A]. Note that Φ	[A,C, f, z] is of

kind Φ◦[A,C, z] and, when m = 0, Φ	[A,C, f, z] ≡ f(z).

For the example List, we have two computation rules:

EList(A,C, c, f, nil(A)) = c : C(nil(A))

EList(A,C, c, f, cons(A, a, l)) = f(a, l,EList(A,C, c, f, l)) : C(cons(A, a, l)) .

We conclude this introduction to inductive types by giving several further examples.

Example 2.7. The following are examples of (parameterised) inductive types:

— The type of natural numbers N is generated by the schemata X and (X)X, with

constructors 0 : N and succ : (N)N.

— The type of dependent functions Π(A,B) parameterised by A : Type and B : (A)Type

is generated by the schema ((x:A)B(x))X, with constructor λ.

— The type of dependent pairs Σ(A,B) parameterised by A : Type and B : (A)Type is

generated by the schema (x:A)(B(x))X, with constructor pair.

— The disjoint union Union(A,B) (or A + B in the usual notation) parameterised by

A, B : Type is generated by the schemata (A)X and (B)X, with constructors inl and

inr.

2.3. Coercive subtyping

Coercive subtyping, as introduced in Luo (1997) and Luo (1999), is a framework for

subtyping and abbreviation in dependent type theories. The formal presentation of the

framework will be given after an introduction to the basic idea and an overview of

previous work.
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Basic idea

In coercive subtyping, a type is a subtype of another type if there is a unique coercion

between them represented by the judgement

A <c B : Type

where c has kind (A)B. Coercions are special functional operations (for example, declared

by a user). If c is a coercion from A to B, then a function f from B to C can be applied

to any object a of A and the application f(a) is definitionally (or computationally) equal

to f(c(a)). Intuitively, one may take f as a context that requires an object of B; then the

argument a in the context f stands for its image of the coercion, c(a).

The above simple idea, which has been studied in the literature for simple type systems

(see, for instance, Mitchell (1991; 1983)), becomes very powerful when formulated in the

logical framework and used in the context of dependent type theories. The framework of

coercive subtyping covers a variety of subtyping relations, including those represented by

coercions between parameterised inductive types (Luo 1999) and dependent coercions (Luo

and Soloviev 1999). For example, see Luo (1999), Bailey (1999), Callaghan and Luo (2001)

and Luo and Callaghan (1998) for details of some of these developments and for

applications of coercive subtyping. Important meta-theoretic results of coercive subtyping

have been studied, including those on conservativity (Soloviev and Luo 2002), and on

transitivity elimination for subkinding (Soloviev and Luo 2002) and subtyping (Luo 2005;

Luo and Luo 2005; Luo and Luo 2001). Coercion mechanisms have been implemented in

the proof development systems Coq (Coq 2004), Lego (Luo and Pollack 1992) and Plastic

(Callaghan and Luo 2001) by Säıbi (Säıbi 1997), Bailey (Bailey 1999) and Callaghan

(Callaghan and Luo 2001), respectively.

Systems with coercive subtyping

Formally, a system of coercive subtyping T [R], with a set R of basic subtyping rules, is

an extension of a type theory T specified in the logical framework LF. It can be presented

in two stages:

— First consider the system T [R]0, which is an extension of T with subtyping judgements

of the form Γ � A <c B : Type.

— Then consider the system T [R], which is an extension of T [R]0, with subkinding

judgements of the form Γ � K <c K
′.

The rules for subkinding include, for example, the following coercive definition rule:

Γ � f : (x:K)K ′ Γ � a : K0 Γ � K0 <c K

Γ � f(a) = f(c(a)) : [c(a)/x]K ′
.

This paper is mainly about subtyping rules and their properties in T [R]0, so the treatment

of the kind level is omitted (see, for example, Luo (1999) for more details.)
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Notation. As we are not going to talk about subkinding judgements in this paper, we

shall often write Γ � A <c B for the subtyping judgement Γ � A <c B : Type.

T [R]0 is the extension of T with the congruence rule

(Cong)
Γ � A <c B Γ � A = A′ : Type Γ � B = B′ : Type Γ � c = c′ : (A)B

Γ � A′ <c′ B
′

and a set R of ‘basic subtyping rules’ whose conclusions are subtyping judgements of

the form Γ � A <c B. Examples of such rules include the structural subtyping rules for

parameterised inductive types to be considered in this paper.

The set R of basic subtyping rules is required to be coherent in the sense that coercions

between any two types must be unique. Put another way, the subtyping rules are coherent

if the following rule is admissible in T [R]0:

Γ � A <c B Γ � A <c′ B

Γ � c = c′ : (A)B
.

For example, if we consider subtyping rules for inductive types, we want to show that they

are coherent in the above sense. Furthermore, given a set of subtyping rules, we would

like to prove that transitivity is admissible, that is, the following rule is admissible:

Γ � A <c B Γ � B <c′ C

Γ � A <c′◦c C
.

Well-defined coercions

We are going to prove, for example, admissibility results of the subtyping rules for

inductive types when there are other coercions already existing in the system. We assume

that those coercions (possibly generated by some other rules) are coherent and have

good admissibility properties, that is, they form a set of well-defined coercions (Luo and

Luo 2001), as defined below.

Definition 2.8 (Well-defined coercions). Let C be a set of subtyping judgements of the

form Γ � A <c B. If C satisfies the following conditions, we say that C is a well-defined

set of subtyping judgements, or Well-Defined Coercions (WDC ) for short.

1 Coherence:

(a) Γ � A <c B ∈ C implies that Γ � A : Type, Γ � B : Type and Γ � c : (A)B.

(b) Γ � A <c A �∈ C for any Γ, A and c.

(c) Γ � A <c1 B ∈ C and Γ � A <c2 B ∈ C imply that Γ � c1 = c2 : (A)B.

2 Weakening:

If Γ � A <c B ∈ C, Γ ⊆ Γ′ and Γ′ is valid, then Γ′ � A <c B ∈ C.

3 Substitution:

Γ, x:K,Γ′ � A <c B ∈ C implies that Γ, [k/x]Γ′ � [k/x]A <[k/x]c [k/x]B ∈ C for any k

such that Γ � k : K .
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4 Transitivity:

If Γ � A <c B ∈ C and Γ � B <c′ C ∈ C, then Γ � A <c′◦c C ∈ C.

In this paper we consider the system of coercive subtyping in which the set R of the

subtyping rules contains the following rule, where C is a WDC:

(C)
Γ � A <c B ∈ C

Γ � A <c B
.

3. Structural subtyping rules and functorial equality rules

In this section, we give a formulation of the structural subtyping rules for parameterised

inductive types generated by inductive schemata, and the corresponding χ-rules describing

the functorial laws for computational equality.

Given a parameterised inductive type T parameterised by n parameters Ȳ :: P̄ (n ∈ ω)

and generated by m schemata Θ̄ ≡ Θ1, ...,Θm (m ∈ ω) in Ȳ :: P̄ , we consider the following

form of structural subtyping rules for T:

(∗) premises(c̄)

Γ � T(Ā) <mapT T(B̄)

where Ā ≡ A1, ..., An, B̄ ≡ B1, ..., Bn and c̄ ≡ c1, ..., ck are fresh and distinct schematic letters.

Ā :: P̄ and B̄ :: P̄ correspond to the parameters of T, c̄ are the coercions assumed in

the premises, and mapT is the coercion specified by the rule, mapping canonical objects

of T(Ā) to the corresponding canonical objects of T(B̄).

For example, for the type of lists List(Y ) parameterised by the type parameter Y and

generated by the schemata X and (Y )(X)X, the structural subtyping rule is

Γ � A : Type Γ � B : Type Γ � A <c B

Γ � List(A) <mapList List(B)

where the coercion mapList takes the canonical objects nil(A) to nil(B) and cons(A, a, l) to

cons(B, c(a),mapList(l)), respectively.

As another example, the type of dependent pairs Σ(A,B) parameterised by A : Type

and B : (A)Type, is generated by the schema (x:A)(B(x))X. One of its three structural

subtyping rules is

Γ � A <c1 A
′ Γ, x:A � B(x) <c2[x] B

′(c1(x))

Γ � Σ(A,B) <mapΣ
Σ(A′, B′)

where we have omitted the judgements for well-typedness and mapΣ maps pair(A,B, a, b)

to pair(A′, B′, c1(a), c2[a](b)). Note that, in this example for Σ-types, there is a dependency

between parameters (the parameter B is dependent on the objects of A), which leads to

the occurrence of c1 in the second premise of the rule. (Such cases are excluded by the

WT-schemata, and, therefore, not covered in Luo and Luo (2005)). It is because of such

dependencies between parameters that a more general formulation of the subtyping rules,

which inserts coercions in correct positions, is called for.
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The following subsections are arranged as follows:

— Section 3.1 defines the ‘components’ that form the premises of the structural subtyping

rules, declaring that certain operations are coercions between types.

— Section 3.2 defines the mapping functor given the premises, the coercion from T(Ā)

to T(B̄).

— Section 3.3 describes the structural subtyping rules.

Finally, after defining the mapping functor, the composition of the mapping functors can

be defined, so:

— Section 3.4 defines the functorial equality rules (χ-rules) for the parameterised inductive

types.

3.1. Components in premises

Given a parameterised inductive type T, we intend to show how to construct the

structural subtyping rules of the form (∗) (see above). More concretely, we want to

construct the premises that assume certain coercions between appropriate types and,

given these coercions, the mapping functor mapT from T(Ā) to T(B̄), the coercion in

the conclusion.

To this end, we define the components of a parameterised inductive type, each of which

is a quadruple

(Γ; A; B; c)

consisting of a context, two types and a schematic letter c. The quadruple is intended to

denote the fact that one of the premises in each of the structural subtyping rules is

Γ � A <c B or Γ � A = B : Type .

For example, the components for the Σ-types constitute the sequence

(Γ; A; A′; c1), (Γ, x:A; B(x); B′(c1(x)); c2) ,

which corresponds to the two premises of the subtyping rules for Σ-types as presented

above.

The definition of the notion of a component is better given in two stages, first defining

it for small kinds and then for inductive schemata and parameterised inductive types.

Definition 3.1 (Components of small kinds). Let K[x̄] be a small kind in (Γ, x̄::P̄ ), Γ �
ā :: P̄ and Γ � b̄ :: P̄ . We shall define a sequence of quadruples, the components of K

(with respect to x̄, ā and b̄):

CΓ(K; x̄; ā; b̄) = 〈(Γ1;A1;B1; c1), . . . , (Γn;An;Bn; cn)〉

where each Ai and Bi is a type in context Γi and ci is a schematic letter. We shall

simultaneously define an object cK , the ‘schematic coercion ’ corresponding to K , such that

Γ � cK : (K[ā])K[b̄] if Γi � ci : (Ai)Bi (i = 1, ..., n).
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The definitions are given by simultaneous induction on the structure of K:

— If x̄ /∈ K , then

CΓ(K; x̄; ā; b̄) =df 〈〉
cK =df idK

where idK ≡ [x:K]x is the identity on K .

— If K ≡ El(A[x̄]) with x̄ ∈ A, then

CΓ(K; x̄; ā; b̄) =df 〈(Γ;A[ā];A[b̄]; c)〉
cK =df c

where c is a fresh schematic letter (and, for different occurrences of A, the schematic

letters are different†.)

— If K ≡ K[x̄] ≡ (y:K1[x̄])K2 with x̄ ∈ K , then

CΓ(K; x̄; ā; b̄) =df

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

CΓ(K2; x̄; ā; b̄) if x̄ �∈ K1 and y �∈ K2

CΓ,x′:K1
(K2; x̄::y; ā::x

′; b̄::x′) if x̄ �∈ K1 and y ∈ K2

CΓ(K1; x̄; b̄; ā) ˆCΓ(K2; x̄; ā; b̄) if x̄ ∈ K1 and y �∈ K2

CΓ(K1; x̄; b̄; ā)

ˆCΓ,x′:K1[b̄]
(K2; x̄::y; ā::cK1

(x′); b̄::x′) if x̄ ∈ K1 and y ∈ K2

and cK =df [f:K[ā]][x′:K1[b̄]]cK2
(f(cK1

(x′))). (Recall that, as defined in the first case

above, cK1
≡ idK1

if x̄ �∈ K1.)

Example 3.2. The following examples, where N is the constant type of natural numbers

(see Example 2.7), illustrate the above definition:

— In the following three examples, x̄ ≡ Y , ā ≡ A and b̄ ≡ B:

– K ≡ El(Y ). CΓ(K; x̄; ā; b̄) = 〈(Γ; A; B; c)〉.
– K ≡ (N)Y . CΓ(K; x̄; ā; b̄) = CΓ(Y ; x̄; ā; b̄) = 〈(Γ; A; B; c)〉.
– K ≡ (y:N)Y (y). CΓ(K; x̄; ā; b̄) = CΓ,y:N(Y (y); x̄; ā; b̄) = 〈(Γ, y:N; A(y); B(y); c)〉.

— In the following two examples, x̄ ≡ Y1, Y2, ā ≡ A1, A2 and b̄ ≡ B1, B2:

– K ≡ (Y1)Y2.

CΓ(K; x̄; ā; b̄) = CΓ(Y1; x̄; b̄; ā) ˆCΓ(Y2; x̄; ā; b̄)

= 〈(Γ; B1; A1; c1), (Γ; A2; B2; c2)〉 .

– K ≡ (y:Y1)Y2(y).

CΓ(K; x̄; ā; b̄) = CΓ(Y1; x̄; b̄; ā) ˆCΓ,x′:B1
(Y2(y); x̄::y; ā::cY1

(x′); b̄::x′)

= 〈(Γ; B1; A1; c1), (Γ, x′:B1; A2(c1(x
′)); B2(x

′); c2)〉 .

† Strictly speaking, the notion cK is not enough, but we will abuse the notation with the understanding that

different schematic letters are associated with different occurrences of a type, and different cK are associated

with different occurrences of a kind.
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Definition 3.3 (Components of schemata). Let Θ be an inductive schema in Γ, x̄ :: P̄ ,

Γ � ā :: P̄ and Γ � b̄ :: P̄ . We define CΓ(Θ; x̄; ā; b̄), the components of Θ (with respect to

x̄, ā and b̄), by induction on the structure of Θ.

— Θ ≡ X. CΓ(Θ; x̄; ā; b̄) =df 〈〉.
— Θ ≡ (y:K[x̄])Θ0.

CΓ(Θ; x̄; ā; b̄) =df

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

CΓ(Θ0; x̄; ā; b̄) if x̄ �∈ K and y �∈ Θ0

CΓ,y:K(Θ0; x̄; ā; b̄) if x̄ �∈ K and y ∈ Θ0

CΓ(K; x̄; ā; b̄) ˆCΓ(Θ0; x̄; ā; b̄) if x̄ ∈ K and y �∈ Θ0

CΓ(K; x̄; ā; b̄)

ˆCΓ,x′:K[ā](Θ0; x̄::y; ā::x
′; b̄::cK (x′)) if x̄ ∈ K and y ∈ Θ0 .

— Θ ≡ (Φ)Θ0. CΓ(Θ; x̄; ā; b̄) =df CΓ(Φ; x̄; b̄; ā) ˆCΓ(Θ0; x̄; ā; b̄).

Example 3.4. The following examples illustrate this definition:

— Θ ≡ (N)X.

CΓ(Θ; x̄; ā; b̄) = CΓ(X; x̄; ā; b̄) = 〈〉 .
— Θ ≡ (y:N)(Vect(y))X, where Vect : (N)Type is the inductive family of vectors (lists

of fixed lengths) of natural numbers.

CΓ(Θ; x̄; ā; b̄) = CΓ,y:N((Vect(y))X; x̄; ā; b̄) = CΓ,y:N(X; x̄; ā; b̄) = 〈〉 .

— Θ ≡ (Y )(X)X, where Y : Type is a parameter. This is one of the schemata that

generate the types of lists parameterised by Y (see Section 2.2).

CΓ(Θ;Y ;A;B) = CΓ(Y ;Y ;A;B) ˆCΓ((X)X;Y ;A;B) = 〈(Γ; A; B; c)〉 .

— Θ ≡ (y:A)(B(y))X, where A : Type and B : (A)Type are parameters. This is the

schema that generates Σ-types.

CΓ(Θ; 〈A,B〉; 〈A1, B1〉; 〈A2, B2〉)
= CΓ(A; 〈A,B〉; 〈A1, B1〉; 〈A2, B2〉)

ˆCΓ,x′:A1
((B(y))X; 〈A,B, y〉; 〈A1, B1, x

′〉; 〈A2, B2, cA(x
′)〉)

= 〈(Γ; A1; A2; c1), (Γ, x′:A1; B1(x
′); B2(c1(x

′)); c2)〉 .

— Θ ≡ ((Y )X)X, where Y : Type is a parameter.

CΓ(Θ;Y ;A;B) = CΓ((Y )X;Y ;B;A) ˆCΓ(X;Y ;A;B) = 〈(Γ; B; A; c)〉 .

The components of a parameterised inductive type are given by the sequence that is

the concatenation of those of the generating schemata.

Definition 3.5 (Components of parameterised inductive types). Let T be a parameterised

inductive type, parameterised by Ȳ :: P̄ and generated by Θ̄ ≡ Θ1, ...,Θm, and Γ � Ā :: P̄

and Γ � B̄ :: P̄ . Then, the components of T (wrt Ā and B̄) are given by the sequence

defined by

CΓ(T; Ā; B̄) =df CΓ(Θ1; Ȳ ; Ā; B̄) ˆ · · · ˆCΓ(Θm; Ȳ ; Ā; B̄) .
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Example 3.6. The following show the sequences of components of the parameterised

inductive types List(A) (Section 2.2) together with those in Example 2.7:

— N has no parameters. Therefore, CΓ(N; 〈〉; 〈〉) = 〈〉.
— CΓ(List;A;B) = 〈(Γ; A; B; c)〉.
— CΓ(Π;A1, B1;A2, B2) = 〈(Γ; A2; A1; c1), (Γ, y:A2; B1(c1(y)); B2(y); c2)〉.
— CΓ(Σ;A1, B1;A2, B2) = 〈(Γ;A1;A2; c1), (Γ, y:A1; B1(y); B2(c1(y)); c2)〉.
— CΓ(Union;A1, A2;B1, B2) = 〈(Γ; A1; B1; c1), (Γ; A2; B2; c2)〉.

Remark. Parameterised inductive types may have redundant parameters that, for example,

do not occur in the generating schemata. For instance, List′ might be parameterised by

Y : Type and (the redundant parameter) foo : K , and generated by the same schemata

X and (Y )(X)X. Provided K is non-empty (say with object k), List′(A, k) behaves in the

same way as List(A), and their components are the same.

3.2. Mapping functor

Having defined the components (of the premises of the subtyping rules), we are now ready

to show how the mapping functor (the coercions in the conclusions of the subtyping rules)

can be constructed from the components.

We shall give a formal definition first, and then some explanatory examples. In the

following definitions we assume that T is a parameterised inductive type:

— with parameters Ȳ : P̄ ;

— generated by Θ̄ ≡ Θ1, ...,Θm; and

— with constructors ῑ ≡ ι1, ..., ιm.

Definition 3.7 (Methods). Let T be a parameterised inductive type parameterised by

Ȳ :: P̄ , Γ � Ā :: P̄ and Γ � B̄ :: P̄ . The method MΓ[Θ] that corresponds to a generating

schema of T is defined below with the help of an intermediate notion mΓ[Φ] for strictly

positive operators Φ.

— Let Φ[x̄, X] be a strictly positive operator in context Γ, x̄ :: K̄ , and let Γ � ā :: K̄ and

Γ � b̄ :: K̄ . For any T : Type and f : Φ[ā, T ], we define mΓ[Φ](f) of kind Φ[b̄, T ] as

follows:

– Φ ≡ X.

Then, mΓ[Φ](f) =df f.

– Φ ≡ (x:K[x̄])Φ0.

Then mΓ[Φ](f) =df [x:K[b̄]]mΓ,x:K[b̄][Φ0](f(cK (x))), where cK is defined with respect

to CΓ(K; x̄; b̄; ā).
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— Let Θ ≡ (x̄::M̄)X be a generating inductive schema of T, ι : (Ȳ :: P̄ )Θ[Ȳ ,T(Ȳ )] be

the associated constructor and 〈Φi1 , . . .Φik〉 be the subsequence of M̄ that consists of

all the strictly positive operators of M̄. For any g : Θ[B̄,T(B̄)], we define MΓ[Θ](g)

of kind [Ā/Ȳ ](Θ◦[T(Ȳ ), [z:T(Ȳ )]T(B̄), ι(Ȳ )] as follows:

MΓ[Θ](g) =df [x̄ :: M̄[Ā,T(Ā)]]

[x′i1 : Φi1 [Ā,T(B̄)]]...[x′ik : Φik [Ā,T(B̄)]]

g(k1, . . . , kn)

where n is the length of M̄ and for i = 1, . . . , n,

ki ≡
{

cMi
(xi) if Mi is a small kind

mΓ[Φi](x
′
i) if Mi is a strictly positive operator

where the context Γi is defined by

Γ1 ≡ Γ

Γi+1 ≡
{

Γi, xi:Mi[Ā,T(Ā)] if xi occurs free in one of Mi+1, . . . ,Mn

Γi otherwise .

If Mi is a small kind, cMi
is defined with respect to the components

CΓ(Mi; Ȳ , xj1 , . . . , xjr ; Ā, xj1 , . . . , xjr ; B̄, kj1 , . . . , kjr )

where Γi ≡ Γ, xj1 :Mj1 [Ā,T(Ā)], . . . , xjr :Mjr [Ā,T(Ā)].

Definition 3.8 (Mapping functor). Suppose that Γ � Ā :: P̄ , Γ � B̄ :: P̄ , and

CΓ(T; Ā; B̄) = 〈(Γ1;T1;T
′
1; c1), ..., (Γn;Tn;T

′
n; cn)〉 ,

where Γi ≡ Γ,Δi (i = 1, ..., n). Let d̄ = 〈d1, ..., dn〉 be the sequence of di ≡ [Δi]ci (i = 1, ..., n).

The mapping functor of kind (T(Ā))T(B̄) is defined by

mapT[Ā, B̄, d̄] =df ET(Ā, [z:T(Ā)]T(B̄), MΓ[Θ1](ι1(B̄)), ..., MΓ[Θm](ιm(B̄)))

where MΓ[Θj](ιj(B̄)) (j = 1, ..., m) are the methods defined in Definition 3.7.

Example 3.9. For the examples of types considered in Examples 2.7 and 3.6, the mapping

functors are:

— For the constant type N, there is no parameter. The mapping functor is

mapN[] =df EN([x:N]N, 0, [x, y:N]succ(y)) ,

which is extensionally equal to the identity function on N.

— For the types of lists,

mapList[A,B, c] =df EList(A, [l:List(A)]List(B),

nil(B), [x:A][l:List(A)][l′:List(B)]cons(B, c(x), l′)) .
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— For the Π-types,

mapΠ[A1, B1, A2, B2, c1, [x2:A2]c2]

=df EΠ(A1, B1, [f:Π(A1, B1)]Π(A2, B2),

[f:(x:A1)B1(x)]λ(A2, B2, [x2:A2]c2(f(c1(x2))))) .

— For the Σ-types,

mapΣ[A1, B1, A2, B2, c1, [x1:A1]c2]

=df EΣ(A1, B1, [f:Σ(A1, B1)]Σ(A2, B2),

[x1:A1][y:B1(x1)]pair(A2, B2, c1(x1), c2(y))) .

— For the union types,

mapUnion[A1, A2, B1, B2, c1, c2]

=df EUnion(A1, B1, [x:A1 + A2]B1 + B2,

[x:A1]inl(B1, B2, c1(x)), [y:A2]inr(B1, B2, c2(y))) .

3.3. Structural subtyping rules

We are now ready to specify the structural subtyping rules (∗). Let

CΓ(T; Ā; B̄) = 〈(Γ1;T1;T
′
1; c1), . . . , (Γn;Tn;T

′
n; cn)〉,

where Γi ≡ Γ,Δi (i = 1, ..., n), and let d̄ = 〈d1, ..., dn〉 be the sequence of di ≡ [Δi]ci. One of

the subtyping rules for T can be written down immediately:

Γ � Ā :: P̄ Γ � B̄ :: P̄

Γ1 � T1 <c1 T
′
1 · · · Γn � Tn <cn T

′
n

Γ � T(Ā) <mapT[Ā,B̄,d̄] T(B̄)

The others are formed from this by performing the following on some, but not all, of the

premises:

— Change the premise Γi � Ti <ci T
′
i to Γi � Ti = T ′i : Type; and

— Replace ci with idTi ≡ [x:Ti]x wherever it occurs in the rest of the rule.

When a parameterised inductive type has k components, there are 2k − 1 structural

subtyping rules for T.

Example 3.10. For Π-types (see Examples 2.7, 3.6 and 3.9), the structural subtyping rules

are (omitting the well-typedness judgements in the premises):

Γ � A2 <c1 A1 Γ, x2:A2 � B1(c1(x2)) <c2 B2(x2)

Γ � Π(A1, B1) <map1
Π

Π(A2, B2)

Γ � A2 = A1 : Type Γ, x2:A2 � B1(idA2
(x2)) <c2 B2(x2)

Γ � Π(A1, B1) <map2
Π

Π(A2, B2)
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Γ � A2 <c1 A1 Γ, x2:A2 � B1(c1(x2)) = B2(x2) : Type

Γ � Π(A1, B1) <map3
Π

Π(A2, B2)
.

The mapping operations in the above rules are:

map1
Π ≡ mapΠ[A1, B1, A2, B2, c1, [x2:A2]c2]

≡ EΠ(A1, B1, [f:Π(A1, B1)]Π(A2, B2),

[f:(x:A1)B1(x)] λ(A2, B2, [x2:A2]c2(f(c1(x2)))))

map2
Π ≡ mapΠ[A1, B1, A2, B2, idA2

, [x2:A2]c2]

≡ EΠ(A1, B1, [f:Π(A1, B1)]Π(A2, B2),

[f:(x:A1)B1(x)] λ(A2, B2, [x2:A2]c2(f(idA2
(x2)))))

map3
Π ≡ mapΠ[A1, B1, A2, B2, c1, [x2:A2]idB1(c1(x2))]

≡ EΠ(A1, B1, [f:Π(A1, B1)]Π(A2, B2),

[f:(x:A1)B1(x)] λ(A2, B2, [x2:A2]idB1(c1(x2))(f(c1(x2)))))

where map1
Π ≡ mapΠ[A1, B1, A2, B2, c1, [x2:A2]c2] is as given in Example 3.9 and map2

Π

and map3
Π are obtained from map1

Π by replacing (not substituting) c1 with idA2
and c2

with idB1(c1(x2)), respectively.

Remark (Non-applicable rules). As mentioned above, there are 2k − 1 rules if T has k

components. Some of these rules may be non-applicable. For example, if T is generated

by a schemata including ((Y )Y )X, where Y : Type is the only parameter, then one of the

rules is (omitting the well-typedness judgements)

Γ � A <c B Γ � B <d A

Γ � T(A) <mapT T(B)
.

Since the premises are contradictory (and never satisfied), the above rule can never be

applied.

As another example, consider the inductive type BooList parameterised by Y : Type

and generated by the schemata X, (Y )(X)X and (Y )(X)X (two repeated schemata). This

would give the following rules

A <c B A <d B

BooList(A) < BooList(B)

A <c B A = B

BooList(A) < BooList(B)

A = B A <d B

BooList(A) < BooList(B)

where the mapping coercions in the conclusions are omitted. The first of the above rules

is applicable only when c = d and the other two are non-applicable.

3.4. χ-rules: functorial laws of equality

The functorial laws express the fact that the mapping functor is distributive with respect

to the composition of ‘morphisms’. In the simplest case, a morphism is just a functional

operation and the distributivity concerned deals with the composition of two functional

operations (c.f., the example for List in the introduction). In the general case, a morphism

is a sequence of objects that correspond to the schematic letters of the components of the

generating schemata.
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Definition 3.11 (Morphisms). Let T be an inductive type parameterised by Ȳ :: P̄ ,

Γ � Ā :: P̄ and Γ � B̄ :: P̄ . Suppose that the sequence of components

〈(Γ1, T1, T
′
1, c1), ..., (Γn, Tn, T

′
n, cn)〉 ,

where Γi ≡ Γ, x̄i:K̄i, is one of the following:

1 CΓ(K; x̄; Ā; B̄), where K is a small kind;

2 CΓ(Θ; x̄; Ā; B̄), where Θ is an inductive schema; or

3 CΓ(T; Ā; B̄).

Then a sequence k̄ ≡ k1, ..., kn is called a

1 K-morphism (from Ā to B̄ with respect to x̄), notation Γ � k̄ : Ā→x̄
K B̄,

2 Θ-morphism (from Ā to B̄ with respect to x̄), notation Γ � k̄ : Ā→x̄
Θ B̄, or

3 T-morphism (from Ā to B̄), notation Γ � k̄ : Ā→T B̄,

respectively, if the judgements obtained by replacing ci by ki(x̄i) from the judgements

Γ, x̄i:K̄i � ci : (Ti)T
′
i (i = 1, ..., n) are all derivable.

The following example explains the above definition, in particular, the process of

replacement.

Example 3.12. Consider the parameterised inductive type (of triples) Σ3 parameterised

by A : Type, B : (A)Type and C : (x:A)(B(x))Type and generated by the schema

(x : A)(y : B(x))(z : C(x, y))X. Its components are

CΓ(Σ3;A1, B1, C1;A2, B2, C2) = 〈 (Γ; A1; A2; c),

(Γ, x:A1; B1(x); B2(c(x)); d),

(Γ, x:A1, y:B1(x); C1(x, y); C2(c(x), d(y)); e) 〉 .

In this case, 〈f, g, h〉 is a Σ3-morphism from 〈A1, B1, C1〉 to 〈A2, B2, C2〉 if the following

judgements are derivable:

Γ � f : (A1)A2,

Γ, x:A1 � g(x) : (B1(x))B2(f(x))

Γ, x:A1, y:B1(x) � h(x, y) : (C1(x, y))C2(f(x), g(x, y)) .

For example, the last judgement above is obtained from

Γ, x:A1, y:B1(x) � e : (C1(x, y))C2(c(x), d(y))

by replacing c with f, d with g(x) and e with h(x, y), respectively.

Notation. We shall adopt the following notation for sequences, where ā = 〈a1, ..., an〉 and

b̄ = 〈b1, ..., bn〉:

— [x:K]ā = 〈[x:K]a1, ..., [x:K]an〉.
— ā(b̄) = 〈a1(b1), ..., an(bn)〉.

In the special case where b1 = ... = bn = b, we write ā(b) for ā(b̄).
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Definition 3.13 (Composition of morphisms). Let T be an inductive type parameterised

by Ȳ :: P̄ and Ā, B̄, C̄ :: P̄ .

— Composition of K-morphisms:

Let K be a small kind, Γ � k̄ : Ā →x̄
K B̄ and Γ � l̄ : B̄ →x̄

K C̄ . We define the

K-morphism l̄ • k̄ such that Γ � l̄ • k̄ : Ā→x̄
K C̄ using induction on the structure of K:

– K ≡ El(D[x̄]).

l̄ • k̄ =df

{

〈〉 if x̄ �∈ D (and hence k̄ = l̄ = 〈〉)
d′ ◦ d if x̄ ∈ D (and hence k̄ = 〈d〉 and l̄ = 〈d′〉)

where Γ � d : (D[Ā)D[B̄] and Γ � d′ : (D[B̄])D[C̄].

– K ≡ (y:K1[x̄])K2.

l̄•k̄ =df

⎧

⎪

⎪

⎨

⎪

⎪

⎩

l̄ • k̄ if x̄ �∈ K1 and y �∈ K2 (1)

[y:K1]l̄(y) • k̄(y) if x̄ �∈ K1 and y ∈ K2 (2)

(k̄1 • l̄1) ˆ (l̄2 • k̄2) if x̄ ∈ K1 and y �∈ K2 (3)

(k̄1 • l̄1) ˆ [z:K1[C̄]]l̄2(z) • k̄2([l̄1/c̄]cK1
(z)) if x̄ ∈ K1 and y ∈ K2 (4)

where, in the four different cases above, we have:

(1) Γ � k̄ : Ā→x̄
K2
B̄ and Γ � l̄ : B̄ →x̄

K2
C̄ .

(2) Γ, y:K1 � k̄(y) : Ā→x̄
K2
B̄ and Γ, y:K1 � l̄(y) : B̄ →x̄

K2
C̄ .

(3) k̄ = k̄1 ˆ k̄2 and l̄ = l̄1 ˆ l̄2 such that

Γ � k̄1 : B̄ →x̄
K1
Ā

Γ � l̄1 : C̄ →x̄
K1
B̄

Γ � k̄2 : Ā→x̄
K2
B̄

Γ � l̄2 : B̄ →x̄
K2
C̄ .

(4) k̄ = k̄1 ˆ k̄2 and l̄ = l̄1 ˆ l̄2 such that

Γ � k̄1 : B̄ →x̄
K1
Ā

Γ � l̄1 : C̄ →x̄
K1
B̄

Γ, y:K1[B̄] � k̄2(y) : Ā::[k̄1/c̄]cK1
(y)→x̄::y

K2
B̄::y

Γ, z:K1[C̄] � l̄2(z) : B̄::[l̄1/c̄]cK1
(z)→x̄::z

K2
C̄::z

where c̄ are the schematic letters introduced in the components of K1.

— Composition of Θ-morphisms:

Let Θ be an inductive schema. Suppose Γ � k̄ : Ā →x̄
Θ B̄ and Γ � l̄ : B̄ →x̄

Θ C̄ . We

define the Θ-morphism l̄ • k̄ such that Γ � l̄ • k̄ : Ā →x̄
Θ C̄ using induction on the

structure of Θ:

– Θ ≡ X.

Then, k̄ = l̄ = 〈〉 and we define l̄ • k̄ =df 〈〉.
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– Θ ≡ (y:K[x̄])Θ0.

l̄ • k̄ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

l̄ • k̄ if x̄ �∈ K and y �∈ Θ0 (1)

[y:K]l̄(y) • k̄(y) if x̄ �∈ K and y ∈ Θ0 (2)

(l̄1 • k̄1) ˆ (l̄2 • k̄2) if x̄ ∈ K and y �∈ Θ0 (3)

(l̄1 • k̄1) ˆ [x:K[Ā]]l̄2([k̄1/c̄]cK (x)) • k̄2(x) if x̄ ∈ K and y ∈ Θ0 (4)

where, in the four different cases above, we have:

(1) Γ � k̄ : Ā→x̄
Θ0
B̄ and Γ � l̄ : B̄ →x̄

Θ0
C̄ .

(2) Γ, y:K � k̄(y) : Ā→x̄
Θ0
B̄ and Γ, y:K � l̄(y) : B̄ →x̄

Θ0
C̄ .

(3) k̄ = k̄1 ˆ k̄2 and l̄ = l̄1 ˆ l̄2 such that

Γ � k̄1 : Ā→x̄
K B̄

Γ � l̄1 : B̄ →x̄
K C̄

Γ � k̄2 : Ā→x̄
Θ0
B̄

Γ � l̄2 : B̄ →x̄
Θ0
C̄

(4) k̄ = k̄1 ˆ k̄2 and l̄ = l̄1 ˆ l̄2 such that l̄ = l̄1 ˆ l̄2 such that

Γ � k̄1 : Ā→x̄
K B̄

Γ � l̄1 : B̄ →x̄
K C̄

Γ, x:K[Ā] � k̄2(x) : Ā::x→x̄::x
Θ0

B̄::[k̄1/c̄]cK (x)

Γ, y:K[B̄] � l̄2(y) : B̄::y →x̄::y
Θ0

C̄::[l̄1/c̄]cK (y)

where c̄ are the schematic letters introduced in the components of K .

– Θ ≡ (Φ)Θ0.

Then k̄ = k̄1 ˆ k̄2 and l̄ = l̄1 ˆ l̄2 such that l̄ = l̄1 ˆ l̄2 such that

Γ � k̄1 : B̄ →x̄
Φ Ā

Γ � l̄1 : C̄ →x̄
Φ B̄

Γ � k̄2 : Ā→x̄
Θ0
B̄

Γ � l̄2 : B̄ →x̄
Θ0
C̄ .

We define

l • k =df (k̄1 • l̄1) ˆ (l̄2 • k̄2) .

— Composition of T-morphisms:

Suppose Γ � k̄ : Ā →T B̄ and Γ � l̄ : B̄ →T C̄ . We have that k̄ = k̄1 ˆ · · · ˆ k̄m and

l̄ = l̄1 ˆ · · · ˆ l̄m such that Γ � k̄i : Ā →Ȳ
Θi
B̄ and Γ � l̄i : B̄ →Ȳ

Θi
C̄ . We define the

T-morphism l̄ • k̄ such that Γ � l̄ • k̄ : Ā→T C̄ by

l̄ • k̄ =df (l̄1 • k̄1) ˆ · · · ˆ (l̄n • k̄n) .

Example 3.14. The following are some examples of morphisms:

— For the parameterised inductive types List generated by schemata X and (Y )(X)X,

the List-morphisms are just functional operations f : (A)B and g : (B)C , and their

composition is just g ◦ f.
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— Let Ā ≡ A1, A2, B̄ ≡ B1, B2 and C̄ = C1, C2.

– For the Π-types generated by schema ((x:Y1)Y2(x))X the morphisms Γ � k̄ : Ā→Π

B̄ and Γ � l̄ : B̄ →Π C̄ are pairs 〈k1, k2〉 and 〈l1, l2〉, respectively. Their composition

yields l̄ • k̄ = 〈k1 ◦ l1, [z:C1]l2(z) ◦ k2(l1(z))〉.
– For the Σ-types generated by the schema (x:Y1)(Y2(x))X, the morphisms Γ � k̄ :

Ā →Σ B̄ and Γ � l̄ : B̄ →Σ C̄ are pairs 〈k1, k2〉 and 〈l1, l2〉, respectively. Their

composition yields l̄ • k̄ = 〈l1 ◦ k1, [x:A1]l2(k1(x)) ◦ k2(x)〉.

χ-rules

With the composition operation, we can now describe the following χ-rule corresponding

to the composition of morphisms:

(χ)
Γ � k̄ : Ā→T B̄ Γ � l̄ : B̄ →T C̄ Γ � a :T(Ā)

Γ � mapT[Ā, C̄, l̄ • k̄](a) = mapT[B̄, C̄, l̄]
(

mapT[Ā, B̄, k̄](a)
)

:T(C̄)
.

The simplest example is to consider the parameterised inductive types List. The above

χ-rule gives for l : List(A)

mapList[A,C, c
′ ◦ c](l) = mapList[B,C, c

′] (mapList[A,B, c](l)) ,

which yields the equality mapList[A,C, c
′ ◦ c] = mapList[B,C, c

′] ◦mapList[A,B, c] (see the

introduction for an explanation). For the other cases, such as Π-types and Σ-types, one

can easily write down the corresponding results from Example 3.14.

We can also define the identity morphisms

IdT[Ā] :T(Ā)→T T(Ā) ,

and, similarly, we can write down the χ-rule corresponding to the identity morphism

declaring that mapT[Ā, Ā, IdT[Ā]](a) = a : T(Ā) for a : T(Ā). There is a categorical

structure here: for T parameterised by Ȳ :: P̄ , there is a category whose objects are the

sequences Ā :: P̄ and whose arrows are the T-morphisms, with the identity given by the

identity morphisms and the composition given by Definition 3.13. In such a categorical

structure, the mapping that maps the object Ā to T(Ā) and the arrow k̄ to mapT[Ā, B̄, k̄]

becomes a functor in the presence of the χ-rules (for identity and composition), which

corresponds to the functorial laws of computational equality for such a mapping.

In this paper, only the rule (χ) corresponding to composition is included in our system

(and used in proving that transitivity is admissible for the structural subtyping rules in

Section 5), and not the rule corresponding to the identity morphisms. The reason is

that we consider the proper subtyping relation A <c B rather than the relation A �c B.

If the latter were used to formulate our system (and hence identity operations would

become coercions; see Luo and Soloviev (1999)), the χ-rule corresponding to the identity

morphisms would be needed.

Remark. Some researchers may be reluctant to add extensional equality rules to an

intensional type theory or might even consider it as problematic (for example, from

philosophical considerations). We are not taking a view against this. Besides their use in
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considering subtyping, another ‘justification’ for introducing the χ-rules is that they make

the mapping functors into true functors in the sense of category theory.

4. Injectivity of inductive type constructors

In this section, we shall prove that the type constructors of parameterised inductive types

are injective with respect to computational equality. More precisely, for any parameterised

inductive type T with parameters Ȳ :: P̄ , the rule

(injectivity)
Γ � T(Ā) =T(B̄) : Type

Γ � Ā = B̄ :: P̄

is admissible under certain restrictions on computation rules. This injectivity result will

be used in the proofs of the properties of the subtyping rules in the next section.

4.1. Injectivity: an informal discussion

The above injectivity result looks easy to prove, but it is not. The injectivity rule is

admissible in a type theory such as the intensional type theory where the Church–Rosser

property holds (the Church–Rosser property implies the injectivity result). However, it is

not known whether this is the case for a type theory with the extensional χ-rules: meta-

theoretic properties, such as Church–Rosser, have not been proved. As the injectivity

result plays an essential role in our proofs in the next section, a proof of injectivity is

required†.

Intuitively, injectivity holds, even with the χ-rules, because the only way to compute

withinT(Ā) is to compute within one of the terms of Ā. However, the proof is complicated

by the fact that βη-equalities hold in the logical framework LF. An attempt to prove

it directly in LF has failed: it would use a result like Church–Rosser for βη-reduction,

which does not hold in general for type theories specified in LF‡.

We could try to prove injectivity for an individual type theory (say, UTT extended

with the χ-rules) by attempting to prove Church–Rosser for its reduction relation. This

property is, however, difficult to prove for a reduction relation that includes χ-reduction;

and, besides, we prefer to establish general results for type theories specified in LF. We

shall prove that injectivity holds for every type theory that can be specified in LF, provided

it involves no computation rules between types.

The tool we use for this purpose is the lambda-free logical framework TF (Aczel 2001;

Adams 2004) – see Section 2.1.2 for a brief introduction. This is a logical framework that

involves no computation at the logical framework level. Every βη-equivalence class of

† Thanks are due to Conor McBride who pointed out to us that a direct proof of injectivity is possible.

Although the proof as presented here is indirect (through TF) and more complicated, because of the λ-terms

and the associated β-equality in LF, it was his idea to consider a proof of injectivity by introducing in an

inductive proof a notion more general than derivability.
‡ To see that this is the case, suppose that A and B are computationally equal but not βη-equal (for example,

A ≡ Vect(2 + 2) and B ≡ Vect(4)). Then, the term [x:A]([x:B]x)(x) β-reduces to [x:A]x and η-reduces to

[x:B]x, which have no common βη-reduct.
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objects in LF corresponds to a unique term in TF. In TF therefore, it is true that the only

way to compute with T(Ā) is to compute within one of the arguments Ā. Injectivity is

therefore much easier to prove in TF. From the fact that LF is a conservative extension

of TF, we can conclude that injectivity holds in LF too.

Later in this section we assume that in declaring the type theory under consideration

no computation rules between types are declared. That is, for every declared computation

rule

k = k′ : T for ki : Ki (i = 1, . . . , n) .

T is of the form El(A). (Recall that we have already stipulated that one cannot declare

equalities between objects of dependent product kinds (Luo 1999).) This restriction

excludes type universes as their formulation would introduce computational equalities

between types. However, such type theories do include Martin-Löf’s type theory without

type universes or UTT without type universes. In particular, the computation rules for the

parameterised inductive types in Section 2.2 and the χ-rules in Section 3.4 are all allowed.

4.2. Conservativity of LF over TF

LF is a conservative extension over TF. In the following, we describe the two translations

NF : LF→ TF

lift : TF→ LF ,

and prove their properties, from which the conservativity result follows.

4.2.1. Translation NF from LF to TF This translation consists of reducing each object

of LF to its β-normal and η-long form (erasing kind labels as we go). This process will

be guided by the arities of TF (see Section 2.1.2), which tell us, in particular, how far to

η-expand each variable and constant.

We begin by assigning an arity Ar (K) to each kind K of LF as follows:

Ar (Type) ≡ Ar (El(A)) ≡ 0

Ar
(

(x:K)K ′
)

≡ (α, β1, ..., βn)

where Ar (K) = α and Ar
(

K ′
)

= (β1, ..., βn). Furthermore, we assume that TF and LF use

the same sets of variables and constants; in particular, every variable and constant has

an associated arity, and that

— whenever a variable declaration x:K appears (in a context, λ-object or Π-kind), the

variable x has arity Ar (K);

— whenever a constant declaration c:K is made, the constant c has arity Ar (K).

Note that the equality rules for λ-objects and Π-kinds do not cause any problems for this

convention, as it is easy to see that, whenever Γ � K = K ′ is derivable, Ar (K) ≡ Ar
(

K ′
)

.
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Definition 4.1 (Translation NF). NF is defined as follows:

— For every object M of LF, the corresponding object NF(M) of TF is defined as

NF(M) =df

⎧

⎨

⎩

zη if M ≡ z, with z a variable or constant

[x]NF(k) if M ≡ [x:K]k

NF(k1){NF(k2)} if M ≡ k1(k2) .

— For every kind K of LF, the corresponding kind NF(K) of TF is defined as

NF(K) =df

⎧

⎨

⎩

Type if K ≡ Type
El(NF(A)) if K ≡ El(A)

(x : NF(K1))NF(K2) if K ≡ (x:K1)K2 .

The definition of NF is extended to contexts and judgements as usual.

Suppose we have specified a type theory T in LF by declaring constants and

computation rules. Then there is a set of declarations we can make in TF that yield

‘the same’ type theory as T :

— For every constant declaration c : K made in LF, declare c : NF(K) in TF.

— For every computation rule declared in LF by

k1 = k2 : T for x̄ : J̄ ,

declare in TF the computation rule

NF(k1) = NF(k2) : NF(T ) for x̄ : NF(J̄) .

We shall refer to this TF type theory as the normalised form of the LF type theory T .

The translation NF is not defined on every expression of the raw syntax; for example,

NF(k1(k2)) is only defined if NF(k1) and NF(k2) have appropriate arities. However, it is

defined on every typable object, and is a sound translation from LF to TF, as shown

by the theorem below, which is proved using the following lemma on how substitution

behaves under the translation.

Lemma 4.2. If NF(k) and NF(k′) are defined, and NF(k) has the same arity as x, then

NF([k/x]k′) is defined and NF([k/x]k′) ≡ {NF(k)/x}NF(k′).

Proof. The proof is by structural induction, using Proposition 2.3(1) when k ≡ x or

k ≡ k1k2.

Theorem 4.3 (Soundness of NF). Suppose we have declared a type theory T in LF, and

its normalised form in TF is T0. If the judgement J is derivable in T , then NF(J) is

well-defined and derivable in T0.

Proof. The proof is by induction on the derivation of J and using the properties in

Proposition 2.3. As an illustration, we will only consider the case where the last rule of

the derivation is

Γ � f : (x:K)K ′ Γ � k : K

Γ � f(k) : [k/x]K ′
.
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The induction hypothesis gives the following judgements in T0:

NF(Γ) � NF(f) : (x:NF(K))NF(K ′) (#)

NF(Γ) � NF(k) : NF(K) .

Note that NF(f) must therefore have the same arity as (x:NF(K))NF(K ′), and so have

the form [x]N0. Therefore, NF(f(k)) is well defined and is the object {NF(k)/x}N0. The

judgement (#) above is

NF(Γ), x:NF(K) � N0 : NF(K ′) ,

so Proposition 2.3(4) gives

NF(Γ) � {NF(k)/x}N0 : {NF(k)/x}NF(K ′) ,

which, by Lemma 4.2, is what was required.

4.2.2. Translation lift from TF to LF This translation lifts entities in TF to LF and

consists of little more than inferring the kind labels in the λ-abstractions in LF. To do

this for an object M, we need to know the context in which we are working (to provide

the expected kinds). Furthermore, we need to know the kinds of the possible arguments

of an object, and this information will be given by a context of the same arity as that of

the object.

Definition 4.4 (Translation lift). The translation lift from TF to LF is defined by

simultaneous induction:

— For any contexts Γ and Δ and any object M, where Δ and M have the same arity

(with the intention that in TF, Γ � M : (Δ)T for some T ), the corresponding LF

object liftΔΓ (M) is defined as:

– If M ≡ zP1...Pn, where z : (ȳ:Γ̄)T , with Γi ≡ (Δi)Ti (i = 1, ..., n), is either a variable

in Γ or a declared constant, then

lift
〈〉
Γ (M) =df z(lift

Δ1

Γ (P1) , ..., lift
Δn
Γ (Pn)) .

– If M ≡ [x]M0, then liftx:K,ΔΓ (M) =df [x:liftΓ(K)]liftΔΓ,x:K (M0).

— For any kind K and context Γ in TF, the corresponding LF kind liftΓ(K) is defined

by

liftΓ(M) =df

⎧

⎨

⎩

Type if M ≡ Type
El(lift

〈〉
Γ (A)) if M ≡ El(A)

(x:liftΓ(K))liftΓ,x:K(K ′) if M ≡ (x:K)K ′ .

The lifting operation is extended to contexts by

lift(〈〉) ≡ 〈〉
lift(Γ, x:K) ≡ lift(Γ), x:liftΓ(K)

and to judgements by

lift(Γ valid) ≡ lift(Γ) valid

lift(Γ �M : K) ≡ lift(Γ) � lift
〈〉
Γ (M) : liftΓ(K)
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lift(Γ �M = N : K) ≡ lift(Γ) � lift
〈〉
Γ (M) = lift

〈〉
Γ (N) : liftΓ(K) .

The soundness of the lifting operation is shown by Theorem 4.6 below, which is proved

using the following lemma on how substitution behaves under the translation.

Lemma 4.5. Let M be an object, K be a kind, x be a variable and Δ be a context, all of

the same arity α. Then:

1 [liftΔΓ (M) /x]liftΘΓ,x:(Δ)T (N)→∗β lift
{M/x}Θ
Γ

(

{M/x}N
)

.

2 [liftΔΓ (M) /x]liftΓ,x:(Δ)T (K)→∗β liftΓ({M/x}K).

Proof. The proof is by simultaneous induction on α and the structures of N and K .

Theorem 4.6 (Soundness of lift). Suppose we have declared a type theory T in LF, and its

normalised form in TF is T0. If the judgement J is derivable in T0, then lift(J) is derivable

in T .

Proof. The proof is by induction on derivations, making repeated use of Lemma 4.5

and Theorem 2.1.

4.2.3. Conservativity of LF over TF The following theorem establishes the conservativity

result. More specifically, it shows that, up to judgemental equality, the translation from

TF to LF (lift) is a left inverse of that from LF to TF (NF).

Theorem 4.7 (conservativity of LF over TF). Assume that type theory T has been declared

in LF.

1 If Γ � k : K in T , then NF(K) is defined and has the form NF(K) ≡ (Δ)T , and,

furthermore, liftΔNF(Γ) (NF(k)) is defined and Γ � k = liftΔNF(Γ) (NF(k)) : K in T .

2 If Γ � K kind in T , then liftNF(Γ)(NF(K)) is defined and Γ � K = liftNF(Γ)(NF(K)) in

T .

Proof. Both parts are proved by induction on the derivation of the premise. We will

only deal here with the case where the following rule is the last one in the derivation:

Γ � f : (x:K)K ′ Γ � k : K

Γ � f(k) : [k/x]K ′
.

Let NF(K) ≡ (Δ)T and NF(K ′) ≡ (Δ′)T ′. Then, by Lemma 4.2, NF([k/x]K ′) ≡
({NF(k)/x}Δ′){NF(k)/x}T ′. By the induction hypothesis, we have

Γ � f = liftx:NF(K),Δ′

NF(Γ) (NF(f)) : (x:K)K ′

Γ � k = liftΔNF(Γ) (NF(k)) : K ,

so

Γ � f(k) = liftx:NF(K),Δ′

NF(Γ) (NF(f)) (liftΔNF(Γ) (NF(k))) : [k/x]K ′ .

The result will then follow by Subject Reduction (Theorem 2.1) if we can show

liftx:NF(K),Δ′

NF(Γ) (NF(f)) liftΔNF(Γ) (NF(k))→∗β lift
{NF(k)/x}Δ′
NF(Γ)

(

NF(f){NF(k)}
)

z .
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To prove this, we shall prove more generally that

liftx:(Δ)K,Δ′

Γ (M) liftΔΓ (N)→∗β lift
{N/x}Δ′
Γ

(

M{N}
)

.

Let M ≡ [x]M0. Then

liftx:(Δ)K,Δ′

Γ ([x]M0) liftΔΓ (N) ≡ ([x:liftΓ((Δ)K)]liftΔ
′

Γ,x:(Δ)K (M0))lift
Δ
Γ (N)

→β [liftΔΓ (N) /x]liftΔ
′

Γ,x:(Δ)K (M0)

→∗β lift
{N/x}Δ′
Γ

(

{N/x}M0

)

(Lemma 4.5)

≡ lift
{N/x}Δ′
Γ

(

M{N}
)

.

This completes the proof.

Remark. It is also true that NF is a left inverse of lift up to syntactic identity (that is,

NF(liftΔΓ (M)) ≡M). But we shall not need this fact here.

4.3. Proof of injectivity

We shall prove that the injectivity property holds in TF, then use the conservativity result

above to deduce that the corresponding property holds in LF also.

Theorem 4.8 (Injectivity in TF). Assume we have declared a type theory in TF that

involves no computation rules between types and includes the constant declaration

T : (Ȳ :: P̄ )Type .

If Γ � T(Ā) = N : Type or Γ � N = T(Ā) : Type, then N ≡ T(B̄) for some terms B̄

such that Γ � Ā = B̄ :: P̄ .

Proof. The proof is by induction on derivations of the premise in TF. We have the

following cases:

— Rule (CA) of ‘constant application’ (in Figure 2):

Γ � Ā = B̄ :: P̄

Γ � T(Ā) =T(B̄) : Type
.

The result is immediate from the induction hypothesis.

— The reflexivity rule (R):

Γ � T(Ā) : Type

Γ � T(Ā) =T(Ā) : Type
.

Inverting the premise, we have Γ � Ā :: P̄ for some P̄ , and hence Γ � Ā = Ā :: P̄ by

(R).

— The symmetry rule (S).

The result is immediate.
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— The transitivity rule (T ):

Γ � T(Ā) = M : Type Γ �M = N : Type

Γ � T(Ā) = N : Type
.

By the induction hypothesis, M ≡ T(B̄) and N ≡ T(C̄) such that Γ � Ā = B̄ :: P̄

and Γ � B̄ = C̄ :: P̄ . Therefore, Γ � Ā = C̄ :: P̄ by (T ).

Remark. The restriction that there is no computation rule declared between types is

important for the above proof to go through. If we did not impose this restriction, we

would have to consider a case where there are declared equalities between types, and the

proof would not go through as stated. For instance, if one declared an equation

List(N) = List(Unit) : Type

where Unit is the unit type with one object, it is obvious that we could not prove that

N = Unit : Type. Having said this, however, we believe that the injectivity theorem is still

true in more restricted cases, such as the introduction of universes.

Finally, the following corollary shows that the inductive type constructors are injective.

Corollary 4.9 (Injectivity in LF). Assume we have declared a type theory T in LF

that includes no computation rules between types and includes the declarations for a

parameterised inductive type T parameterised by Ȳ : P̄ , as in Section 2.2. If Γ � T(Ā) =

T(B̄) : Type, then Γ � Ā = B̄ :: P̄ .

Proof. We declare in TF the normalised form of T ; in particular, we make the

declaration

T : (Ȳ :: NF(P̄ ))Type .

We use �TF for the judgements in TF thus extended, and �LF for the judgements in LF

with T declared. Then we have

Γ �LF T(Ā) =T(B̄) : Type =⇒ NF(Γ) �TF T(NF(Ā)) =T(NF(B̄)) : Type

(Theorem 4.3)

=⇒ NF(Γ) �TF NF(Ā) = NF(B̄) :: NF(P̄ )

(Theorem 4.8)

=⇒ lift(NF(Γ)) �LF liftNF(P̄ )
NF(Γ)

(

NF(Ā)
)

=

liftNF(P̄ )
NF(Γ)

(

NF(B̄)
)

:: liftNF(Γ)(NF(P̄ ))

(Theorem 4.6) .

By Theorem 4.7, we have

�LF Γ = lift(NF(Γ))

Γ �LF P̄ = liftNF(Γ)(NF(P̄ ))

Γ �LF Ā = liftNF(P̄ )
NF(Γ)

(

NF(Ā)
)

:: P̄

Γ �LF B̄ = liftNF(P̄ )
NF(Γ)

(

NF(B̄)
)

:: P̄ .

Therefore, we have Γ �LF Ā = B̄ :: P̄ .
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Remark. It may appear that this use of TF is just a technical trick for proving the

injectivity of inductive type constructors. However, we believe that lambda-free logical

frameworks such as TF are more than that: they are a powerful tool for proving results

about logical frameworks. Proving the conservativity of LF over TF is a one-time-only

cost. We expect many results to be easier to prove in TF than in LF; the results can then

be lifted to LF in the manner of the proof of Corollary 4.9.

5. Meta-theoretic properties of structural subtyping

In this section we show that for a type theory T (such as Martin-Löf’s type theory

or UTT) without universes, the structural subtyping rules for parameterised inductive

types, as defined in Section 3.3, are coherent and satisfy the property that transitivity is

admissible in the presence of the functorial χ-rules for computational equality.

We shall make the following assumptions and use the corresponding notational

conventions:

— C denotes a WDC (set of well-defined judgements of coercions), representing ‘the

existing derivable subtyping judgements’.

— PIT denotes an arbitrary set of parameterised inductive types such that:

– If Γ � A <c B ∈ C, then neither A nor B is computationally equal to a T-type for

T ∈ PIT.

— RPIT denotes the set of subtyping rules consisting of the (C)-rule (see the end of

Section 2.3) and the structural subtyping rules for the parameterised inductive types

in PIT (as given in Section 3.3).

— CPIT denotes the set of subtyping judgements derivable in Tχ[RPIT]0, where Tχ is the

type theory T extended with the χ-rules, while T is a type theory specified in LF

without equality declarations between types (see Section 4.1 for discussions on this

last restriction).

What we shall show in the following subsection is that CPIT is also a WDC, that is, after

being extended by the subtyping rules for the parameterised inductive types in PIT, the

resulting type theory still has the good properties, and, in particular, it is coherent and

satisfies the property of transitivity elimination.

Considering PIT to be an arbitrary set has important practical consequences with

regard to the ‘stepwise enlargement’ of the set of coercive judgements. See Section 5.2

below for further discussion.

5.1. Coherence, admissibility of transitivity and other properties

In this subsection we present the lemmas and theorems that show that CPIT is a WDC.

First, it is not difficult to prove the following lemma.

Lemma 5.1.

1 Γ � A <c B ∈ CPIT implies that Γ � A : Type, Γ � B : Type and Γ � c : (A)B.

2 Γ � A <c A �∈ CPIT for any Γ, A and c.

3 If Γ � A <c B ∈ CPIT, Γ′ valid, and Γ ⊆ Γ′, then Γ′ � A <c B ∈ CPIT.
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Proof. We use induction on derivations. We only note that in proving the second clause

we need to prove the slightly more general statement

if Γ � A <c B ∈ CPIT, then Γ �� A = B : Type,

and use the injectivity result (Corollary 4.9). For example, for the non-applicable rule

Γ � A <c B Γ � B <d A

Γ � T(A) <mapT T(B)

as considered in the remark at the end of Section 3.3, we use the injectivity result to

show that T(A) = T(B) would imply that A = B, which is impossible by the induction

hypothesis.

The following theorem shows that the coherence property still holds after the addition

of the structural subtyping rules for the parameterised inductive types in PIT.

Theorem 5.2 (Coherence). The following rule is admissible in Tχ[RPIT]0:

Γ � A <c B Γ � A <c′ B

Γ � c = c′ : (A)B
.

Proof. We will prove that the following slightly more general rule is admissible in

Tχ[RPIT]0:

Γ � A <c B Γ � A′ <c′ B
′ Γ � A = A′ : Type Γ � B = B′ : Type

Γ � c = c′ : (A)B
.

Let J and J ′ be Γ � A <c B and Γ � A′ <c′ B
′, respectively. Then there are two

possibilities:

— J and J ′ are both in C (the original WDC).

— For some T ∈ PIT and some Ā, B̄, Ā′ and B̄′:

Γ � A =T(Ā) : Type Γ � B =T(B̄) : Type

Γ � A′ =T(Ā′) : Type Γ � B′ =T(B̄′) : Type .

The former case is trivial (by the assumption that C is a WDC), and we prove the latter

by induction on derivations. In the latter case, the derivations of J and J ′ must be of the

following forms, respectively:

Derivation of J:
J1, ..., Jn

Γ�T(Ā)<dT(B̄)

(applications of congruence)
Γ�A<cB

Derivation of J ′:
J ′1, ..., J ′

n′
Γ�T(Ā′)<d′T(B̄′)

(applications of congruence)
Γ�A′<c′B

′

where we have Γ � c = d : (A)B and Γ � c′ = d′ : (A′)B′.
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As Γ � A = A′ : Type and Γ � B = B′ : Type, we have Γ � T(Ā) =T(Ā′) : Type and

Γ � T(B̄) = T(B̄′) : Type. By the injectivity result (Corollary 4.9), Γ � Ā = Ā′ : P̄ and

Γ � B̄ = B̄′ : P̄ , where P̄ are the types of the parameters of T.

Now, consider Ji and J ′i for the case in which they are both subtyping judgements,

Ji ≡ Γi � Si <ci Ti and J ′i ≡ Γ′i � S ′i <c′i
T ′i ,

and assume that we already have Γj � cj = c′j : (Sj)Tj (j = 1, ..., i−1). From the formation

of the premises of the structural subtyping rule forT, we have Γi = Γ′i, Γi � Si = S ′i : Type

and Γi � Ti = T ′i : Type. Therefore, by the induction hypothesis, Γi � ci = c′i : (Si)Ti.

From the above, we have, by the definition of d (from ci) and d′ (from c′i), that

Γ � d = d′ : (T(Ā))T(B̄). Therefore, Γ � c = c′ : (A)B.

Remark. One can see from this proof that the theorem is also true for T [RPIT], the type

system without the χ-rules.

The following lemma shows that the extension of the system maintains the property of

substitution.

Lemma 5.3 (Substitution). If Γ, x:K,Γ′[x] � A[x] <c[x] B[x] ∈ CPIT and Γ � k : K , then

Γ,Γ′[k] � A[k] <c[k] B[k] ∈ CPIT.

Proof. The result is proved by induction on derivations, using the fact that, for Δ ≡
Γ, x:K,Γ′[x] and Δk ≡ Γ,Γ′[k], if Γ � k : K and

CΔ(T; Ā[x]; B̄[x]) = 〈(Δ,Δi[x]; Ti[x]; T ′i [x]; ci)〉i=1,...,n ,

then

CΔk (T; Ā[k]; B̄[k]) = 〈(Δk,Δi[k]; Ti[k]; T ′i [k]; ci)〉i=1,...,n .

The following theorem shows that transitivity is admissible in the presence of the χ-rules.

The proof is different from that of an earlier result for Π-types and Σ-types (Luo and

Luo 2001) in that it proves the admissibility of a more general rule directly by induction

on derivations. This has overcome a difficulty in the earlier research effort and avoided

the use of a special complexity measure (Chen 1998).

Theorem 5.4 (Admissibility of transitivity). The following rule is admissible in Tχ[RPIT]0:

Γ � A <c B Γ � B <c′ C

Γ � A <c′◦c C
.

Proof. We prove a more general case, showing that the following rule is admissible in

Tχ[RPIT]0:

(ST )

Γ, x̄:K̄ � A[x̄] <c[x̄] B[x̄] Γ, ȳ:K̄ ′ � B′[ȳ] <c′[ȳ] C[ȳ]

Γ,Δ � M̄ : K̄ Γ,Δ � N̄ : K̄ ′ Γ,Δ � B[M̄] = B′[N̄] : Type

Γ,Δ � A[M̄] <c′[N̄]◦c[M̄] C[N̄]
.

We obtain the admissibility of the rule in the theorem by taking B ≡ B′ and Δ, x̄ and ȳ

as empty (and hence so are K̄ , K̄ ′, M̄ and N̄.)
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Let J ≡ Γ, x̄:K̄ � A <c B and J ′ ≡ Γ, ȳ:K̄ ′ � B′ <c′ C . The proof proceeds by induction

on (the sum of the lengths of) the derivations of J and J ′. In the base case, J and J ′ are

both in the original WDC C, so the conclusion of the rule is derivable by the definition

of WDC and the congruence rule.

In the step case, either J and J ′ are both in C, in which case it is trivial (as above), or

J and J ′ must be derived by congruence from judgements of the form Γ � T(...) <T(...)

for some parameterised inductive typeT ∈ PIT. That is, in the latter case, the derivations

of J and J ′ are of the following forms:

Derivation of J:
J1, ..., Jn

Γ,x̄:K̄�T(Ā[x̄])<mapT[Ā,B̄,d̄[x̄]]T(B̄[x̄])

(applications of congruence)
Γ,x̄:K̄�A[x̄]<c[x̄]B[x̄]

Derivation of J ′:

J ′1, ..., J ′n
Γ,ȳ:K̄ ′�T(B̄′[ȳ])<

mapT[B̄′ ,C̄,d̄′[ȳ]]T(C̄[ȳ])

(applications of congruence)
Γ,ȳ:K̄ ′�B′[ȳ]<c′[ȳ]C[ȳ]

and we have in (Γ, x̄:K̄):

A =T(Ā), B =T(B̄) and c = mapT[Ā, B̄, d̄] ;

and in (Γ, ȳ:K̄ ′):

B′ =T(B̄′), C =T(C̄) and c′ = mapT[B̄′, C̄, d̄′] .

Since Γ,Δ � B[M̄] = B′[N̄] : Type, we have Γ,Δ � T(B̄[M̄]) = T(B̄′[N̄]) : Type.

Therefore, by injectivity (Corollary 4.9), Γ,Δ � B̄[M̄] = B̄′[N̄]. Because of this and by the

induction hypothesis, we can apply (ST ) to the judgements J1, . . . , Jn and J ′1, . . . , J ′n.

Therefore, we can derive, with a subtyping rule for T, the judgement

Γ,Δ � T(Ā[M̄]) <mapT[Ā[M̄],C̄[N̄],d̄′[N̄]•d̄[M̄]] T(C̄[N̄]) .

By congruence and the rule (χ), we have

Γ,Δ � T(Ā[M̄]) <mapT[B̄′[N̄],C̄[N̄],d̄′[N̄]] ◦ mapT[Ā[M̄],B̄[M̄],d̄[M̄]] T(C̄[N̄]) .

Then, by congruence, Γ,Δ � A[M̄] <c′[N̄] ◦ c[M̄] C[N̄].

Example 5.5. This example uses Π-types to illustrate the above proof. Assume that the

derivations of the subtyping judgements J and J ′ are obtained from

(∗1) Γ, x̄:K̄ � A2[x̄] <c1[x̄] A1[x̄] (∗2) Γ, x̄:K̄, x2:A2 � B1[x̄](c1(x2)) <c2[x̄,x2] B2[x̄](x2)

Γ, x̄:K̄ � Π(A1, B1) <mapΠ
Π(A2, B2)

(∗3) Γ, ȳ:K̄ ′ � A3[ȳ] <c′1[ȳ]
A′2[ȳ] (∗4) Γ, ȳ:K̄ ′, x3:A3 � B′2[ȳ](c′1(x3)) <c′2[ȳ,x3] B3[ȳ](x3)

Γ, ȳ:K̄ ′ � Π(A′2, B
′
2) <map′Π

Π(A3, B3)
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and for some M̄0 :: K̄ and N̄0 :: K̄ ′, we have [M̄0/x̄]Π(A2, B2) = [N̄0/ȳ]Π(A′2, B
′
2).

Therefore, by injectivity, A2[M̄0] = A′2[N̄0] and B2[M̄0] = B′2[N̄0].

Applying the induction hypothesis to (∗1) and (∗3), we obtain, in Γ,

A3[N̄0] <c′1[N̄0]
A′2[N̄0] = A2[M̄0] <c1[M̄0]

A1[M̄0] ,

which yields

Γ � A3[N̄0] <c1[M̄0] ◦ c′1[N̄0]
A1[M̄0] . (1)

Applying the induction hypothesis to (∗2) and (∗4), by taking M̄ ≡ M̄0::c
′
1(x3) and

N̄ ≡ N̄0::x3, we obtain, in Γ, x3:A3,

[M̄0/x̄, c
′
1[N̄0](x3)/x2]B1(c1(x2)) ≡ [M̄0/x̄]B1(c1(c

′
1[N̄0](x3)))

<c2[M̄0 ,c
′
1[N̄0](x3)]

[M̄0/x̄, c
′
1[N̄0](x3)/x2]B2(x2) ≡ [M̄0/x̄]B2(c

′
1[N̄0](x3))

= [N̄0/ȳ, x3/x3]B
′
2(c
′
1(x3)) ≡ [N̄0/ȳ]B

′
2(c
′
1(x3))

<c′2[N̄0 ,x3]
[N̄0/ȳ, x3/x3]B3(x3) ≡ [N̄0/ȳ]B3(x3) ,

which yields

Γ, x3:A3 � B1[M̄0](c1[M̄0](c
′
1[N̄0](x3))) <c′2[N̄0 ,x3] ◦ c2[M̄0 ,c

′
1[N̄0](x3)]

B3[N̄0](x3) . (2)

Then a Π-subtyping rule can be applied to give, from (1) and (2),

Γ � Π(A1[M̄0], B1[M̄0]) <map0
Π

Π(A3[N̄0], B3[N̄0])

where

map0
Π ≡ mapΠ

[

A1[M̄0], B1[M̄0], A3[N̄0], B3[N̄0], d̄
′[N̄0] • d̄[M̄0]

]

with

d̄[M̄0] ≡ 〈c1[M̄0], [x3:A3]c2
[

M̄0, c
′
1[N̄0](x3)

]

〉
d̄′[N̄0] ≡ 〈c′1[N̄0], [x3:A3]c

′
2

[

N̄0, x3

]

〉
d̄′[N̄0] • d̄[M̄0] ≡ 〈c1[M̄0] ◦ c′1[N̄0], [x3:A3] c

′
2

[

N̄0, x3

]

◦ c2
[

M̄0, c
′
1[N̄0](x3)

]

〉 .

Then the appropriate χ-rule can be applied to give

Γ � Π(A1[M̄0], B1[M̄0]) <mapΠ[d̄[M̄0]] ◦ mapΠ[d̄′[N̄0]] Π(A3[N̄0], B3[N̄0]) ,

where we have omitted the sequences of type arguments of the map-operations.

The above theorems and lemmas have shown that CPIT, the set of derivable subtyping

judgements in Tχ[RPIT]0, is a set of well-defined judgements of coercions.

Corollary 5.6. CPIT is a WDC.

Proof. The statement follows from Lemma 5.1, Theorem 5.2, Lemma 5.3 and The-

orem 5.4.
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5.2. Stepwise development

In this section we present some remarks concerning our decision to consider PIT to be

an arbitrary set of parameterised inductive types. First, because PIT is an arbitrary set,

it does not have to contain all of the inductive types; for example, it does not have to

contain the types such as Nat and Even, the types of natural numbers and even numbers.

Hence, in the original WDC C, one may have subtyping judgements such as Even < Nat

(the type of even numbers is a subtype of that of natural numbers; see Luo (1999) for

more detailed discussions of such subtyping relations in coercive subtyping).

Second, as we mentioned earlier, we want to consider ‘stepwise development’ in practice,

that is, assuming that the existing rules generate well-behaved coercion judgements, an

extension will also result in a well-behaved system. More precisely, in our context, we

want to consider stepwise extensions by the structural subtyping rules of parameterised

inductive types. However, we have not considered ‘rule extension’ directly because of a

difficulty illustrated by the following example. Suppose we extend the system first by List

and then by Σ (that is, the subtyping judgements generated by List is in the WDC C
when we add Σ). Then, if Σ(A,B) < Σ(A′, B′), because of the newly added subtyping rules

for Σ, we have that List(Σ(A,B)) < List(Σ(A′, B′)) would not be derivable as we would

have expected.

A solution to the above problem is to consider extensions of C by the subtyping rules

of the parameterised inductive types in an arbitrary set PIT. For the above example of

List and Σ, if both List and Σ are in PIT, it does not matter which of them is added

to the system first. Therefore, the results obtained in this section allow one to add step

by step the structural subtyping rules for those parameterised inductive types that are of

interest in the application.

Remark. The above point of stepwise development has been a guiding principle in the

development of both this work and related earlier work. It is a bit unfortunate that this

point was not made more clearly in Luo and Luo (2005) and Luo (2005).

6. Conclusions and future work

We have studied structural subtyping for general inductive types in the framework of

coercive subtyping and shown that the extension with structural subtyping rules of

parameterised inductive types preserves good meta-theoretic properties such as coherence

and transitivity elimination in the presence of the functorial χ-rules for computational

equality.

When a type theory has some extensional equality rules, such as the functorial χ-rules,

it is in general unknown whether the usual good properties enjoyed by an intensional

type theory will still be satisfied: viz. Church–Rosser, subject reduction and strong

normalisation. Future work includes the study of the meta-theoretic properties of a

type theory with the χ-reduction rules. We conjecture that when an intensional type

theory is extended with the χ-rules, the resulting calculus should have these properties. A

promising approach is to work with a λ-free logical framework such as TF, which may
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provide useful tools in such studies. However, it remains to be seen how research in this

direction will go.

The proof of the injectivity result as presented in this paper has the restriction that

there is no declaration of computational equalities between types in the type theory under

consideration. This has excluded type universes. However, we believe that the proof can

be extended to include universes, although further research is called for. Also, a direct

proof in LF, rather than going through TF, should be possible, although we have so far

failed to obtain such a proof.

Soloviev et al. have investigated the notion of χ-reduction in a non-dependently typed

theory with inductive types (Barral et al. 2005). This is why we have called the functorial

equality rules ‘χ-rules’. As for related work on coercive subtyping, we should mention

that, before the study of coercive subtyping, the notion of coercion appeared in the

literature for simple type systems (see, for example, Mitchell (1991; 1983)). Some early

works on subtyping and dependent types was carried out by Aspinall and Compagnoni in

studying subtyping for dependent types in the Edinburgh Logical Framework (Aspinall

and Compagnoni 1996; 2001). The early development of the framework of coercive

subtyping is closely related to Aczel’s idea of type-checking methods in classes with

overloading (Aczel 1994) and the work by Breazu-Tannen et al. on giving coercion

semantics to lambda calculi with subtyping (Breazu-Tannen et al. 1991). Barthe and

his colleagues have studied constructor subtyping and its possible applications in proof

systems (Barthe and Frade 1999; Barthe and van Raamsdonk 2000). Among other research

work on coercive subtyping, Y. Luo’s Ph.D. work provided an extensive study of structural

subtyping for inductive types, especially the notion of weak transitivity (Luo 2005; Luo

and Luo 2005).

Subtyping for inductive types in proof assistants is expected to be useful in practice.

It would be interesting to see the structural subtyping rules for parameterised inductive

types implemented and used in proof assistants that support coercive subtyping.
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