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1 Introduction

A standard cooperative bargaining solution as introduced by Nash (1950) assigns a utility

vector to each pair of a utility possibilities set and a disagreement point (the utility

vector resulting if the agents fail to reach an agreement) within a given domain. For

example, a typical domain of a bargaining solution consists of all pairs such that the

disagreement point is normalized to be the origin and the utility possibilities set is convex

and compact. Comprehensiveness of the feasible set frequently is required as well. In this

paper, we consider an informationally richer framework by allowing for the possibility

that the structure of the set of objects over which the bargaining process takes place may

matter. In particular, we examine multi-attribute bargaining problems. A typical example

for a multi-attribute bargaining problem is a wage-employment bargaining model such as

the one developed by McDonald and Solow (1981).

To begin with, we provide new axiomatic derivations of additive and multiplicative

multi-attribute criteria for an individual decision maker. The preferences of a decision

maker over lotteries of attribute combinations are additive if they can be represented by

a von-Neumann-Morgenstern (vNM) utility function1 that can be written as the sum of

the utilities of the individual attributes. The multiplicative decision criterion is based

on the product of the utilities over attributes. Clearly, these types of preferences possess

separability properties with respect to the attributes under consideration.

Specifically, we use a weak version of utility independence2 together with an additivity

axiom to generate an additive representation of an agent’s preferences. Similarly, we show

that the multiplicative decision criterion is implied by an analogous utility independence

axiom and a condition regarding the existence and properties of worst possible attributes.

By employing these new axioms, the paper also makes a contribution to the theory of

decision-making under uncertainty in the presence of several attributes.

Turning from individual to social decision-making, we first characterize efficiency in

both the additive and the multiplicative case. This efficiency criterion, together with some

other assumptions, is then used to derive social decision procedures with a bargaining

interpretation. In the additive case, efficiency and an independence condition regarding

the restriction of choices to specific attributes lead to the generalized (not necessarily

symmetric) utilitarian social choice functions, provided a mild regularity condition is

satisfied. Analogously, in the multiplicative case, generalized Nash social choice functions

1See Fishburn (1970) for a comprehensive treatment of utility theory.
2See, for instance, Keeney and Raiffa (1976) and the references quoted there.
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are obtained. The novel aspect of those axiomatic derivations of well-known social choice

functions is that much of the structure is imposed through the individual preferences

rather than through axioms that operate directly on the social choice function itself. We

therefore provide a decision-theoretic foundation of these commonly-used solutions.

2 Multi-attribute preferences

Let IN denote the set of positive integers, and let IR (IR+, IR++) be the set of all (nonneg-

ative, positive) real numbers. For n ∈ IN , IRn is the n-fold Cartesian product of IR. Let

M = {1, . . . ,m} be a set of m ∈ IN attributes. The sets A1, . . . , Am are the corresponding

non-empty spaces of these attributes. Let A = ×j∈MAj. For a ∈ A and M ′ ⊆ M , let

a−M ′ be the subvector of a that contains the components in M \ M ′ only. If M ′ is a

singleton {j}, we use the simpler notation a−j instead of a−{j}. Analogously, for A′ ⊆ A

and M ′ ⊆ M , A′−M ′ = ×j∈M\M ′A′j, and if M ′ is a singleton {j}, we write A′−j instead of

A′−{j}.

L(A) is the set of all lotteries (i.e., finite probability distributions) over A. We identify

a sure alternative a ∈ A with a lottery that assigns probability one to a. Suppose there

is a decision maker who has a preference relation (i.e., a complete and transitive binary

relation) on L(A), representable by a vNM utility function u:L(A)→ IR.3 We also assume

that there is a fixed m-tuple a0 ∈ A with u(a) ≥ u(a0) for all a ∈ A. That is, a0 is a

worst alternative in A.4

Let j ∈ M . By fixing the m− 1 attributes in M \ {j} at given levels a′−j ∈ A−j, the

utility function u induces a utility function uj:L(Aj) → IR on the set of lotteries over

the attribute space Aj. It is straightforward to see that this induced utility function is

again of the vNM type. For a lottery ` ∈ L(A), the corresponding induced lottery on Aj

is denoted by `j ∈ L(Aj).

The property of utility independence (see Keeney and Raiffa, 1976, in particular Chap-

ters 5 and 6) requires that the induced utility function is independent of the specific levels

of the other attributes. To define this property formally, let ∅ 6= A′ ⊆ A, and let j ∈ M .

A′j is utility independent of A′−j if there exist functions fj :A′−j → IR and gj:A′−j → IR++

3One may assume that the von-Neumann-Morgenstern (1947) or Herstein-Milnor (1953) axioms hold,

so that such a u exists.
4For convenience, we formulate the relevant definitions in terms of the vNM utility function u. It is

straightforward to obtain equivalent formulations in terms of the underlying preference relation.

2



such that, for any arbitrary a′−j ∈ A′−j ,

u(a) = fj(a−j) + gj(a−j)u(aj, a
′
−j) for all a ∈ A′. (1)

Clearly, utility independence is a separability property. (1) means that, on the restricted

domain A′, lotteries over the values of attribute j can be assessed without knowledge of

specific values of the remaining attributes. See Keeney and Raiffa (1976) for a detailed

discussion of this and related separability assumptions in this framework.

3 Additive decision criteria

In this section, we show that a specific utility independence requirement and a weak

additivity assumption imply that u must be additive.

Restricted a0 utility independence requires that we can find a chain of m−1 attributes

such that, for each attribute j in this chain, Aj is utility independent of all other attributes,

where this independence can be restricted to attribute values of a0
k for all attributes k that

appear before j in the chain. For simplicity of exposition, we formulate this condition for

the chain consisting of the first m− 1 attributes and leave the obvious generalization to

the reader.

Restricted a0 utility independence:

A1 is utility independent of A−1,

A2 is utility independent of {a0
1} × A−{1,2},

...

Am−1 is utility independent of {a0
1} × {a0

2} × . . .× {a0
m−2} × Am.

This independence axiom is considerably weaker than Keeney and Raiffa’s (1976) mutual

utility independence because, for each j ∈ M \ {1,m}, all attributes k < j in the chain

can be fixed at a0
k. Moreover, only m − 1 rather than all m attributes are required to

satisfy an independence condition.

The second axiom is a weakening of additive independence (see Keeney and Raiffa,

1976). Again, we state this condition for a chain involving the first m− 1 attributes only

in order to simplify notation.

Restricted additive independence:

For all a−1 ∈ A−1, there exist a′1, a
′′
1 ∈ A1 such that u(a′1, a−1) + u(a′′1, a

0
−1) =

u(a′1, a
0
−1) + u(a′′1, a−1) and u(a′1, a

0
−1) 6= u(a′′1, a

0
−1)
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and

for all a−{1,2} ∈ A−{1,2}, there exist a′2, a
′′
2 ∈ A2 such that u(a0

1, a
′
2, a−{1,2}) +

u(a′′2, a
0
−2) = u(a′2, a

0
−2) + u(a0

1, a
′′
2, a−{1,2}) and u(a′2, a

0
−2) 6= u(a′′2, a

0
−2)

and
...

and

for all am ∈ Am, there exist a′m−1, a
′′
m−1 ∈ Am−1 such that u(a0

1, . . . , a
0
m−2, a

′
m−1, am)+

u(a′′m−1, a
0
−(m−1)) = u(a′m−1, a

0
−(m−1))+u(a

0
1, . . . , a

0
m−2, a

′′
m−1, am) and u(a′m−1, a

0
−(m−1))

6= u(a′′m−1, a
0
−(m−1)).

Analogously to restricted a0 utility independence, the requirements imposed by restricted

additive independence become successively weaker as we progress along the chain of at-

tributes. Restricted additive independence is analogous in spirit to Keeney and Raiffa’s

(1976) additive independence (formulated for two attributes only). Additive indepen-

dence requires that there exist some attribute values a′1, a
′′
1 ∈ A1 and a′2, a

′′
2 ∈ A2 such

that u(a′1, a
′
2)+u(a′′1, a

′′
2) = u(a′1, a

′′
2)+u(a′′1, a

′
2) and u(a′1, a

′
2) 6= u(a′1, a

′′
2, ) and u(a′1, a

′
2) 6=

u(a′′1, a
′
2). Our version of the additive independence condition, in contrast, requires the

existence of specific attribute values for several values of the other attributes, and the

worst attribute combination a0 must be involved. This is the case because we combine

the axiom with a rather weak form of utility independence—namely, restricted a0 utility

independence—, whereas Keeney and Raiffa (1976) employ the much stronger mutual

utility independence. Furthermore, note that restricted additive independence only re-

quires two of the utility values involved to be distinct, but additive independence demands

two inequalities of that kind.

The following theorem derives the additive decision criterion from the above axioms.

Note that, in order to reformulate the axioms for general chains in this theorem, the

same chains have to be used in both axioms. Recall that a0 is a worst alternative, i.e.,

u(a) ≥ u(a0) for all a ∈ A.

Theorem 1 Let u satisfy restricted a0 utility independence and restricted additive inde-

pendence. Then u can be written in the additive form

u(a) =
∑
j∈M

u(aj, a
0
−j) for all a ∈ A.
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Proof. Without loss of generality, assume u is normalized so that u(a0) = 0. Because A1

is utility independent of A−1, there exist functions f1 and g1 such that

u(a) = f1(a−1) + g1(a−1)u(a1, a
0
−1) for all a ∈ A (2)

where we chose a′−1 = a0
−1 in (1). Letting a1 = a0

1 in (2), we obtain f1(a−1) = u(a0
1, a−1)

for all a ∈ A because u(a0) = 0. Therefore,

u(a) = u(a0
1, a−1) + g1(a−1)u(a1, a

0
−1) for all a ∈ A. (3)

Because, by restricted additive independence, there exists a1 ∈ A1 such that u(a1, a
0
−1) 6=

0, we can choose a−1 = a0
−1 in (3) and use u(a0) = 0 to obtain g1(a0

−1) = 1.

Using restricted additive independence and (3), it follows that, for all a−1 ∈ A−1, there

exist a′1, a
′′
1 ∈ A1 such that

g1(a−1)[u(a
′
1, a

0
−1)− u(a′′1, a0

−1)] = g1(a
0
−1)[u(a

′
1, a

0
−1)− u(a′′1, a0

−1)].

Because, by restricted additive independence, u(a′1, a
0
−1) 6= u(a′′1, a

0
−1), this implies g1(a−1) =

g1(a0
−1) = 1 for all a ∈ A. Therefore,

u(a) = u(a0
1, a−1) + u(a1, a

0
−1) for all a ∈ A. (4)

Because A2 is utility independent of {a0
1} × A−{1,2}, there exist functions f2 and g2

such that, with a′2 = a0
2 in (1),

u(a0
1, a−1) = f2(a

0
1, a−{1,2}) + g2(a

0
1, a−{1,2})u(a2, a

0
−2) for all a ∈ A. (5)

Letting a2 = a0
2 in (5) and using u(a0) = 0, we obtain f2(a0

1, a−{1,2}) = u(a0
1, a

0
2, a−{1,2})

for all a ∈ A. Therefore,

u(a0
1, a−1) = u(a0

1, a
0
2, a−{1,2}) + g2(a

0
1, a−{1,2})u(a2, a

0
−2) for all a ∈ A. (6)

By restricted additive independence, there exists a2 ∈ A2 such that u(a2, a
0
−2) 6= 0.

Therefore, letting a−{1,2} = a0
−{1,2} in (6) implies g2(a0

−2) = 1.

By restricted additive independence and (6), for all a−{1,2} ∈ A−{1,2}, there exist

a′2, a
′′
2 ∈ A1 such that

g2(a
0
1, a−{1,2})[u(a

′
2, a

0
−2)− u(a′′2, a0

−2)] = g2(a
0
−2)[u(a

′
2, a

0
−2)− u(a′′2, a0

−2)].

By restricted additive independence, u(a′2, a
0
−2) 6= u(a′′2, a

0
−2) and, hence, g2(a0

1, a−{1,2}) =

g2(a0
−2) = 1 for all a ∈ A. Therefore,

u(a0
1, a−1) = u(a0

1, a
0
2, a−{1,2}) + u(a2, a

0
−2) for all a ∈ A. (7)
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Using (7) in (4), we obtain

u(a) = u(a0
1, a

0
2, a−{1,2}) + u(a2, a

0
−2) + u(a1, a

0
−1) for all a ∈ A.

Repeated application of this argument for the attributes 3, . . . ,m− 1 yields

u(a) = u(am, a
0
−m) + . . .+ u(a2, a

0
−2) + u(a1, a

0
−1) for all a ∈ A.

An immediate consequence of Theorem 1 is that u can be written as

u(`) =
∑
j∈M

uj(`j) for all ` ∈ L(A), (8)

where uj:L(Aj)→ IR for all j ∈M .

4 Multiplicative decision criteria

Keeney and Raiffa (1976) prove that if each attribute space Aj is utility independent of

A−j, then the vNM utility function u can be written as a multilinear function.5 In this

section, we derive the special case of a multiplicative decision criterion with a weaker

utility independence axiom and an assumption which requires the a0
j to lead to a worst

alternative even when combined with some values of a−j other than a0
−j .

To exclude degenerate cases, we assume that u is not a constant function. Let a∗ ∈ A
be such that u(a∗) > u(a0). The utility independence condition is parallel to the one in

the previous section, where a0 is replaced with a∗.

Restricted a∗ utility independence:

A1 is utility independent of A−1,

A2 is utility independent of {a∗1} × A−{1,2},
...

Am−1 is utility independent of {a∗1} × {a∗2} × . . .× {a∗m−2} × Am.

The following axiom requires a0
j to lead to a worst alternative when combined with

certain values of a−j .

5See Keeney and Raiffa (1976, Chapters 5 and 6) for details.
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Restricted zero independence:

u(a′) ≥ u(a0
1, a−1) for all a, a′ ∈ A, (9)

u(a′) ≥ u(a∗1, a
0
2, a−{1,2}) for all a, a′ ∈ A, (10)

...

u(a′) ≥ u(a∗1, . . . , a∗m−2, a
0
m−1, am) for all a, a′ ∈ A. (11)

Restricted zero independence implies that a0
1 is a worst-possible value for attribute one

in an absolute sense: a0
1 leads to a worst alternative not only combined with a0

−1 but

combined with any value of a−1. The remaining restrictions imposed by the axiom are

weaker because they apply only to some but not to all values of the remaining attributes.

The above two axioms lead to the multiplicative decision criterion described in the

following theorem.

Theorem 2 Let u satisfy restricted a∗ utility independence and restricted zero indepen-

dence. Then u can be written in the multiplicative form

u(a) =
∏
j∈M

u(aj, a
∗
−j) for all a ∈ A.

Proof. Without loss of generality, assume u is normalized so that u(a0) = 0 and u(a∗) = 1.

(9) to (11) imply that we must have

u(a0
1, a−1) = 0 for all a ∈ A, (12)

u(a∗1, a
0
2, a−{1,2}) = 0 for all a ∈ A, (13)

...

u(a∗1, . . . , a
∗
m−2, a

0
m−1, am) = 0 for all a ∈ A. (14)

Because A1 is utility independent of A−1, choosing a′−1 = a∗−1 in (1) implies that there

exist functions f1 and g1 such that

u(a) = f1(a−1) + g1(a−1)u(a1, a
∗
−1) for all a ∈ A. (15)

Letting a1 = a0
1 in (15), (12) implies f1(a−1) = 0 for all a ∈ A.

Now let a1 = a∗1 in (15). Noting that f1(a−1) = 0 and u(a∗) = 1, it follows that

g1(a−1) = u(a∗1, a−1) for all a ∈ A. Therefore,

u(a) = u(a∗1, a−1)u(a1, a
∗
−1) for all a ∈ A. (16)
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Because A2 is utility independent of {a∗1} × A−{1,2}, there exist functions f2 and g2

such that

u(a∗1, a−1) = f2(a
∗
1, a−{1,2}) + g2(a

∗
1, a−{1,2})u(a2, a

∗
−2) for all a ∈ A (17)

(choose a′−2 = a∗−2 in (1)). Letting a2 = a0
2 in (17) and using (13), we obtain f2(a∗1, a−{1,2}) =

0 for all a ∈ A. Now let a2 = a∗2 in (17) to obtain g2(a∗1, a−{1,2}) = u(a∗1, a
∗
2, a−{1,2}) for all

a ∈ A. Hence,

u(a∗1, a−1) = u(a∗1, a
∗
2, a−{1,2})u(a2, a

∗
−2) for all a ∈ A. (18)

Using (18) in (16), we obtain

u(a) = u(a∗1, a
∗
2, a−{1,2})u(a2, a

∗
−2)u(a1, a

∗
−1) for all a ∈ A.

Repeated application of this argument for the attributes 3, . . . ,m− 1 yields

u(a) = u(am, a
∗
−m) . . . u(a2, a

∗
−2)u(a1, a

∗
−1) for all a ∈ A.

Again, it follows that there exist vNM utility functions uj:L(Aj)→ IR for all j ∈ M
such that

u(`) =
∏
j∈M

uj(`j) for all ` ∈ L(A). (19)

5 Efficiency

Consider now a situation where we have n ∈ IN decision makers concerned with the multi-

attribute alternatives in A. Let N = {1, . . . , n} denote the set of decision makers. We

use ui:L(A) → IR to denote the vNM utility function of individual i ∈ N . The induced

utility functions on L(Aj) are denoted by uij:L(Aj) → IR for all j ∈ M and all i ∈ N .

For each agent i ∈ N , a0i and a∗i are the alternatives corresponding to a0 and a∗ in the

single-agent case. Note that these alternatives may be agent-specific.

In this framework, it is of interest to identify those lotteries that are efficient in the

sense that it is impossible to make everyone in N better off. Formally, a lottery ˆ̀∈ L(A)

is efficient if and only if, for all ` ∈ L(A), there exists i ∈ N such that ui(ˆ̀) ≥ ui(`).

The set of efficient lotteries can be characterized in the additive and multiplicative

cases discussed in the previous sections. If all agents’ preferences have an additive repre-

sentation, we obtain the following result. Let ∆n denote the unit simplex in IR.
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Theorem 3 Let each ui satisfy restricted a0i utility independence and restricted ad-

ditive independence. Then a lottery ˆ̀ ∈ L(A) is efficient if and only if there exists

t = (t1, . . . , tn) ∈ ∆n such that ˆ̀ maximizes
∑
i∈N t

iui(`) on L(A) and, for all j ∈ M , ˆ̀
j

maximizes
∑
i∈N t

iuij(`j) on L(Aj).

Proof. Because the set of utility vectors generated by the lotteries in L(A) is convex,
ˆ̀∈ L(A) is efficient if and only if there exists t ∈ ∆n such that ˆ̀ maximizes

∑
i∈N t

iui(`)

on L(A).

Suppose ˆ̀∈ L(A) maximizes
∑
i∈N t

iui(`) on L(A) for some t ∈ ∆n. By (8),

ui(`) =
∑
j∈M

uij(`j) for all i ∈ N, for all ` ∈ L(A).

Because

max{
∑
i∈N

ti
∑
j∈M

uij(`j)} =
∑
j∈M

max{
∑
i∈N

tiuij(`j)}, (20)

ˆ̀
j maximizes

∑
i∈N t

iuij(`j) for all j ∈M .

Conversely, suppose ˆ̀
j maximizes

∑
i∈N t

iuij(`j) for all j ∈ M . Using (20), it follows

that ˆ̀ maximizes
∑
i∈N t

iui(`) on L(A).

In the multiplicative case, we obtain an analogous result. Analogously to Theorem 2,

we assume that, for each i ∈ N , there exists a∗i ∈ A such that ui(a∗i) > ui(a0i).

Theorem 4 Let each ui satisfy restricted a∗i utility independence and restricted zero

independence. Then a lottery ˆ̀ ∈ L(A) is efficient if and only if there exists t =

(t1, . . . , tn) ∈ ∆n such that ˆ̀ maximizes
∏
i∈N u

i(`)t
i

on L(A) and, for all j ∈ M , ˆ̀
j

maximizes
∏
i∈N u

i
j(`j)

ti on L(Aj).

Proof. Again, the convexity of the set of utility vectors generated by the lotteries in

L(A) implies that a lottery ˆ̀ ∈ L(A) is efficient if and only if there exists t ∈ ∆n such

that ˆ̀ maximizes
∏
i∈N u

i(`)t
i
on L(A), where we use the convention 00 := 1.

Suppose ˆ̀ maximizes
∏
i∈N u

i(`)t
i
on L(A) for some t ∈ ∆n. By (19),

ui(`) =
∏
j∈M

uij(`j) for all i ∈ N, for all ` ∈ L(A)

and, therefore, ˆ̀ maximizes ∏
i∈N

∏
j∈M

uij(`j)
ti

on L(A). Suppose first that there exists k ∈ N such that uk(ˆ̀)t
k

= 0, in which case∏
i∈N u

i(`)t
i
= 0. Note that this can occur only if tk > 0 and uk(ˆ̀) = 0. By assumption,

9



there exists a∗i such that ui(a∗i) > 0 for all i ∈ N . Let `∗ ∈ L(A) be such that `∗ assigns a

positive probability to each a∗i and zero to all other alternatives. This implies ui(`∗) > 0

for all i ∈ N and thus
∏
i∈N u

i(`∗)t
i
> 0, contradicting the observation that ˆ̀ maximizes∏

i∈N u
i(`)t

i
. Therefore, this case cannot occur, and we must have ui(ˆ̀)t

i
> 0 for all i ∈ N .

Hence,

max{
∏
i∈N

∏
j∈M

uij(`j)
ti} =

∏
j∈M

max{
∏
i∈N

uij(`j)
ti} (21)

and, as in Theorem 3, it follows immediately that ˆ̀
j maximizes

∏
i∈N u

i
j(

ˆ̀
j)t

i
on L(Aj)

for all j ∈M .

Now suppose ˆ̀
j maximizes

∏
i∈N u

i
j(ˆ̀j)

ti on L(Aj) for all j ∈ M . Because ui(a∗i) > 0

for all i ∈ N , uij(a
∗i
j ) > 0 for all i ∈ N and for all j ∈M . Letting `∗j ∈ L(Aj) be a lottery

that assigns a positive probability to each a∗ij and zero to all other alternatives, it follows

that uij(`
∗
j) > 0 for all i ∈ N and for all j ∈M and, thus,

∏
i∈N u

i
j(`
∗
j)
ti > 0 for all j ∈M .

Therefore, in order for ˆ̀
j to maximize

∏
i∈N u

i
j(ˆ̀j)

ti, it must be the case that uij(ˆ̀j)
ti > 0

for all i ∈ N and for all j ∈M . By (21), it follows that ˆ̀maximizes
∏
i∈N u

i(`)t
i
on L(A).

6 Multi-attribute bargaining problems

The results of the previous sections can be illustrated by applying the additive and multi-

plicative criteria to specific group decision problems. For example, consider the problem

of selecting outcomes from a feasible set of alternatives on the basis of the agents’ prefer-

ences. Suppose the space of alternatives A is given, and we want to make a selection from

A for all profiles of individual utility functions within a given class.6 A profile of vNM

utility functions is denoted by U = (u1, . . . , un). The utility possibilities set generated by

the profile U is given by

{x ∈ IRn | ∃` ∈ L(A) such that xi = ui(`) for all i ∈ N}.

Accordingly, the induced utility possibilities set for attribute j ∈M is

{x ∈ IRn | ∃`j ∈ L(Aj) such that xi = ui(`j) for all i ∈ N}.

Let U be a set of admissible profiles U = (u1, . . . , un) of vNM utility functions. Let

2L(A) be the set of all nonempty subsets of L(A). A social choice function is a mapping

6Because A is fixed throughout this section, we simplify notation by suppressing the dependence of

the functions considered here on A.
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c:U → 2L(A) such that, for all U ∈ U and for all `, `′ ∈ c(U), ui(`) = ui(`′) for all i ∈ N .

That is, we make the assumption commonly used in cooperative models of bargaining

that there is a unique utility vector associated with the selected outcomes. Interpreted

as a bargaining problem, the disagreement point is given by (u1(a01), . . . , un(a0n)) =

(0, . . . , 0).7 A bargaining solution is a special case of a social choice function, where the

only relevant features are the utility possibilities set and the disagreement point of a

problem. Since this additional restriction is not necessary for the purposes of this section,

we will use the more general choice function c as defined above.

The social choice function c induces a choice function cj:U → 2L(Aj ) for each attribute

j ∈M . Specifically, for all j ∈ M and all U ∈ U , cj(U) = {`j ∈ L(Aj) | ` ∈ c(U)}. Note

that we do not have to require that the same utility vector results for all chosen lotteries

in the image of the induced choice functions—this property follows as a consequence of

our choice independence axiom defined below.

Using the results of the previous sections, we can derive generalized utilitarian and

generalized Nash social choice functions in this framework. In addition to the axioms on

individual preferences leading to the additive and multiplicative representations derived

above, we impose some restrictions on the choice function c.

First, we require c to be efficient in the sense that it selects efficient lotteries only. Let

E(U) denote the set of efficient lotteries in L(A) for the profile U ∈ U .

Efficiency: For all U ∈ U , c(U) ⊆ E(U).

Furthermore, we impose an independence condition regarding the choice of the indi-

vidual attributes.

Choice independence: For all j ∈ M , for all U, Û ∈ U , if uij = ûij for all i ∈ N , then

uij(`j) = uij(
ˆ̀
j) for all `j ∈ cj(U) and for all ˆ̀

j ∈ cj(Û).

Choice independence requires that the selection of each attribute is independent of the

values of the remaining attributes and, thus, is another separability condition. Note that

choice independence implies that, for a given profile, all lotteries over a specific attribute

selected by the corresponding induced social choice functions lead to the same utility

vector (to see this, set U = Û in the definition of choice independence).

Finally, we impose a regularity condition.

Regularity: There exist Ū ∈ U and h, k ∈ M such that h 6= k and, for all j ∈ {h, k},
there exists a unique tangent hyperplane to the induced utility possibilities set for at-

7Recall that a0i denotes the worst alternative for agent i ∈ N .

11



tribute j at the point (ū1
j(

¯̀
j), . . . , ūnj (

¯̀
j)), where ¯̀

j ∈ cj(Ū).

Regularity only requires the existence of some profile such that the tangent hyperplane

to two induced utility possibilities at the utility vectors induced by the choice function

is unique. Note that any bargaining solution defined on a standard domain satisfies a

regularity condition of that type.

We call c a generalized utilitarian social choice function if there exists t ∈ ∆n such

that, for all U ∈ U , c(U) is a subset of the set of maximizers of
∑
i∈N t

iui(`) on L(A).

Analogously, c is a generalized Nash social choice function if there exists t ∈ ∆n such

that, for all U ∈ U , c(U) is a subset of the set of maximizers of
∏
i∈N u

i(`)t
i
on L(A).

Theorem 5 Let U be the set of all profiles U such that the utility possibilities set asso-

ciated with U is compact and, for each i ∈ N , there exists a0i ∈ A such that ui(a) ≥
ui(a0i) = 0 for all a ∈ A, and ui satisfies restricted a0i utility independence and restricted

additive independence. Let c be a social choice function satisfying efficiency, choice inde-

pendence, and regularity. Then c is a generalized utilitarian social choice function.

Proof. Let Ū ∈ U and h, k ∈ M be as in the definition of the regularity axiom. By

efficiency and the definition of c, there exists t ∈ ∆n such that ¯̀ is a maximizer of∑
i∈N t

iūi(`) on L(A) for all ¯̀ ∈ c(Ū). By Theorem 3, ¯̀
j maximizes

∑
i∈N t

iūij(`j) on

L(Aj) for all j ∈ M . Regularity implies that, for j ∈ {h, k}, t is the only vector of

coefficients for which ˆ̀
j maximizes this weighted sum on L(Aj).

Let U ∈ U be arbitrary. Let the profile Û be such that ûih = ūih and ûij = uij for all

i ∈ N and for all j ∈ M \ {h}. Let ˆ̀∈ c(Û). By efficiency, ˆ̀ maximizes
∑
i∈N t̂

iûi(`) on

L(A) for some t̂ ∈ ∆n. Theorem 3 implies that ˆ̀
j maximizes

∑
i∈N t̂

iûij(`j) on L(Aj) for

all j ∈M . Choice independence implies that ûih(ˆ̀h) = ûih(¯̀h). By regularity, t̂ = t.

Now let the profile Ũ be such that ũik = ūik and ûij = uij for all i ∈ N and for all

j ∈ M \ {k}. Let ˜̀ ∈ c(Ũ). By efficiency, ˜̀ maximizes
∑
i∈N t̃

iũi(`) on L(A) for some

t̃ ∈ ∆n. Again, Theorem 3 implies that ˜̀
j maximizes

∑
i∈N t̃

iũij(`j) on L(Aj) for all j ∈M .

Choice independence implies that ũik(˜̀k) = ũik(¯̀k). By regularity, t̃ = t.

Let ` ∈ c(U). By choice independence, for all i ∈ N , uij(`j) = uij(
ˆ̀
j) for all j ∈M \{h}

and uih(`h) = uih(
˜̀
h). This implies that `j maximizes

∑
i∈N t

iuij(`j) on L(Aj) for all j ∈M
and, using the argument in the proof of Theorem 3, it follows that `maximizes

∑
i∈N t

iui(`)

on L(A).

Analogously, the generalized Nash social choice functions are implied in the multi-

plicative case. Because the proof of this result is parallel to the proof of the previous

theorem, it is omitted.
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Theorem 6 Let U be the set of all profiles U such that the utility possibilities set as-

sociated with U is compact and, for each i ∈ N , there exist a0i, a∗i ∈ A such that

ui(a) ≥ ui(a0i) = 0 for all a ∈ A and 1 = ui(a∗i) > ui(a0i), and ui satisfies restricted a∗i

utility independence and restricted zero independence. Let c be a social choice function

satisfying efficiency, choice independence, and regularity. Then c is a generalized Nash

social choice function.

An interesting feature of Theorems 5 and 6 is that the resulting social choice functions

are such that the attributes can be separated in a bargaining process: it is sufficient to

consider each attribute independently of the remaining ones. This considerably facilitates

the application of the procedure to actual bargaining situations.

As an illustration, suppose the allocation of m goods in an n-agent economy is to be

determined by means of a bargaining process. If the individual preferences satisfy the

appropriate independence axioms, the results of this section can be used to justify the use

of a generalized utilitarian solution or a generalized Nash solution. By adding a symmetry

or anonymity condition, the utilitarian solution and the Nash solution are obtained.

7 Concluding remarks

The results of this paper provide a decision-theoretic foundation for specific social choice

procedures. In particular, multi-attribute decision criteria are employed. An assumption

underlying our approach is that individual preferences are of the same structure. One

possibility for extending our work would be to examine situations where individual agents

may have different types of utility functions over multi-attribute alternatives.
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