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Abstract

Efficient task scheduling improves offloading performance in mobile edge
computing (MEC) environment. The jobs offloaded by different users would
have different dependent tasks with diverse resource demands at different
times. Meanwhile, due to the heterogeneity of edge servers configurations in
MEC, offloaded jobs may frequently have placement constraints, restricting
them to run on a particular class of edge servers meeting specific software
running settings. This spatio-temporal information gives the opportunity to
improve the resource utilization of the computing system. In this paper, we
study the scheduling method for the jobs consisting of dependent tasks of-
floaded by different users in MEC. A new task offloading scheduler, Horae, is
proposed to not only improve the resource utilization of MEC environment
but also guarantees to select the edge server which could satisfy placement
constraints for each offloaded task. Concretely, considering the fact that each
job would experience slack time as a result of competing for limited resource
with other jobs in MEC, Horae minimizes the sum of all slack time values of
all the jobs while guaranteeing placement constraints, and therefore improve
the resource utilization of the system. Horae was validated for its feasibility
and efficiency by means of extensive experiments, which are presented in this
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1. Introduction

Currently, pervasive mobile computing and the Internet of Things are
driving the rapid development of many new compute-demanding and latency-
sensitive applications[1], such as virtual reality (VR), augmented reality (AR)
and social gaming [2][3]. Due to the limitation of computation resources and
storage capacity in mobile devices, mobile cloud computing (MCC) has been
introduced enabling mobile devices to offload their tasks to a more powerful
and resourceful cloud [4]. Nevertheless, offloading to the remote cloud can
induce significant delays, especially for the scenario that a large amount of
data needs to be transferred between the mobile device and the cloud. Be-
sides, massive data going through a centralized network can cause network
congestion [5]. Hence, Mobile Edge Computing (MEC) paradigm was intro-
duced to deploy computing functionalities (a.k.a mobile edge servers) at the
network edge, thereby meeting the latency requirements of latency-sensitive
mobile applications and saving backhaul network bandwidth [6].

Mobile applications and mobile devices have been developing rapidly in
recent years[7][8]. Application offloading has been a hot topic owing to the
appearance of cloud computing, MEC and increasing computational pressure
on mobile devices. Each application can be offloaded in coarse-grained ap-
plication level [9][10], etc. Application-level offloading means that the whole
mobile application functions are executed in the mobile edge server side (e.g.,
by virtual machines (VMs)), and each User Equipment (UE) runs like a thin
client. Actually, application-level offloading enjoys simpler operation and
lower programming difficulty but it induces a larger computation workload
on edge nodes including the time consumed for application initialization in
the VMs. For the task-level offloading, it could give the opportunity to release
the intensive workload on mobile devices by distributing its computational
tasks to run simultaneously on different edge servers, and therefore improves
the performance although needing a more sophisticated task scheduler over
the system. In this paper, we only focus on the design of task-level offloading
method.



It should be admitted that diverse coexisting offloaded tasks from many
users contend for the limited network bandwidth and computation resource
among mobile edge servers in a shared MEC environment. MEC operators
usually aim at maximizing the throughput of the whole computing system.
Besides, to deliver fast and flexible resource provisioning, effective resource
management and allocation method are also indispensable for the MEC en-
vironment [11][12]. Consequently, an ideal task scheduler is needed to make
task scheduling decisions that the overall offloading leads to reduced com-
pletion time, and therefore attain high resource utilization over the whole
computing system.

In addition, due to the heterogeneity of edge servers configurations and
resource limitation in MEC [13], offloaded jobs frequently may have place-
ment constraints, restricting them to run on a particular class of edge servers
meeting specific software running settings. Also, it should not be ignored
the fact that there are precedence constraints among tasks in the context of
multi-stage application jobs [14]. It is very common in the real world that
a task ¢ can be dependent on another task j in the same application if the
consumer computation stage of task ¢ is the producer of j. In other words,
precedence constraints between tasks impose a partial order. Specifically, if
task i precedes task j, execution of task j cannot start until task ¢ is finished.

As a result, in the presence of placement constraints and precedence con-
straints between tasks, scheduling tasks from different jobs in MEC involves
some non-trivial technical challenges. Hence, in this work, we consider inter-
dependent tasks scheduling with possible data communication between them
as well as placement constraints in an MEC environment. Each task may
have predecessor tasks that must be completed before the task can start.

The contributions of this work are as follows:

e For mobile edge computing environment with multiple users, we define
a new resource utilization metric called slack time of the jobs, and we
formulate a problem of slack time minimization in scheduling jobs from
different users with precedence constraints and placement constraints,
over a MEC system with heterogeneous processors and communication
delay.

e We observe that minimize the sum of slack time values of all the jobs
could lead to high resource utilization in MEC. Therefore, we propose
a heuristic algorithm, termed Horae, which utilizes the binary-relaxed
solution to make task placement decisions for every offloaded job from



different users while minimizing the sum of all slack time values of all
the jobs.

e Through randomly generated task trees for different jobs, we study the
impact of the number of mobile users on the performance of Horae.
We further compare Horae with the greedy heuristic algorithm (i.e.,
ITAGS [14]) to demonstrate the superior effectiveness of our solution
in terms of resource utilization.

The reminder of this paper is organized as follows. Section II reviews re-
lated works. Section III presents the system model and formulates the prob-
lem. Section IV develops the Horae method and analyzes its performance.
Section V performs simulations, followed by the conclusion in Section VI.

2. Related Work

In this section, we briefly present the research works that are most rele-
vant to our proposed framework. Currently, offloading technique has been a
hot topic in both academia and industry. Many works have been proposed to
investigate the issues involved in computation offloading in MEC (e.g., energy
consumption [15, 14], fairness [16], service caching [13], resource allocation
[17], and so on).

2.1. Single User Scenario

Zhang et al. [15] considered a Fog cluster with a single mobile device
and a number of Fog nodes randomly distributed around the mobile device.
The authors divided the Fog nodes into two catagories: active fog nodes
and passive fog nodes according to the sensitivity of energy consumption.
They mainly concentrated on the proper decision of the offloading Fog node
set N and the offloading load amount for each Fog node in set N. By
taking the Fog node’s time-energy efficiency and priority into account, a
fairness scheduling metric is constructed for each Fog node. The Fair Task
Offloading (FTO) scheme selects offloading Fog nodes according to these
fairness metrics and then offloads subtasks to the selected nodes based on
a rule that minimizes the task delay. However, the work has limitation in
the real world in that not all tasks can be divided into a series of subtasks
which can be handled in parallel on the nearby Fog nodes. Sundar et al. [14]
studied the scheduling decision for an application consisting of dependent
tasks, and formulated an optimization problem to find the ofoading decision
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that minimizes the overall application execution cost measured by energy
consumption, subject to an application completion deadline. This work is
similar to our study because it also take precedence constraints of tasks into
consideration, but it only considered the task placement decision for offloaded
job which can utilize the whole MEC environment in monopolize and ignore
the fact that MEC usually accompanied with different jobs from multiple
users at any time. Although, the proposed algorithm in [14] can also be
utilized by combing each job from different user into one large job, its aim is
to minimize the energy consumption for the whole hybird edge/cloud system
instead of resource utilization. Also, it still lacks of consideration of placement
constraints (illustrated in the next subsection) for each job. In a word, these
works focus on single user scenario and assume that the the single user could
utilize the whole MEC environment exclusively [15, 14], which we think is
not practical and would induce low resource utilization.

2.2. Multi-user Scenario

When it comes to multi-user scenario, fairness always exists in resource-
limited system, and MEC also can not be an exception. In multi-user MEC
environment, the computation resources of the MEC nodes, and communi-
cation resources between mobile devices and edge servers (e.g., bandwidth,
and power) are shared. Du et al. [16] tackled the computation offloading
problem in a mixed fog/cloud system by jointly optimizing the offloading
decisions and the allocation of computation resources, transmit power, and
radio bandwidth while guaranteeing user fairness and maximum tolerable
delay. To ensure the fairness of all the UEs, they minimized the maximum
cost among all the UEs while meeting the maximum delay constraints. The
limitation of this work is that only one Fog node was considered in the anal-
ysis.

Xu et al. [13] studied joint service caching and task offloading for MEC-
enabled dense cellular networks because they noticed that mobile services
are heterogeneous in terms of not only required resources (e.g. online Matlab
and AR services have different CPU and storage requirements [18]) but also
popularity /demand among users. Therefore, the workload of different tasks
which offloaded by multiple mobile users may require vastly different amounts
of resources (e.g., CPU, memory, and storage).

Meanwhile, driven by the idea of DRF which have been used in multiple
type of resource allocation in an abstract single resource pool [19] and Dom-
inant Resource Fairness for Heterogeneous servers (DRFH) which could be



used in multiple type of resource allocation among heterogeneous servers [20],
Meskar et al. [17] considered the problem of fair multi-resource allocation
for MEC, and claimed that the shared wireless bandwidth should be consid-
ered as an external resource among all the resource for MEC, and designed
a multi-resource allocation mechanism that extends the notion of dominant
resource fairness to accommodate an external resource.

Fair resource allocation and high resource utilization are beneficial to
users and MEC operators respectively. However, it must be admitted that
ensuring the optimal fairness of resource allocation and the high utilization
rate of resources are often conflicting goals, which cannot be realized simul-
taneously. There is a tradeoff between these two goals. Due to the limitation
of space, this paper only studies from the perspective of resource utilization,
and the analysis of tradeoffs will be left for later work.

3. System Modeling and Problem Formulation

In this section, we present our models and motivate the need to improve
resource utilization for offloading dependent tasks in a multi-user MEC en-
vironment. To simplify the discussion, the mathematical notations are sum-
marized in Table 1.

3.1. Service Region and Processors

We consider a mobile network of numerous mobile edge servers, and each
mobile edge server is endowed with computing resources and hence can pro-
vide offloading service to end users in its wireless range. The whole network
is divided into M disjointed small regions, indexed by M. Mobile user in
each region r can reach a set of mobile edge servers in the wireless range,
denoted by F)., and the size of F, is denoted as |F,|. We also assume that
there are some local processors installed in these mobile edge servers, and
these processors may have different processing capabilities due to the het-
erogeneous MEC environment. In common with [14], we assume that each
processor executes one task at a time, while the other tasks offloaded to the
processor waiting in a task queue. Suppose that the delay per unit data
transfer between processor ¢ and j is denoted as d; ;. To enable tractable
analysis, we assume d; ; = d;; and d;; = 0 if ¢ = j.

Without loss of generality, each region could have its own offloading sched-
uler which aims at its predefined scheduling objective (e.g., minimizing aver-
age job completion time, minimizing maximum job lateness, minimizing the



Table 1: Mathematical Notations

Notation Description

i

slack”
DS

DE
C;]hare

J

monopolize

7
L Jp,l

A tack unit of a job

A complete job consist of several tasks
Number of disjointed network regions
in the whole network

Mobile edge server set of region r
Total number of processors in region r
Delay per unit data transfer between
processor ¢ and j

Processing speed of processor 7
Required data transfer between task i
to 7 in job J

Immediate predecessors of task 7
Immediate successors of task j
Execution time of task ¢ of job J on
processor p

Directed acyclic graph G of job J
Task set of job J

Precedence constraint set of job J
Task of 7 in job J

Slack time of Job J

Dummy node to trigger the process of
job

Dummy node to indicate the finish of
job

Completion time of job J when sched-
uled in a shared system

Completion time of job J when it could
use the resource monopolistically
Scheduling decision for task ¢ of job J
on processor p in index [

Variable to indicate whether a given
processor k can satisfy placement con-
straint of task ¢ in job J

Total number of tasks in region r
Number of jobs in region r

Number of tasks of job J

Finish time of task ¢ of job J
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number of tardy jobs, and so on). A scheduler could keep its high availability
by leveraging some fault-tolerant coordination protocols (e.g., zookeeper [21]
) which could perform the discovery of the mobile edge servers in the region,
health checking, implementation of election protocol, and communication
between mobile edge servers.

3.2. Precedence Constraints

In a shared mobile edge computing region, diverse coexisting jobs contend
for the limited computation and network resource. Not until all dependent
tasks have completed will the associated job complete. In this paper, we
bring Precedence Constraints to describe this phenomenon. Consider a com-
putation job J which could be partitioned into different dependent tasks, and
the dependency is modeled as a directed acyclic graph (DAG) G; = (V;, &)
where V; is the set of partitioned tasks and &; is the set of correspond-
ing edges. The edge (i,7) in &; specifies that there is some required data
transfer, e;{ ;» from task i to task j and hence, task j cannot start before the
transmission finishes. The set V P(i)(V.S(i)) of all immediate predecessors
(successors) of job J is given by

VP(g) ={il(i,5) € €y (VSQE) = {il(i, ) € €,}) (1)

In fact, that scheduling multiple jobs simultaneously is equal to scheduling
multiple DAGs at the same time. If task ¢ and task j are scheduled on
different processors ¢ and r respectively, it is obvious to notice that the com-
munication delay is e;{ ;dgr If task ¢ is executed on processor p exclusively
(which means that if task ¢ arrive at the processor, it could be executed im-
mediately), the execution time is ti{ »- In practice, because the fact that there
would several tasks which offloaded by other users pending for execution, the
actual completion time for task i executed on processor p is denoted as t{’p
which is usually larger than t;{ ,- In fact, the execution time and data transfer
requirement could be obtained by applying a program profiler such as MAUI
22].
There are two obvious solutions to schedule multiple DAGs [23].

1. Schedule the DAGs one after the other using any single-DAG scheduling
algorithm.

2. All DAGs could be combined into a bigger DAGs by introducing same
immediate predecessor and successor, and then apply any single-DAG
scheduling algorithm on the combined DAG.
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Figure 1: Example of generation process of combined DAG.

However, the disadvantage of the first scheduling solution is that the re-
source utilization of the system will be in a low state for a long time. Besides,
with the increase in the number of DAGs, this scheduling idea will further ex-
tend the response time of the tail-end jobs. Although the second scheduling
idea could improve the resource utilization of the entire computing system,
single-DAG scheduling algorithm could not provide scheduling optimization
for each sub-DAG. In extreme cases, there are still cases where some jobs
are delayed in scheduling. Following the terminology in the field of operat-
ing system research, the job that is delayed in scheduling is referred to the
“starving” job.

In this paper, we focus on the second solution, and try to explore how to
make use of resources in the actual scheduling process while ensuring that
there is no “starving” job during the scheduling process.

Figure 1 illustrates the generation process of combined DAG from two
DAGs. Specifically, each DAG could have another two logical dummy nodes
(i.e., tasks having zero execution time and varied communication cost). One
dummy node (i.e., DS) is inserted at the start to each DAG and the other
one (i.e., DF) is inserted at the very end location of each DAG. These two
dummy nodes indicate the communication cost between mobile devices and
mobile edge servers. Hence, both DAGs could have the same predecessor and
successor logically, but have different communication cost at the start stage
and finish stage of offloading. Again, note that Figure 1 does not show the
communication cost between each pair of dependent tasks.



MEC Region

Task Placement Decesion)

Figure 2: An instance of task placement decisions.

3.3. Placement Constraints

Over time, a MEC environment typically includes heterogeneous mobile
edge servers with different configurations. Incompatibilities between mobile
edge server configurations and prerequisites of task execution are often en-
countered. Unlike the cloud which has huge diverse resources, the limited
computing and storage resources of mobile edge server allow only a small
set of services to be cached at the same time [13]. Therefore, not all mobile
edge servers could be utilized for job offloading if the selected mobile edge
server has no corresponding suitable service library. To this end, we bring
placement constraints to describe this phenomenon. Placement constraints
must be satisfied appropriately (e.g., the requirement of Java Runtime En-
vironment) if used for a specific task offloading. The offloading scheduler is
required to make task placement decisions for every task in the job DAG
with placement constraints.

As an example, Figure 2 demonstrates the task placement decisions. Con-
cretely, the left-hand side shows an example of a combined job DAG plane,
which includes two jobs offloaded by different users. The right-hand side
plane indicates the MEC region which includes four heterogeneous config-
urations. Due to the fact that different jobs may have different placement
constraints, Figure 2 assumes that only mobile edge server nodes 1, 2, and
3 can satisfy the placement constraints of job B, mobile edge server nodes 3

10


kirchhoff
高亮

kirchhoff
高亮

kirchhoff
高亮


and 4 can satisfy the placement constraints of job A, respectively. Note that
mobile edge server node 3 can not only execute tasks of job A but also job
B. The soft constraints of job A and B are optional and implicit and soft
constraints are optional to satisfied and depend on situations (e.g., if tasks
with precedence constraints execute on the same node, then it will reduce
the communication cost between tasks but may induce extra task waiting
time). We use the notation T} to denote the task i of job J, and we will
omit superscript J when it causes no ambiguity in the rest of the paper. As
shown in equation (2), c;{ . can indicate whether task T} can be placed on the
mobile edge server k. Note that this equation is also equivalent to whether
the mobile edge server k can satisfy the placement constraint of task ¢ in job

J.

1, Processor k can satisfy placement
c;»{ p = constraint of task ¢ in job J (2)
0, Otherwise,

3.4. High Resource Utilization Objective

In practice, it could have multiple mobile users in each edge service region
at any time. Hence, coexisting offloaded tasks from different users contend
for both computing resource and communication bandwidth in a shared edge
computing environment. In common to cloud computing which provides a
pool of resources for the users to run their applications according to “pay
per use” fashion, the improvement of resource utilization (CPU and network
resource in our case), along with the increased rate of processed jobs, im-
plies a higher profit rate for the public MEC provider. To improve resource
utilization in MEC, operators need to finish as many jobs as possible, each
in the fastest possible way. In the context of scheduling, each job would
experience delays as a result of sharing the resources in MEC environment
with other jobs. We define slack time to measure the delay of each job. The
amount of slack time of job i is the difference between its possible completion
time under a shared MEC environment and its earliest possible completion
time under a monopolistic MEC environment. An ideal scheuduler keeps
resources busy (as in load balancing), and it allows multiple users to share
whole resources effectively. The objective of this work is to provide an iso-
lation guarantee between contending offloading jobs while minimizing the
average job completion time (JCT). The completion time and the slack time
are indispensable. For mobile edge computing environment with multiple
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users, if the constraints are met slack time is part of the completion time.
Because the running time is fixed and there are constraints on the order of
tasks, if the total of the slack time is the minimum so that the completion
time will be the minimum.

To ensure performance isolation between users, a task scheduler should
provide a minimum progress guarantee for each offloaded job.Therefore, the
slack time value of the job 7 in a shared region is defined as

slack' = (C%,,,.. — C" )2, (3)

share monopolize

where Crinonopolize is the completion time of the job when assume it could
have all the available resource in the region, and C},,.. is the completion
time of the job when scheduled along with all the other jobs in the region.
Intuitively, C},noporize cOUld be considered as the optimal completion time
of job i, and Cgy,,,.. = G} puoprize @lways holds, and the lower the slack time
value means the closer to the optimal completion time. Meanwhile, it is intu-
itive to notice that the lower the slack time value means the higher resource

utilization among the system.

3.5. List Scheduling

Considering the fact that computing service requests from different users
arrive at different times, the actual scheduler will continuously receive service
requests of new jobs. At any time, the scheduler divides all the jobs into two
categories: jobs to be completed and jobs marked as completed. Whenever
a new job comes, the scheduler needs to save the scheduled context to take
over the newly arrived job. After recording the basic information of the job
(placement constraints and precedence constraints between tasks, etc.), mark
it as a job to be completed, and then take all the jobs marked as completed
into consideration to make scheduling decisions.

Considering the following on-line list scheduling algorithm: whenever a
mobile edge server is idle, choose any available task to start processing on
that mobile edge server, where a task j is available, if all of its predeces-
sors (VP(j)) have finished processing; if none are available, wait until the
next available task, and continue scheduling then. Again, once a processor
P; begins to execute a task Tg, it works without interruption on 7' j until
completion of that task, taking altogether p’;/v; units of time. If given a
liner processing ordering L of all tasks in job J. In general, at any time ¢
a processor P; completes a task, it immediately and instantaneously scans
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the list L (starting from the beginning) until it comes to the first task T§
which has not yet begun to be executed. if all the predecessors of Tf} have
been completed by time ¢ then P; begins working on task T} Otherwise P;
proceeds to the next task in L which has not yet begun to be executed, etc.
If P, proceeds through the entire list L without finding a task to execute
then P; becomes idle. F; remains idle until some other P; completes a task
at which time P; (and of course P;) immediately scans the list L as before for
possible tasks to execute. If these two processors simultaneously attempt to
begin the same task, the target scheduler should make a specific decision to
allocate the task. Different scheduling decisions can induce different perfor-
mance in terms to the same job set. The algorithm of list scheduling could
be illustrated in Algorithm 1.

Algorithm 1: List scheduling algorithm

1 foreach Unfinished task i do

2 if all predecessor have finished then
3 ‘ execute task without interruption
4 end

5 else

6 ‘ idle and wait next checkpoint

7 end

8 end

9 return result;

3.6. Case Study

To motivate the need for our proposed scheduling method (Horae), a case
study is investigated in this section, and we give the definition of resource
utilization of MEC environment as follows.

Definition 1 (Resource Utilization of MEC Environment). Given a time
period [t,t + A] and a limited collection of heterogeneous mobile edge servers

Es, = {es1,esy,...,es,} with resource type R = {ry,r2,...1q} where Q is
the number of resource types. The resource utilization of resource type q is
t+A roq
Ll dt ; ; .
denoted as U, = tAzr—m‘fn where ¢, and ¢ are the instantaneous and
i ¢q

maximum processing capability of resource g on edge server es;, respectively.
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Table 2: Processing Time and Communication Delay

Tasks Processing Time (ms) Communication Cost *)(ms)

DS 0 4a1 4Bl

Al 1 LA2  HA3

A2 2 LA4

A3 2 LA4

A4 2 <,DE

B1 1 4B2 4B3 LB4
B2 3 4B5

B3 5 4B5

B4 3 4,86

B5 4 BT

B6 2 BT

B7 2 LDE

() &y means that 2 ms delay would be tooll{q for the task outputs its processed result to
task y.
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To simplify the analysis and discussions, we assume that each mobile edge
server is identical in terms of CPU processing speed, and the communication
cost of any pair of dependent tasks that run on two different processors is a
constant in the following case study. Also, we assume each task will receive
all the processing capability from each processor and all bandwidth of an em-
bedded network interface. Considering a scheduling requirement for 2 jobs
offloaded from different users, and each job involves different dependent tasks
which have been depicted in Figure 1. Table 2 shows the processing times of
all tasks and communication cost of each pair of dependent tasks. For exam-
ple, the processing time of Al is 1 ms, and it will take 1 ms communication
cost for the initiation of task A2.

If the two jobs are scheduled one after the other, a possible scheduling
scheme could be described in Figure 3(a). If we schedule job B firstly and then
move to job A, job B and job A will finish at 15 ms and 25 ms, respectively.
Note that mobile edge server E3 and E4 were idle before time 5 ms in this
scheduling scheme.

Obviously, this induces low resource utilization of the whole computing
system and long response time for the job A. If we schedule job A and B
simultaneously, job A could have progressed before time 5 ms, and Figure
3(b) shows an example scheduling scheme for these two jobs. Job B and
job A will finish at 15 ms and 10 ms in this scheduling scheme, respectively.
Although the completion time of job B is still 15 ms, the completion time
of job A is advanced by 15 ms (the completion time is advanced from 25 ms
to 10 ms). Moreover, it is not hard to notice that the resource utilization is
higher than the scheduling scheme in Figure 3(a).

3.7. Problem Formulation

One may actually consider the scheduling of parallel processors as a two-
step process. First, one has to determine which tasks have to be allocated
to which processors; second, one has to determine the sequence of the tasks
allocated to each processor. The scheduling decision for each task in each
region could be described as follows:

7
Ljp,l

(4)

_J 1 if task j of job i on processor p in index [,
~]o otherwise,
forallz=1,2,..., N/

e J=1,2, Nige p=12,..., P andl =
1,2,... Ny, where Nj; ., N}

tasks and N, are the number of jobs in region r, the
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Figure 3: An Example Scheduling Scheme for Job A and B
number of tasks of corresponding job 7 and the total number of tasks in the
region, respectively. Considering the fact that each task should be scheduled
to only one of the existing queue index in the processors, and we assume each
processor own a virtual task queue whose maximum length is equal to N, in
case of all tasks are scheduled to one processor, and NV, could be calculated as

Ny ; . . N
> 29 N ., obviously. Therefore, we have the following constraint in each

MEC region r € M:

7)7‘ N’r
sz;,p,l:L Vizla--w]\[jt)bsv J=1..., tlaskS‘ (5>

p=1 =1

Furthermore, each index on each processor can be assigned to at most
one task, which is given by

]V;;bs N

)
tasks

SISl e )
=1 j=1

Also, the scheduling decision should follow the placement constraints,
which could be described as follows:

Ny
i i
Z$j7p7l S cij’ (7)
=1
. r . 7 _
Vi=1,...,Nopss 7 =1, Nigass D= 1,..., Py,
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where c§7p is a constant value if given a specific job description and MEC
environment.

Suppose the finish time of task j of job 7 is denoted as F;, and it is
scheduled on index I" in processor v (which means that @7, , is set to 1).
On the one hand, according to the task precedence constraints in each job,

we have
P, Ny N

P, :
F;ngﬂ? (F;ﬁ%—g g E E ezddv,v’x?fc,v,lx;,v’,l’)

v=1v'=1 I=1 I'=1

P 2 )
+szw,l,tﬂ,,

v'=11=1
vj = 17‘ tasks’ (k j) S S

if task k is one of the immedlate dependent tasks of task 7 in job ¢, and it
is scheduled on index [ in processor v following the task placement decision
xj,,,;- Notice that the inequality holds when task j should wait the all tasks
which placed before index of [ in processor v finish although all predecessors
of task j have finished.

On the other hand, we have

IObS aqks U

ZZZ%Mu (9)

i'=0 j’=0 1=0

which means that the finish time of task j of job ¢ not only depends on the
placement decision (27, ), but also satisfies constraint (8).

The relationship between task finish time F; “and C?,  could be described
as follows:

i
share

:mJaxF;, Vi=1,..., Njpe (10)

We assume that different tasks on one specific processor should be pro-
cessed sequentially. The following constraint ensures that until one index on
a processor is occupied, tasks cannot be assigned to subsequent indexes:

JObS tdbkb JObb tdbkb

ZZ Jpil ZZ »pvll—’ (11)
szl,...,PT,l:Q,...,NT.
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The new problem is to identify the schedule that minimizes the total sum
of slack time values of all the jobs in a service region. This can be formulated
as an optimization problem as follows:

,
jobs
min slack®
{z;}p,l} i=1
,
jobs
= min (Clare — C- )?
—{ ; ) share monopolize
Jspsl =1
Niobs (12)
. . % 7 2
= {TI}Z?”L} (mja:v F}, - monopolize)
it j=1

st (5)(6)(T)(®)(9)(11)
x;}pﬁl € {0, 1},
\V/izl,..., jzbs,jzly"'v tzasks7

p=1,...P, =1, N, (kj) €&

4. Horae

The optimization problem (12) is a mixed integer program, and it is non-
convex due to its non-convex constraints. This problem is NP-hard since it
contains the Generalized Assignment Problem (GAP) as a special case, and
GAP is NP-hard [24, 25]. Hence, we do not expect to find an optimal solution
in polynomial time in this study. Again, C} iz could be considered as a
constant value because it is not difficult to notice that to obtain the Cy, ., 01ize
for a given job ¢ DAG, mobile edge computing environment settings and task
placement constraints is a subproblem of the problem (12) which can be
illustrated as follows:
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i o ;
monopolize ( = nmin max FJ)

{$§',p,l} J
Pr Ny
= min max { E E Ll t
@ipad 7 o' =11'=1

N\ N\ A A (13)

e (F (2022 ei,jdv,v/xz,v,lw}mgl/)} )
v=1v'=1 l=1 I'=1

s.t. (5)(6)(7)(8)(9)(11)

x;’,p,l S {07 1}7

Vi=1,...,N.y, p=1,....P., k€ VP(j),

Note that this inequality holds equal if there is no additional waiting cost
for dependent tasks in job .
Let

Pr  Nr
Oexecution = nun maxr (m}gw Fk + z : : :xj,vlyl'th/) )

1
{25,047 v'=11'=1

7 . . .
where C}_...ion Mmeans the actual execution time cost on processors in

MEC region. It is not difficult to note that C},opize > Cluccution d1Ways
holds.

Therefore, we can relax the optimize objective of problem (13) and rewrite
the corresponding constraints as

Pr Ny
i(relaxed) . i i i
Cmonopolize - ,;?Z;L} mjax (m}gm Fk + 1},2::1 Nz::l xj,v’,l’tj,v’) (14>
st (5)(6)(7)(8)(9)(11)
xéva6{0’1}’Vp:1""7,PT7

by reducing the data communication time cost between arbitrary tasks
with precedence constraints executing on different processors. Besides, this
relaxed problem could be considered as the classical problem which sched-
ules n tasks on a set of m machines at different speeds. Let C; denote the
completion time of task j. The objective is to find a schedule that minimizes
the time needed to finish all of the tasks or, in other words, to minimize
Cinaz = maz; C;, called the makespan of the schedule. In the scheduling lit-
erature where problems are classified in the «|f|y notation [26], this problem
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is denoted as @Q,,|prec|Ciuaz, and it has been addressed by [27, 28] by using
O(log m)-approximate algorithms. Note that although this problem does
not take the communication time cost between dependent tasks, it could be
considered as a upper bound for problem (13) by solving problem (14).
Because the C" of each job i is independent in mobile edge region,

monoplize
we could let C**e®*¢d yon1ace the parameter c

monopolize onopolize in problem (12) to
get a approximate solution. Further, note that the original problem (12) is
non-convex, and we can consider a binary-relaxted version of it. By replacing
each C;S;‘;{;j;‘;il as ¢ and using binary relaxation on problem (12), it could

be modified as follows:

Nj”:)bs Pr N,
min maz q max Fy + E E T b0
1CIRN) g / v'=11'=1
Pr Pr Nr
+ g E ey ;Ao Mmax E Thool (15)
v=1 v'=1 =1

N, 2
-+ (Zl‘;,v/’l/> — 1, O] } — CZ>
I'=1

Obviously, problem (15) is a convex problem over decision variables {27 1},
and it can be efficiently computed using convex programming solvers such
as CVX and CVXPY. Note that replacing constraint b = {0,1} with
z%,; = 0 is equivalent to allowing a single task to be distributed and exe-
cuted partially across several processors and indexes. However, the relaxed
solution can be leveraged to recover a binary approximate solution to the

original problem (12).

4.1. Offline Scheduling

We consider an offline problem of scheduling M jobs Ji, Js, ..., JJy that
arrived at time 0. All the problem data (e.g., processing times, placement
constraints, precedence constraints for each job, and so on) are known in
advance and can be taken into account in the optimization process.

Algorithm 2 shows the pseudocode of the offline scheduling scheme in
Horae. Although offline scheduling is unrealistic in the real world, it could
be considered as the benchmark of online scheme. Firstly, Horae calculates
the optimal finish time for each job with placement constraints in the MEC
environment by solving the problem (14). These optimal finish times are
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considered as the dominant factor for task placement decision of scheduling.
Secondly, the ideal fractional solution {x;p’l}relaxed is got by solving problem
(15). Since this solution allows each task could be divided and placed on
different processors, the next stage is to aggregate all the fractional parts
of placement decisions to get the highest probability of each task (line 6 -
line 12). Lastly, for each processor, horae determine the processing order for
tasks according to their original tentative finish time (line 11 - line 20).

As for practical problems |€| has the same order of magnitude as |V| [29],
Because the offloaded DAGs usually could be represented by sparse graphs
(those for which |€| is much less than |V|), the computational complexity for
the Horae-Offline algorithm excluding the time to compute the lower bound
solution is O(M|P,||V|log|V|), which is polynomial with respect to the num-
ber of the jobs. The time cost for computing the lower bound is dependent
on the algorithms used by the solver to arrive the solution. According to
[30], the number of iterations for a convex program arriving at the solution
is O(+/ |V73r|10g(@)), where € and p are the optimal value and the barrier

parameter used in corresponding primal barrier algorithm.

4.2. From Offline to Online

In an online scheduling problem, the MEC environment cannot accurately
predict how many jobs from different users will arrive at the platform, and it
is impossible to know when these jobs arrive. MEC platform becomes aware
of the corresponding information (e.g., dependency constraints, placement
constraints and computation) of a job only when the job is released and
presented to it. Therefore, the list scheduling algorithm which has been
presented in subsection III.E is utilized to cooperate with online version of
Horae. In the online version of Horae, each job has its own task processing
list. Whenever a mobile edge server becomes idle, it will scan from every task
processing list to pick up all the available tasks, and then make a suitable
decision to choose which task should be executed immediately on itself.

We focus on self-adjusting strategies for effective task scheduling in locally
distributed mobile edge servers that provide offloading services. We assume
an online version of Horae architecture consisting of a front-end job repository
and a set of heterogeneous, back-end mobile edge servers. The job repository
acts as the initial interface between the cluster mobile edge servers and the
smart mobile devices, and manage all incoming offloading requests, trying to
record and maintain the offloading procedure for all offloaded jobs.
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Algorithm 2: Horae (offline version)

Input: Placement Constraints Set
1 J o4 1 J
{e11,¢10- - Cilp:Ca1Cog - Cop - Cym p }s JObs DAG set

(VL&) , (Vo &), (V3. &) .. (W Ea) T

Output: Placement decisions {x} ,;} for all tasks
1 foreach Job ¢ do
Get Ctretaxed) o o olving problem (14):

2 monopolize

3 | Set Cﬁgﬁtﬁ?ﬁe as the ¢ in problem (15);
4 end

5 Get fractional solution {z? ,}relxed ;

6 foreach Job ¢ do

7 foreach Task j of job i do

8 y;',p = ZlN:T1 x;‘,p,;;

9 §% = arg max, y; ‘

.1, ifsh = Yips

10 Yip = { 0, othjerwis]ez.)

11 end
12 end

13 foreach Processor p do

14 foreach Job i do

15 foreach Task j of job i do

16 L, + 0;

17 if y; , == 1 then

18 ‘ Ly« L, UT};

19 end

20 end

21 Sort L, according to FJZ in a ascending order;
22 Mapping each index of processor p according to the index of

each task T} in L, to get {z} ,} ;

23 end
24 end

25 return {z} };
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Considering the fact that any DAG has at least one topological ordering
(In general, a typical topological ordering of a DAG is a linear ordering of
its vertices such that for every directed edge (u,v) from vertex u to vertex v,
u comes before v in the ordering), and many algorithms (e.g., [31] and [32])
have been designed for constructing a topological ordering of any DAG in
linear time. In fact, there are similar features in the execution dependencies
between tasks within the job. This means that any topological ordering of the
DAG corresponds to a method of handling task dependencies within the job.
The total number of topological orderings also corresponds to the number of
job scheduling methods that can satisfy the task execution dependencies.

Therefore, for each job DAG, we construct a topological ordering to facil-
itate mobile edge server’s processing in the list-scheduling algorithm. Algo-
rithm 3 shows the pseudocode of the task processing list generation for each
job. Considering the fact that tasks in most of the jobs could be executed
in different mobile edge servers simultaneously, we give priority to the task
with the maximum processing time in the processing order list if multiple
tasks are available to execute. This heuristic tries to place the shorter tasks
more towards the end of the schedule, where they can be used for balancing
the workloads.

Due to the fact that Horae aims to find a scheduling scheme that can
minimize the total slack time values of all the jobs. When any processor
is idle, the processor not only needs to ensure that the task processing is
performed according to the task processing list order within each job, but also
decides which job processing list should be selected. Whenever a new job is
arriving in the Horae-enabled MEC environment, the candidate MEC nodes
are generated firstly by checking placement constraints for the job. Then, the
job will be added to the unfinished job set to facilitate Horae’s scheduling.
Some intrinsic job profile for the forthcoming scheduling should be prepared
(e.g., arriving time stamp, task processing list, and optimal finish time in the
MEC environment). Suppose job J’s arriving time is denoted as A”, and it

will finish at F if all resources in the current Fog computing environment
could be monopolize leveraged (imply that £/ — A7 = C J(relaxed)). When a

monopolize
processor is in idle status on time Tjcpequie, then the duration of job J can
be calculated by Tyepequie — A7. The details could be found in Algorithm 4.
In Horae, each mobile edge server greedily selects the task whose corre-

sponding job has the maximum slack time value to execute on its processor.
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Figure 4: The architecture of Horae-online scheduling system.

We use
|NtJaskSI hj
Fep;t(hju J) = # + Tcurrent (16>

Up

to measure the estimated finish time of job if scheduled on processor p,
where h; means the index of next unexecuted task of job J in the corre-
sponding topological ordering, 1., ., means the current time. Horae gives
priority to the job with the maximal slack time value (FZ,(h;, J) — F’) to be
executed whenever one mobile edge server is available to run the next task.
The details of online version of Horae could be seen in Algorithm 5, and the
computational complexity for the Horae-Online algorithm is O(|V|*|P,|) for
each job DAG. Again, for each coming job DAG, the solution of problem
(14) is assumed to be known in advance by applying a program profiler such
as MAUI [22].

Figure 4 shows the details of the architecture for Horae-Online scheduling
system.

5. Performance Evaluation

In this section, we evaluate the performance of our approach by extensive
experiments with a comparison to two baseline approaches. All the exper-
iments were conducted on a Windows machine equipped with Intel Core
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Algorithm 3: Task processing list generation
Input: Job DAG (V;, &)
Output: Task processing list
1 L+ () /* empty list that will contain the sorted tasks */;
2 S+ {i|[VP(i) =0} /* Set of all tasks with no predecessors
*/;

3 while § is not empty do
S|

4 t < arg max; pf];

5 S <« S\{t} /* remove the task with the maximum
processing time from S */;

6 L+ L+ {t}/* add task to tail of L */;

7 foreach task m with an edge e from t to m do

8 Er—E/\{e} /* remove edge e */;

9 if m has no other incoming edges then

10 ‘ S+ SUm /* no predecessor x/;

11 end

12 end

13 end

14 if £; is not 0 then

15 ‘ return error;

16 else

17 ‘ return L;

18 end

i5-2520M processor (2 CPUs, 2.5GHz) and 8GB RAM. The optimization
problems modeled in section IV was solved using CVXPY (Python Software
for Disciplined Convex Programming).

5.1. Baseline approaches

Our approach will be benchmarked against two baseline approaches for
task scheduling, namely /TAGS[14] and an Offline version of Horae which
could be seen as the optimal benchmark for our simulation. We consider
each user in the MEC environment only has one job offloaded at any time.
Therefore, if there are n users share the MEC environment, there would
mostly coexist n different jobs that compete the resources.

- ITAGS: Each offloaded job will be scheduled one after the other in
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Algorithm 4: Handling procedure for new job’s arrival
Input: Job DAG (V;, &)
Output: Candidate processors set (P7), arrival date (A7), tasks
processing list (L) and optimal finish time (F”)
1 Filter out MEC servers which can satisfy placement constrains for
job J from candidate MEC servers set ;
Add new job in unfinished job set;
Record the job’s arrive time;
Generate the task processing list for the job by Alg. 3;

5 Calculate job’s optimal finish time (C”"®™Y)y 4mong all MEC

monopolize

oW N

servers with placement constraints by using eq. (14) ;
6 7 <_AAJ_f_C,J(relaxed) .

onopolize

chronological order.
- Horae-Offline: Each offloaded job would be processed simultaneously.

Note that we apply ITAGS algorithm scheme with no placement con-
straints, as the system model considered in [14] ignores the placement con-
straints during offloading.

5.2. Dataset Settings
In the experiments, we vary two setting parameters that may have an
impact on the performance of offloading:

- Number of offloading users: With the increasing number of of-
floading users, especially in crowded CBD area, the number of concur-
rent offloading service requests would extremely large. For 8 mobile
edge servers settings, we experiment various number of concurrent of-
floading users. To be specific, we enumerate 1,2,4,8,...64 concurrent
users requesting offloading service.

- Number of mobile edge servers: With the increasing number of
available mobile edge servers, the computing capacity of can better
meet the offloading demands from mobile users. Therefore, for 10 ran-
domly generated jobs, we experiment various number of available mo-
bile edge servers. To be specific, we calculate 1,2,4,8,...64 available
mobile edge servers.

26



Algorithm 5: Horae (online version)

1 while True do

2 if There are unfinished jobs then
3 if There comes an available processor p then
4 U <+ 0;
5 foreach unfinished job 7 do
6 if p e P’ then
7 ‘ U+~UUj,;
8 end
9 end
10 h < the next task of job j to be executed;
11 J* « argmaxy (FL,(h, j) — F7);
12 Schedule the next task of job J* on p;
13 if h is the last task of 7 then
14 ‘ Remove j from unfinished jobs;
15 end
16 end
17 end
18 if There comes a new job then
19 ‘ Handling procedure for new job’s arrival /* Algorithm 4 */;
20 end
21 end
5.3. Metrics

We use two metrics to evaluate both ITAGS and our proposed scheduling
method:

- Resource Utilization: The ratio of leveraged resource to the total avail-
able resource in MEC environment. Since every job has its fixed re-
source demand to finish, it is easy to see that the larger resource uti-
lization the smaller response time for job’s finish.

- Average Job Finish Time: Since each job’s deadline is not same, we

have a = 2P C‘;f;jﬁg“ tme 6 normalize this metric. It is easy to see

that the larger a the longer response time for a specific job.
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Resource Utilization

Horae-Offline ITAGS

Figure 5: Resource utilization comparison under same MEC environment (10 randomly
generated jobs @ 8 parallel edge servers)

5.4. Simulation and results

To compare the average resource utilization between Horae and ITAGS,
we conduct simulations based on randomly generated task trees in terms of
the DAG structure, task execution times on the processors, and the commu-
nication delay between dependent tasks. That is, DAG structure is formed
by a collection of vertices and directed edges, each edge connecting one vertex
to another, such that there is no way to start at some vertex v and follow a
sequence of edges that eventually loops back to v again. A collection of tasks
that must be ordered into a sequence, subject to constraints that certain
tasks must be performed earlier than others, may be represented as a DAG
with a vertex for each task and an edge for each constraint.

In particular, we set by default 8 processors installed on 8 parallel edge
servers, and the input/output data amount between each pair of interde-
pendent tasks is drawn uniformly from the interval (1, 3) MB. The com-
munication delay is taken as 10 ns/byte between each processor. We ran-
domly generate 10 different jobs which mostly have 5 interdependent tasks
for 100000 times and compare the average resource utilization (calculated by
the formula in definition 1) between them over all processors.

From Figure 5, we can easily find that the average network resource uti-
lization is not high because the network resource demand is not strong for
computation-intensive application. On the contrary, we can see that Ho-
rae got the higher average CPU utilization among the MEC environment
because Horae could schedule all offloaded jobs simultaneously by leverag-
ing the spatio-temporal information between them and minimizing the total
slack time values of all the jobs.

Considering the fact that network resource is not bottleneck resource
among all offloaded jobs, we present comparison only with the average CPU
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Table 3: Dataset Settings

Factor # of offloading users # of mobile edge servers

Set #1 1,2,4,8,...64 8

Set #2 10 1,2,4,8,...64
utilization.

Given the dataset settings, we conduct two sets of experiments. The
settings are described in Table 3. For each set, we vary one parameter and
keep the other one fixed to observe the impact of each parameter on the
schemes in the evaluation metrics.

In experiment set #1, the number of offloading users vary from 1,2,4,8
to 64. The number of mobile edge servers could be leveraged for computation
offloading is fixed at 8. In experiment set #2, the number of offloading users
fixed at 10. We change the number mobile edge servers that could provide
offloading service.

Figure 6 and 7 show the comparison results obtained from the experiment
set #1 and #2, respectively. The two performance metrics are depicted in
each sub-figure: (a) the Resource Utilization, and (b) Average Job Finish
Time.

As can be seen in Figure 6(a), the average CPU utilization of Horae-
Online and Horae-Offline was almost the same. In addition, Horae scales
well according to the number of users because it offers the possibility of
performing all the jobs in parallel on the available mobile edge servers, so
as the number of users increases, Horae may lead to higher CPU utilization.
Conversely, ITAGS performs poorly because it ignores the fact that in a real
MEC environment, different users unload multiple tasks simultaneously.

For average job finish time metric, we set the deadline constraint to be
(1+ 2) X CF opotize for each job k, where CF . is job k’s minimum
completion time and can be calculated by exclusively using the whole MEC
environment to finish job k. z is a randomly real number following an uniform
distribution between 0 and 2, and the mean value of z is set as 1 without
specific mention.

Moreover, the jobs are assumed to arrive in a Poisson process, and we
set the parameter A in the Poisson process as ngjl;s;gﬁfggfggjgfzheput default
to avoid the whole network overloaded or underloaded, where MeanOfInput-
DataSize means the data size should be transmitted to trigger the first task
of job, and A can be adjusted to simulate the network load of the environ-

29



100% ey T T T T
0, - *
80% j/!’— >
oo /f

c
2
8
s —#— Horae-Offling,
2 0% [—e—Horae-Online| ||
z I/ ITAGS
o o
20%-117
0% ——pmreeey

T T T T
12 4 8 16 32 64
Number of Users

(a) CPU utilization comparison

—&— Horae-Offline
~—&— Horae-Online
ITAGS

5 TP

a(Avg. Job's Completion Time/Deadline)

Number of Users

(b) Comparison of job finish time

Figure 6: Resulted metrics of set #1 (number of offloading users changing)

ment. For each set of test parameters, we generate 30 trials to calculate its
average and [min, max| range (See errorbars in the Figure 6(b)).

It can be seen from Figure 6(b) that Horae-Online could reduce the av-
erage job’s finish time, which outperform the performance of ITAGS. The
ITAGS performs poorly because it overlooks the fact that multiple jobs could
be offloaded simultaneously in a resource-sharing multi-user MEC environ-
ment, and ITAGS puts all candidate jobs in a processing queue and schedules
each job one after another. Therefore, ITAGS induces the jobs which locate
in the rear of the processing queue inevitably waiting a long time to be pro-
cessed. On the contrary, Horae schedules all candidate jobs simultaneously
in the same MEC environment, and try the best to minimize the total slack
time of all the jobs. Therefore, the average job finish time of horae is smaller
than that of ITAGS but we still use the Horae-Offline as the lower bound
solution for benchmarking.

In the experiment set #2, we change the number of available mobile edge
servers for use. We randomly generate 10 different jobs which mostly have
15 interdependent tasks for 100000 times and compare the average resource
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Figure 7: Resulted metrics of set #2 (number of mobile edge servers changing)

utilization (calculated by the formula in definition 1) between them over all
processors. As depicted in Figure 7(a), ITAGS keeps the lower CPU resource
utilization comparing to the offline and online version of Horae. Concerning
the measure of average task completion time (Figure 7(b)), Horae contin-
ued to perform better than ITAGS as the number of moving edge servers
increased. Note that ITAGS held steady and had a large average task com-
pletion time, especially when the number of edge servers moved exceeded
16. Because ITAGS only schedule one task at a time, and each task mostly
has 15 interdependent tasks, when the number of edge servers moving is less
than 15, ITAGS can take full advantage of all the machines. However, when
the number of mobile edge servers is greater than 15, the ITAGS method
will leave the redundant mobile edge servers idle. In contrast, Horae can effi-
ciently leverage all available mobile edge servers for computational offloading,
thereby reducing the average job completion time.

6. Summary and Future Work

In this paper, we propose a new offloading scheduler, Horae, in multi-user
MEC environment. In contrast to other contemporary outstanding offload-
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ing scheduler, Horae takes both placement constraints and precedence con-
straints of tasks into consideration, and schedules dependent tasks offloaded
from different users on heterogeneous processors simultaneously with place-
ment constraints, and therefore improves the resource utilization of the whole
MEC environment. The proposed total slack time minimization formulation
is generic, allowing different processor topologies and placement constraints.
Through randomized simulations, we show the feasibility and efficiency of
Horae. In the future, we may consider more complex scenarios and more
restrictive conditions. With the continuous development of edge computing,
variety of new problems will be found in actual applications, and these are
problems that we need to solve in the future.
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