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Abstract

We study a blind deconvolution problem on graphs, which arises in the context of localizing a few sources that diffuse over
networks. While the observations are bilinear functions of the unknown graph filter coefficients and sparse input signals, a mild
requirement on invertibility of the diffusion filter enables an efficient convex relaxation leading to a linear programming formulation
that can be tackled with off-the-shelf solvers. Under the Bernoulli-Gaussian model for the inputs, we derive sufficient exact recovery
conditions in the noise-free setting. A stable recovery result is then established, ensuring the estimation error remains manageable
even when the observations are corrupted by a small amount of noise. Numerical tests with synthetic and real-world network data
illustrate the merits of the proposed algorithm, its robustness to noise as well as the benefits of leveraging multiple signals to aid the
(blind) localization of sources of diffusion. At a fundamental level, the results presented here broaden the scope of classical blind
deconvolution of (spatio-)temporal signals to irregular graph domains.

Keywords: Blind deconvolution, network source localization, graph signal processing, convex relaxation, exact recovery.

1. Introduction

Network processes such as neural activities at different cor-
tical brain regions [2, 3, 4], vehicle flows over transportation
networks [5, 6], COVID-19 infections across demographic ar-
eas connected via a commute flow mobility graph [7], or spatial
temperature profiles monitored by distributed sensors [8, 9], can
be represented as signals supported on the nodes of a graph.
In this context, the graph signal processing (GSP) paradigm
hinges on recognizing that signal properties are shaped by the
underlying graph topology (e.g., in a network diffusion or per-
colation process), to develop models, signal representations,
and information processing algorithms that exploit this rela-
tional structure. Accordingly, generalizations of key signal
processing tasks have been widely explored in recent work;
see [10, 11] for recent tutorial accounts. Notably graph fil-
ters were conceived as information-processing operators acting
on graph-valued signals [12, 13], and they are central to graph
convolutional neural network models; see e.g. [14]. Mathemat-
ically, graph filters are linear transformations that can be ex-
pressed as polynomials of the so-termed graph-shift operator
(GSO; see Section 2). The GSO offers an alegbraic representa-
tion of network structure and can be viewed as a local diffusion
operator. Its spectral decomposition can be used to represent
signals and filters in the graph frequency domain [15]. For the
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cycle digraph representing e.g., periodic temporal signals, the
GSO boils down to the time-shift operator [12, 10, 16]. Given
a GSO, the polynomial coefficients fully determine the graph
filter and are referred to as filter coefficients.
Problem description. In this paper, we revisit the blind de-
convolution task for graph signals introduced in [17], with an
emphasis on modeling diffusion processes and localization net-
work diffusion sources. Specifically, given P observations of
graph signals {yi}

P
i=1 that we model as outputs of a diffusion

filter (i.e., a polynomial in a known GSO), we seek to jointly
identify the filter coefficients h and the input signals {xi}

P
i=1

that generated the network observations. Since the resulting
bilinear inverse problem is ill-posed, we assume that the inputs
are sparse – a well-motivated setting when few seeding nodes
(the sources) inject a signal that is diffused throughout a net-
work [18]. Localizing sources of network diffusion is a chal-
lenging problem with applications in several fields, including
sensor-based environmental monitoring, social networks, neu-
ral signal processing, or, epidemiology, too name a few. This
inverse problem broadens the scope of classical blind deconvo-
lution of temporal or spatial signals to graphs [19, 20, 21].
Related work and contributions. A noteworthy approach was
put forth in [18], which casts the (bilinear) blind graph-filter
identification task as a linear inverse problem in the “lifted”
rank-one, row-sparse matrix xh⊤. While the rank and sparsity
minimization algorithms in [18, 22] can successfully recover
sparse inputs along with low-order graph filters, reliance on
matrix lifting can hinder applicability to large graphs. Beyond
this computational consideration, the overarching assumption
of [18] is that the inputs {xi}

P
i=1 share a common support. Here

instead we show how a mild requirement on invertibility of
the graph filter facilitates an efficient convex relaxation for the
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multi-signal case with arbitrary supports (Section 3); see also
[21] for a time-domain precursor as well as generalizations
of [1] in a supervised learning setting [23] and a study of ro-
bustness to graph perturbations [24]. In Section 4, we establish
sufficient conditions under which the proposed convex estima-
tor can exactly recover sparse input signals, assumed to adhere
to a Bernoulli-Gaussian model. We also derive a stability result
for the pragmatic setting where the graph signal observations
are corrupted by additive noise. The analysis is challenging,
since the favorable (circulant) structure of time-domain filters
in [21] is no longer present in the network-centric setting dealt
with here. Numerical tests with synthetic and real data corrob-
orate the effectiveness of the proposed approach in recovering
the sparse input signals (Section 5). Concluding remarks are
given in Section 6. We defer proofs and mathematical details as
well as non-essential experimental details to the appendices.

Different from most existing model-based works dealing
with source localization on graphs, e.g., [25, 26, 27], like [28]
we advocate a GSP approach based on an admittedly simple
forward (graph filtering) model. In our case, this simplifi-
cation facilitates a thorough theoretical analysis of recovery
performance, offering valuable insights. Often the models of
diffusion are probabilistic in nature, and resulting maximum-
likelihood source estimators can only be optimal for particular
(e.g., tree) graphs [26], or rendered scalable under restrictive
dependency assumptions [29]. Relative to [28, 3], the pro-
posed framework can accommodate signals defined on gen-
eral undirected graphs and relies on a convex estimator of the
sparse sources of diffusion. Furthermore, the setup where mul-
tiple output signals are observed (each one corresponding to
a different sparse input), has not been thoroughly explored in
convex-relaxation approaches to blind deconvolution of (non-
graph) signals, e.g., [19, 30]; see [21] for a recent and inspiring
alternative that we leverage here.

Relative to the conference precursor [1] that discussed in-
herent scaling and (non-cyclic) permutation ambiguities arising
with some particular graphs as well as identifiability issues [31],
the exact and stable recovery guarantees in Section 4 are signif-
icant contributions of this journal paper. Here we offer a com-
prehensive presentation along with full-blown technical details,
we study robustness to noise, and provide a markedly expanded
experimental evaluation anchored in our theoretical analyses.

Notation: Entries of a matrix X and a (column) vector x are
denoted as Xi j and xi. Operators (·)⊤, E [·], vec[·], σmax[·], ◦,
⊗ and ⊙ stand for matrix transpose, expectation, matrix vec-
torization, largest singular value, Hadamard (entry-wise), Kro-
necker, and Khatri-Rao (column-wise Kronecker) products, re-
spectively. The diagonal matrix diag(x) has (i, i)th entry xi. The
n×n identity matrix is represented by In, while 0n stands for the
n × 1 vector of all zeros, and 0n×p = 0n0⊤p . A similar conven-
tion is adopted for vectors and matrices of all ones. For matrix
M ∈ RN×k, we use span{M} := {z ∈ RN |z = Mx,∀x ∈ Rk}

to represent the linear subspace spanned by its columns. The
notation ∥X∥p,q =

(∑
j(
∑

i |Xi j|
p)q/p

)1/q
stands for the element-

wise matrix norm, ∥X∥F = ∥X∥2,2 denotes Frobenius norm, and
∥X∥l→2, l = 1, 2 are operator norms, i.e., the maximum ℓ2 norm

of a column of X for l = 1 and σmax[X] for l = 2, respectively.

2. Preliminaries and Problem Statement

We briefly review the necessary GSP background to intro-
duce the observation model and formally state the problem.

2.1. Graph signal processing background
Consider a weighted and undirected graph denoted as G =

(V,A), where V := {1, . . . ,N} comprises the vertex set. The
symmetric graph adjacency matrix A ∈ RN×N

+ has entries Ai j =

A ji ≥ 0, that represent the weight of the edge (i, j) between
nodes i and j. Naturally, if such edge (i, j) is not present in G
then Ai j = 0. We do not allow for self-loops, hence Aii = 0 for
all i ∈ V. Directed graphs are important [32], but beyond the
scope of this work.

As a general algebraic descriptor of graph connectivity, we
henceforth rely on a symmetric GSO S ∈ RN×N , inheriting and
encoding the sparsity pattern of G [33, 12]. That is, the only
requirement for an admissible GSO S is that S i j = 0 when there
is no edge connecting i and j. Typical choices are A itself, the
combinatorial graph Laplacian L = A − diag(A · 1N), or, their
various degree-normalized forms [34, 10] that we will adopt
for our experiments in Section 5. Given that S is real and sym-
metric, it is always diagonalizable and we can decompose it as
S = VΛV⊤, where Λ = diag(λ1, . . . , λN) collects the eigenval-
ues and V’s columns comprise an orthonormal basis of GSO
eigenvectors.

Lastly, we define a graph signal x : V 7→ RN as an N-
dimensional vector, where xi denotes the signal value at node
i ∈ V. This value could for instance represent the rating user i
assigns to a particular item (e.g., an article as in the experiments
in Section 5.3), the measurement collected by sensor i, or, the
neural activity recorded in the i-th cortical region-of-interest
as defined by some brain parcellation. In GSP, the prevalent
view is that graph signal x should not be viewed in isolation,
but rather as a tuple along with the GSO S – the later provides
useful contextual (or prior) information about pairwise relation-
ships among individual signal elements in x. Next, we elaborate
on the operator viewpoint of S as a map between graph signals.

2.2. Graph-filter models of network diffusion
Let y represent a graph signal supported on G, which is as-

sumed to be generated from an initial state x through linear net-
work dynamics of the form

y = α0
∏∞

l=1(IN − αlS)x =
∑∞

l=0 βlSlx. (1)

The linear transformation S represents one-hop network aggre-
gation (or averaging), so repeated (l = 1, 2, . . .) applications
of the GSO in (1) diffuse x across G. Accordingly, {αl}

∞
l=0 and

{βl}
∞
l=0 can be viewed as diffusion coefficients for the multiplica-

tive and additive signal model parametrizations in (1), respec-
tively. This generative model for y is admittedly simple, but it
nonetheless encompasses a broad class of linear network pro-
cesses such as heat diffusion, average consensus, PageRank,
and the DeGroot model of opinion dynamics [35, 36].
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The Cayley-Hamilton theorem [37, p.109] ensures that the
infinite series in the right-hand-side of (1) can always be equiv-
alently reparametrized using bounded-degree polynomialss of
S. Introducing the coefficient vector h := [h0, . . . , hL−1]⊤ and
the shift-invariant graph filter [10]

H := h0IN + h1S + h2S2 + . . . + hL−1SL−1 =

L−1∑
l=0

hlSl, (2)

the signal model (1) becomes

y =

L−1∑
l=0

hlSl

 x = Hx, (3)

for some h and L ≤ N. While graph filters are leveraged here as
simple generative mechanisms to describe diffusion processes
on networks, these convolutional operators play a central role
in GSP and machine learning on graphs; see e.g., [13] for a
recent tutorial treatment.
Frequency representation. Graph filters and signals ad-
mit representations in the frequency (i.e., graph spectral) do-
main [15, 10]. To this end, recall the GSO eigenvalues
λ1, . . . , λN and introduce the N × L Vandermonde matrix ΨL,
where Ψi j := λ j−1

i and L is the order of the graph filter (2). The
graph Fourier transform (GFT) of a signal x and the frequency
response of filter h are x̃ := V⊤x and h̃ := ΨLh, respectively.
This follows by evaluating the GFT of the filter’s output y = Hx
and using the spectral decomposition S = VΛV⊤, to yield

ỹ = diag
(
ΨLh

)
V⊤x = diag

(
h̃
)
x̃ = h̃ ◦ x̃. (4)

Apparently, the graph filter H is diagonalized by the graph’s
spectral basis V. As a result ỹ is given by the element-wise
product (◦) of x̃ and the filter’s frequency response h̃ := ΨLh,
analogous to the convolution theorem for temporal signals.

2.3. Problem formulation

Suppose we observe P graph signals that we collect in a ma-
trix Y = [y1, . . . , yP] ∈ RN×P. For given shift operator S and
filter order L, observations adhere to the (graph convolutional)
diffusion model Y = HX in (3), where X = [x1, . . . , xP] ∈ RN×P

is sparse having at most S ≪ N non-zero entries per column.
We do not require that the columns of X share a common sup-
port. The pragmatic setting whereby observations are corrupted
by additive noise will be considered in Section 4.2.

The goal is to perform blind deconvolution on the graph G,
which amounts to estimating sparse X and the filter coefficients
h up to scaling and (possibly) permutation ambiguities [1, Sec.
IV-A]. All we are given is Y, a forward model in terms of the
parameterized filter family in (2), and a structural assumption
on X. Sparsity is well motivated when the signals in Y rep-
resent diffused versions of a few localized sources in G, here
indexed by S := supp(X) = {(i, j) | Xi j , 0}. From this vantage
point, the blind deconvolution task can be viewed as a source
localization one, where recovering X is of primary interest and
h becomes a nuisance parameter. In any case, the non-sparse

formulation is ill-posed, since the number of unknowns NP+ L
in {X,h} exceeds the NP observations in Y.

All in all, using (4) the diffused source localization task can
be stated as a non-convex feasibility problem of the form

find {X,h} s. to Y = Vdiag
(
ΨLh

)
V⊤X, ∥X∥0 ≤ PS , (5)

where the ℓ0-(pseudo) norm ∥X∥0 := |supp(X)| counts the non-
zero entries in X. In other words, the goal is to find the solution
to a system of bilinear equations subject to a sparsity constraint
in X; a hard problem due to the cardinality function as well as
the bilinear equality constraints. To deal with the latter, building
on [21] we will henceforth assume that the filter H is invertible.

3. Convex Relaxation for Invertible Graph Filters

In this section we propose a convex relaxation of (5), which
is feasible under the additional mild assumption of diffusion
filter invertibility. We wrap up with a brief discussion about
algorithms to solve the resulting linear program.

3.1. A linear programming problem reformulation

From the filter’s input-output relationship in (4), it follows
that H will be invertible if h̃ does not vanish at any of the graph
frequencies {λi}

N
i=1. That is, no frequency component of the in-

put should be completely annihilated by the filter. We make the
following assumption on the signal model.

Assumption 1 (Invertible graph filter). Recall the observation
model Y = HX in Section 2.2, where H =

∑L−1
l=0 hlSl is a graph

filter. We assume H is invertible, meaning h̃i =
∑L−1

l=0 hlλ
l
i , 0

holds for all i = 1, . . . ,N.

The inverse operator G := H−1 is also a graph filter on G,
which can be uniquely represented as a polynomial in the shift
S of degree at most N − 1 [12, Theorem 4]. Specifically, let
g ∈ RN be the vector of inverse-filter coefficients, i.e., G =∑N−1

l=0 glSl. Then one can equivalently rewrite the observation
model Y = HX as

X = GY = Vdiag(g̃)V⊤Y, (6)

where g̃ := ΨNg ∈ RN is the inverse filter’s frequency response
and ΨN ∈ RN×N is a square Vandermonde matrix. Naturally,
G = H−1 implies the condition g̃ ◦ h̃ = 1N on the frequency
responses, where 1N denotes the N × 1 vector of all ones.

The fundamental implication of Assumption 1 is that, lever-
aging (6), one can recast (5) as a linear inverse problem

min
{X,g}
∥X∥0, s. to X = Vdiag(ΨNg)V⊤Y, X , 0N×P. (7)

This approach to handle the bilinear equations (5) is markedly
different from the matrix lifting technique in [18]. We were in-
spired by the blind deconvolution method in [21], but in the
GSP setting dealt with here the convolution kernel H is not
circulant, and so V is no longer the discrete Fourier transform
(DFT) matrix.
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The ℓ0 pseudo-norm in (7) renders the problem NP-hard to
optimize. Convex-relaxation approaches to tackle sparse recov-
ery problems have enjoyed remarkable success, since they often
entail no loss of optimality. An important contribution of this
work is to establish this holds for (7) as well; see Section 4. Ac-
cordingly, we instead: (i) seek to minimize the ℓ1-norm convex
surrogate of the cardinality function, that is ∥X∥1,1 =

∑
i, j |Xi j|;

and (ii) express the filter in the graph spectral domain as in (6).
This way, we arrive at the convex cost function

∥X∥1,1 = ∥GY∥1,1
= ∥Vdiag(g̃)V⊤Y∥1,1
= ∥(Y⊤V ⊙ V)g̃∥1,

where the last equality is obtained after vectorizing the norm’s
matrix argument, and ⊙ denotes the Khatri-Rao (i.e., column-
wise Kronecker) product. Our idea is to solve the convex ℓ1-
synthesis problem (in this case a linear program), e.g., [38],
namely

ˆ̃g = argmin
g̃∈RN

∥(Y⊤V ⊙ V)g̃∥1, s. to 1⊤N g̃ = N. (8)

While the linear constraint in (8) avoids ˆ̃g = 0N , it also serves to
fix the scale of the solution. An insightful discussion on the role
of the constraint will emerge as an upshot of the exact recovery
guarantees derived in Section 4.1.

3.2. Algorithms

From an algorithmic point of view, under the mild assump-
tion that the diffusion filter is invertible (cf. Assumption 1),
one can readily use e.g., an off-the-shelf interior-point method
or a specialized sparsity-minimization algorithm to solve the
linear programming formulation (8) efficiently. Different from
the solvers in [18, 39], the aforementioned algorithmic alterna-
tives are free of expensive singular-value decompositions per
iteration. Regardless of the particular algorithm chosen, we
have found that overall performance can be improved via the
iteratively-reweighted ℓ1-norm minimization procedure tabu-
lated under Algorithm 1; see also [40] for a justification of such
refinement that effectively zeroes out small residual entries in
intermediate estimates of X. In practice, a couple refinement
iterations suffice so the additional overhead is minimal.

Once the frequency response ˆ̃g of the inverse filter is recov-
ered, one can readily reconstruct the sparse sources via

X̂ = unvec
(
(Y⊤V ⊙ V) ˆ̃g

)
, (9)

where here the unvec(·) operator reshapes its vector argument
to an N ×P matrix. If so desired, one can likewise form the dif-
fusion filter estimate Ĥ = Vdiag(1N/ ˆ̃g)V⊤, where the division
is to be conducted entrywise.

In the next section we will discuss the exact recovery condi-
tion for (8) and its robustness to noise corrupted observation.

Algorithm 1 Iteratively-reweighted ℓ1 minimization for (8)
1: Input: Matrix Y⊤V ⊙ V, δ > 0 and ϵ > 0.
2: Initialize t = 0, w(0) = 1NP, X(0) = 0N×p.
3: repeat
4: Solve

g̃(t+1) = argmin
g̃

∥∥∥w(t) ◦ [(Y⊤V ⊙ V)g̃]
∥∥∥

1 , s. to 1⊤N g̃ = N.

5: Form vec(X(t+1)) = (Y⊤V ⊙ V)g̃(t+1).
6: Update w(t+1)

i = 1
[vec(X(t+1))]i+δ

, i = 1, 2, . . . ,NP.
7: t ← t + 1.
8: until ∥X(t) − X(t−1)∥2 ≤ ϵ.
9: return ˆ̃g := g̃(t) and X̂ := X(t).

4. Recovery Guarantees

Here we conduct a theoretical analysis of the proposed con-
vex estimator in (8), which is a relaxation of the blind deconvo-
lution problem on the graph G. We first derive exact recovery
guarantees, which hold with high probability under a Bernoulli-
Gaussian model for the sparse inputs. A stable recovery result
is then established, ensuring the estimation error on the inverse
filter’s frequency response can be kept in check when the ob-
servations are corrupted by a small amount of additive noise.

Because of its analytical tractability, the Bernoulli-Gaussian
model is widely adopted to describe and generate random
sparse matrices such as the unknown sources X ∈ RN×P in Sec-
tion 2.3. We henceforth adopt the following model specification
that is consistent with the definition in [31].

Definition 1 (Bernoulli-Gaussian model). We say a random
matrix X ∈ RN×P adheres to a Bernoulli-Gaussian model with
parameter θ ∈ (0, 1), if its entries are Xip = Ωipγip/

√
θ, where

Ωip ∼ Bernoulli(θ) and γip ∼ Normal(0, 1) are i.i.d. for all i, p.

In the context of Definition 1 we say that the matrix entries
Xip are Bernoulli-Gaussian random variables, with E

[
Xip

]
= 0

and var
[
Xip

]
= 1. Apparently, the model parameter θ offers a

handle on the sparsity level of X, while entries in supp(X) are
drawn from a standard Normal distribution.

4.1. Exact recovery conditions

Suppose that (7) is identifiable (see e.g., [1, Remark 1] for
sufficient conditions under the Bernoulli-Gaussian model), and
let {X0, g̃0} be the solution. For the ensuing discussion and to
state our exact recovery result, some preliminary notation is in
order. We compactly denote polynomials of the given graph-
shift operator S = VΛV⊤ as P(h̃) := Vdiag(h̃)V⊤, where h̃ is
the corresponding filter’s frequency response. So given obser-
vations Y = P(h̃0)X0 ∈ RN×P (implying X0 = P(g̃0)Y under
Assumption 1, for g̃0 ◦ h̃0 = 1N), we will study the following
problem [cf. (8)]

ˆ̃g = arg min
g̃
∥P(g̃)Y∥1,1, s. to r⊤g̃ = c, (10)
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where r ∈ RN is a generic constraint vector, and c = r⊤g̃0 , 0
is a constant to control the (inherently ambiguous) scale of the
solution ˆ̃g. In general we do not have any prior knowledge about
the ground-truth filter, so we can just select r = 1N as in (8).
Our main result will offer some insights on how the recovery
performance is affected by the choice of r.

We let P⊥1 := IN −
1N 1⊤N

N denote the projection operator onto
the orthogonal complement of the subspace span(1N). Finally,
consider the matrix Ũ := (V ◦ V)P⊥1 ∈ RN×N , which one can
show has a maximum singular value σmax(Ũ) ≤ 1. With these
definitions in place, we have all the elements to state the main
theorem in this section. The result provides sufficient condi-
tions to guarantee exact recovery of the inverse filter g̃0, and
hence the sparse sources X0 via (9), with high probability.

Theorem 1 (Exact recovery). Consider graph signal observa-
tions Y = P(h̃0)X0 ∈ RN×P, where X0 adheres to the Bernoulli-
Gaussian model with θ ∈ (0, 0.324]. Recall that under Assump-
tion 1, we can write X0 = P(g̃0)Y. Let P ≥ C′σ−2

m log 4
δ
, where

σm = min(σ1, σ2, σ3, σ4) and σ1 ∈

(
0,
√
πθ3/2

2

]
, σ2 ∈

(
0,
√
πθ
2

]
,

σ3 > 0, σ4 ∈ (0, 1), δ ∈ (0, 1) are parameters, while C′ is a
constant that does not depend on P, σm, or δ. Then ˆ̃g = g̃0 is
the unique solution to (10) with probability at least 1 − δ, if∥∥∥P⊥1 diag(r)g̃0

∥∥∥
2 ≤ cd0, (11)

where d0 :=
√

1−σ2
max(Ũ)[(1−σ1)−2θ(1+σ2)](1−σ4)

(1+σ3)
√
θ

.

Proof. SeeAppendix A.

Notice that when r = 1N as in (8), the sufficient recovery
condition (11) simplifies to∥∥∥P⊥1 g̃0

∥∥∥
2 ≤ Nd0. (12)

Condition (12) essentially states that when the frequency re-
sponse of the inverse filter g̃0 is closer to the all-ones vector
1N , meaning that P⊥1 g̃0 is smaller in magnitude, the inverse fil-
ter is easier to recover, as the right-hand-side of the bound (11)
does not directly depend on g̃0. Furthermore, the influence of
prior knowledge of the true filter h̃0 on the recovery perfor-
mance can be illustrated through a specific and straightforward
case where r = h̃0 in (11). In this idealised scenario, since
∥P⊥1 diag(h̃0)g̃0∥2 = ∥P⊥1 1N∥2 = 0, the left-hand-side of (11) will
certainly be less than cd0. Although this is a trivial case, it sug-
gests that when r is closer to h̃0 (meaning that diag(r)g̃0 = r◦ g̃0
is closer to 1N), the recovery performance of the proposed con-
vex relaxation (10) will improve.

Additionally, increasing θ within the feasible range θ ∈
(0, 0.324] will decrease d0, making the recovery of the inverse
filter more challenging. Conversely, when ∥P⊥1 g̃0∥2 is smaller,
a lower d0 can be tolerated, allowing for a denser input sig-
nal (higher θ). Moreover, in this last case the feasible parame-
ters {σ1, σ2, σ3, σ4} (and hence σm) can be larger, resulting in
a lower required number of observations P. Naturally, increas-
ing the recovery probability 1 − δ (provided that the sufficient
condition is satisfied) necessitates a larger sample size; see the
log(4/δ) scaling.

4.2. Stable recovery from noisy data
Suppose we are now given P noise-corrupted graph signal

observations Y = P(h̃0)X0 + N, where N ∈ RN×P is an ad-
ditive noise matrix. Since the filter is invertible, we can write
P(g̃0)Y = X0 + P(g̃0)N. It will be convenient to split the effec-
tive noise P(g̃0)N into matrix components respectively corrupt-
ing entries in S := supp(X0) and its complement SC . The latter
will be denoted by N(C) := [P(g̃0)N]SC = P(g̃0)N − [P(g̃0)N]S,
where matrix [M]A has entries Mi j if (i, j) ∈ A and 0 otherwise.

We can establish the following error bound for the solution
of (10), which holds under the same conditions of Theorem 1
and asserts that the inverse filter recovery error will be stable.

Theorem 2 (Stable recovery). Consider graph signal observa-
tions Y = P(h̃0)X0 + N, where N ∈ RN×P is an additive noise
matrix. Let d := P⊥1 diag(r)g̃0 and assume the conditions in
Theorem 1 are satisfied. Then the estimation error associated to
the solution ˆ̃g of problem (10) is bounded by

∥∥∥ ˆ̃g − g̃0
∥∥∥

l ≤

2
∥∥∥∥diag(g̃0)

(
IN − 1N

(r◦g̃0)⊤

c

)∥∥∥∥
l→2
∥N(C)∥1,1√

2
π

PQ − d0∥N(C)∥1,1 − ∥[N(C)]⊤V ⊙ V∥1→2

, (13)

where Q := (1+σ3)
√
θ

c

[√
c2d2

0 − (1 − σ5)2∥d∥22 − σ5∥d∥2
]
, for

some σ5 ∈ [0, 1], and ∥ · ∥l stands for the ℓ1 and ℓ2 norms when
l = 1, 2, respectively.

Proof. See Appendix B.

Notice first that Q ≥ 0 when (11) holds. Importantly, the de-
nominator in the right-hand-side of (13) should be non-negative
to obtain feasible upper bound. This effectively imposes a con-
straint on the magnitude of the noise component N(C) in SC ,
which should satisfy

∥N(C)∥F ≤

√
2
π

PQ

d0∥N̄(C)∥1,1 + ∥[N̄(C)]⊤V ⊙ V∥1→2
, (14)

where N̄(C) := N(C)/∥N(C)∥F . The right-hand-side of (14) pro-
vides an upper bound to the strength of the noise that is tolera-
ble. Once more, in favorable settings where ∥d∥2 is small, e.g.,
if g̃0 is closer to the all-ones vector 1N , we will have a larger up-
per bound in (14) because Q will be larger. Similarly for large
d0, for instance in sparse settings where θ is small. Either way,
we have Q ≈ (1 + σ3)

√
θd0 and the noise condition simplifies

to ∥N(C)∥1,1 ≤

√
2θ
π

(1 + σ3)P.

5. Numerical Results

We carry out numerical experiments to assess the perfor-
mance of the proposed convex relaxation in a variety of settings.
To this end, we run Algorithm 1 and solve the per-iteration
sparse recovery problems using CVX [41]. We first rely on syn-
thetic data to simulate various controlled settings, which allow
us to verify some of the conclusions drawn from our theoreti-
cal analysis in Section 4. We then compare against the matrix
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lifting approach in [18] with a focus on the sparsity levels and
filter orders that lead to successful recovery. Finally, we con-
duct a network source localization experiment using real social
network data, and include the non-convex ℓ1 recovery algorithm
in [28] as an additional baseline.

5.1. Key parameters affecting recovery performance

Here we consider Erdös-Renyi random graphs with N = 20
and edge connection probability p = 0.4. For the GSO we
adopt the degree-normalized adjacency matrix S = D− 1

2 AD− 1
2 ,

where D := diag(A · 1N). Notice that the eigenvalues of S are
bounded, i.e., λi ∈ (−1, 1]. We generate graph filters H such that
their inverse filters have frequency responses g̃ = 1N + αP⊥1 b,
with perturbation b ∈ RN drawn from Normal(0N , IN) (multi-
variate standard Gaussian) and subsequently scaled such that
∥P⊥1 b∥2 = N. Hence, the left-hand-side of (12) becomes
∥P⊥1 g̃0∥2 = α∥P⊥1 b∥2 = αN. and so (12) will be satisfied when-
ever α ≤ d0. The matrix X of sparse sources is drawn according
to the Bernoulli-Gaussian model in Definition 1, and we will
control the sparsity parameter θ. Besides, in order to verify the
stability properties conveyed by the error bound (13), we also
consider noise corrupted observations Y = HX + ηN, where N
has i.i.d. standard Gaussian entries.

Given this simulation setup, we conducted four experiments
to further examine the exact and stable recovery properties of
(8). The results are shown in Figure 1, which depicts different
figures of merit as a function of: (i) α vs P, (ii) α vs θ, (iii) θ
vs P, (iv) η vs α. As figures of merit we consider the root mean
square error (RMSE) of the estimated sources X̂ as well as the
support recovery accuracy, i.e.,

REx :=
∥X̂ − X0∥F

∥X0∥F
, ACCx :=

|suppκ(X̂) ∩ suppκ(X0)|
|suppκ(X0)|

,

where suppκ(·) is the support function with threshold κ. For
these tests, we use κ = 0.1.

In Figure 1, the first and third columns depict 1 − REx and
the second and fourth columns show ACCx. In all cases, lighter-
colored pixels indicate better performance. In the top row, we
examine the relation of α = ∥P⊥1 g̃0∥/N v.s. P in (a)-(b) and α
v.s. θ in (c)-(d). Our previous discussion for Theorem 1 and the
recovery condition (12) is corroborated by these results which
show a smaller α would both reduce the required sample size P
and tolerate denser sources, i.e., a larger θ. From Figures 1 (e)-
(f), it can be seen that while α = 2 is fixed, which implies the
lower bound of d0 is unchanged, source signals generated with
a larger θ require a larger sample size P for successful recovery.
And this observation is also consistent with Theorem 1. Notice
that while our sufficient conditions hold for θ ∈ (0, 0.324], in
practice successful recovery is possible for larger θ provided
that e.g., P is large enough or α is sufficiently small.

Moving on to the noisy setting, from Figures 1 (g)-(h) it can
be seen that a smaller α would result in higher robustness to
noise. This finding is also consistent with Theorem 2, because
∥d∥2 = α when we use the all-ones vector in the constraint, i.e.,
r = 1N . All in all, as expected the numerical results in Figure 1
are in line with the theoretical guarantees in Theorems 1 and 2.

5.2. Comparing with the matrix lifting approach in [18]

Here we start by examining the sensitivity of the estima-
tor (8) to the graph filter order L, which may impact ∥d∥2 =
∥P⊥1 g̃0∥2 and hence the satisfiability of (11). To this end, let
S = D− 1

2 AD− 1
2 and consider graph filter coefficients of the form

h = [1, h1, ..., hL−1]⊤. The frequency response h̃ = ΨLh =
1N+(

∑L−1
l=1 hl)e1+[ΨL]−1h−1, where [·]−1 zeroes out the first row

of its matrix argument, i.e., [ΨL]−1 = diag(1N − e1)ΨL and like-
wise h−1 = diag(1N − e1)h, where e1 = [1, 0, . . . , 0]⊤ ∈ RN . As
for the normalized adjacency matrix used as GSO, all its eigen-
values are within (−1, 1) except for the first (biggest) eigenvalue
λ1 = 1, so the term [ΨL]−1h−1 can be viewed as a small pertur-
bation relative to 1N . This suggests that a higher L together
with filter coefficients h−1 of larger magnitude would lead to
greater deviations of h̃ from 1N . This in turn implies a bigger
∥P⊥1 g̃0∥2 that would make filter recovery harder. The preced-
ing discussion suggests evaluating the recovery performance
of Algorithm 1 for graph filters with coefficients of the form
h = e1 + βh−1, with h−1 = [0,b⊤L−1]⊤ and bL−1 ∈ RL−1 is drawn
from Normal(0L−1, IL−1). Parameter β controls the filter pertur-
bation, similar to α in Section 5.1. However, working with (and
perturbing) h instead of the inverse filter g̃ as in Section 5.1,
directly allows us to examine the effect of L.

In this context, we compare the recovery performance of the
proposed approach (8) against the matrix-lifting baseline in [18]
– the latter is known to be more sensitive to L, especially for
higher-order filters [1]. We evaluate and report the same fig-
ures of merit REx and ACCx used in the previous experiment,
but now as a function of sparsity (θ) and filter order (L). We
fix the filter perturbation level to β = 0.5. The numerical re-
sults are shown in Figures 2 (a)-(d) for a N = 20-node Erdös-
Renyi random graph with p = 0.4, and in Figures 2 (e)-(h)
for a N = 66-node structural brain connectome from the study
in [42]. The first two columns in Figure 2 depict 1 − REx and
ACCx for Algorithm 1, respectively; while the last two columns
show the counterparts for the estimator in [18]. Again, lighter-
colored pixels are indicative of better performance. Results in
Figure 2 clearly show that Algorithm 1 uniformly outperforms
the matrix-lifting baseline, and is markedly less (adversely) af-
fected by large values of L – especially when the input sources
are sufficiently sparse. The results are fairly consistent across
the graphs tested here (compare the top and bottom rows in
Figure 2), but we note recovery appears to be more challeng-
ing when signals are diffused over the real brain connectome
(even with 50% more observations). In part, this could be ex-
plained by the fact that σmax(ŨER) = 0.5054 (averaged over 20
realizations of ER graphs with N = 20 and p = 0.4), while
σmax(Ũbrain) = 0.8769. Hence, d0 in (12) will be smaller for the
brain network – everything else being equal.

5.3. Experiments on real social network data

In this section we test the proposed approach on the Epinions
dataset [43], a who-trusts-whom online social network that in-
cludes 132k users, 755k items (articles written by some of the
users), 13M user-to-item ratings (1-5 scale, with timestamp),
and the signed trust/distrust pairwise relations (717k for trust
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Figure 1: Recovery performance of Algorithm 1 for problems involving Erdös-Renyi random graphs with N = 20, p = 0.4. The first and third columns show
1−REx for different settings (the whiter the better, meaning lower error), the second and fourth columns show the accuracy of support estimate for different settings
(the whiter the better, meaning higher fraction of true sources recovered). For (a) and (b) the recovery performance of α v.s. P, with θ = 0.15, is shown. For (c) and
(d) α v.s. θ with P = N = 20. For (e) and (f) θ v.s. P, with α = 0.1N = 2. For (g) and (h) we consider the noisy case, i.e. η v.s. α, with θ = 0.1, P = N = 20. All of
the results represent averages over 100 independent realizations. Apparently, the proposed approach exhibits satisfactory performance over a wide range of settings.

and 123k for distrust) between users. Leveraging these data, we
want to tackle the following network source localization prob-
lem: given a connected social graph and timestamped item rat-
ings generated by users in this social network, can we locate the
subset of users who generate the earliest ratings, assuming that
other users’ rating might be impacted by those early ratings?

More precisely, for a connected social network with N user
nodes and a set of P items, we want to identify the θsr earli-
est ratings (θsr is a prescribed proportion of earliest ratings as-
signed to these items, say θsr = 10%, 20%, 30%, 40%) from
the observed ratings matrix Yobs ∈ RN×P. Note that the rating
density of the whole dataset is fairly low, i.e., 0.0015% [43].
As a result, for a sparse observation matrix Yobs the optimal
solution of (8) would likely yield the trivial result ˆ̃g = 1N ,
since this solution both satisfies the recovery condition (11)
and is compatible with the sparsity requirement on the sources
X̂ = Vdiag(ˆ̃g)V⊤Yobs = Yobs. To obtain an interesting prob-
lem instance that is compatible with our setting, we generate a
sub-dataset with higher rating density. To this end, we sample
and pre-process the original data (details can be found in Ap-
pendix C), and obtain a reduced dataset of N = 245 users and
P = 51 items with rating density 0.64. All of the N users were
connected via a directed trust network G with binary adjacency
matrix W, i.e., the link Wi j from user i to user j indicates i was
trusted by j, and hence user i’s opinion would impact that of
user j. The resulting adjacency matrix W is shown in Figure
3 (a) and the degree distribution of the symmetrized undirected
graph with A = (W+W⊤)/2 can be found in Figure 3 (b). Like

in the previous experiments, we adopt S = D− 1
2 AD− 1

2 as GSO.
Following a data pre-processing step, the resulting centered rat-
ings matrix Yobs with values in [−2, 2] is shown in Figure 3
(c). Given that the ground-truth sparsity of the source θsr is un-
known, we examine different sparsity level assumptions on the
input, namely, θsr ∈ {0.1, 0.2, 0.3, 0.4}. Specifically, to populate
the source signal Xsr we retain different proportions θsr of the
earliest ratings per item p = 1, . . . , P. This way θsr is closely
related to S as defined in Section 2.3.

To assess the source recovery performance, we take S and
Yobs as inputs and compare three approaches: two methods
for graph-aware blind deconvolution including the proposed
estimator (8) and the lifting approach in [18], plus the non-
convex ℓ1 recovery algorithm for source localization on graphs
(SLG) [28]. Since the support of sources Xsr is a strict subset
of the support of Yobs, we consider the area under the curve
(AUC) of the predicted sources in X̂ as figure of merit in this
numerical test case. In addition to the aforementioned three
methods, we also consider a naive baseline whereby X̂ = Yobs.
The resulting AUCs for different source signal sparsity levels
θsr are shown in Figure 3 (d). It can be seen that Algorithm 1
achieves the highest AUC for the denser settings θsr = 0.3, 0.4;
for θsr = 0.2, the proposed approach and SLG attain a similar
AUC (which is higher than the naive baseline); for θsr = 0.1,
the proposed method performs marginally worse than all of the
other three predictors. The matrix lifting algorithm is only com-
petitive when the sources are the sparsest.

Overall, we find that the proposed estimator (8) offers more
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Figure 2: Recovery performance comparing Algorithm 1 with the matrix-lifting approach in [18], for an ER graph with N = P = 20, p = 0.4 and a filter perturbation
magnitude of β = 0.5. Plots (a) and (b) show 1 − REx and accuracy of support estimate for the proposed estimator, while (c) and (d) show 1 − REx and accuracy
of support estimate for the lifting approach. The same is shown in plots (e)-(h), but for the 66-node structural brain network studied in [42], with P = 30. All the
results represent averages over 20 independent realizations. Algorithm 1 uniformly outperforms the matrix-lifting baseline, and is less sensitive to the filter order L.

robust predictions across a broader range of input sparsity lev-
els, a promising finding to support the prospect of solving real
world network deconvolution problems. In all fairness though,
the performance of none of the methods is stellar. But we note
these real data are complex and we lack a ground truth for
validation, since the chronological order alone does not imply
causality. Secondly, even through there are a few earliest rat-
ings that impact other ratings and hence should be reasonably
viewed as sources, the observations could still be highly noisy.

6. Concluding Summary and Future Work

We studied the problem of blind graph filter identification
from multiple sparse inputs, which extends blind deconvolu-
tion of time (or spatial) domain signals to graphs. By intro-
ducing a mild assumption on invertibility of the graph filter, we
obtained a computationally simpler convex relaxation for (dif-
fused) source localization in the multi-signal case. In terms
of theoretical analyses, we first derived sufficient conditions
for exact recovery, which hold with high probability under a
Bernoulli-Gaussian model for the sparse inputs. A stable re-
covery result is then established, ensuring the estimation error
on the inverse filter’s frequency response is manageable when
the observations are corrupted by a small amount of noise.

Ongoing work includes additional analyses on the robust-
ness of the proposed approach to imperfections in the observed
graph, as well as when measurements are collected only in a
fraction of nodes. On the algorithmic side, developing an on-
line network source localization method capable of processing

streaming graph signal observations is also of interest.

Appendix A. Proof of Theorem 1

Recall the notation introduced in Section 4.1. The proof of
Theorem 1 begins by considering an equivalent problem to (10),
obtained via an invertible change of variable w = g̃◦ h̃0, namely

ŵ = argmin
w
∥P(w)X∥1,1, s. to r̄⊤w = c, (A.1)

where r̄⊤ = r⊤diag(g̃0). Note that the solution candidate ŵ =
1N implies ˆ̃g = g̃0 in (10), so we let c = r̄⊤1N . Then we have
the following proposition, which simply restates Theorem 1 in
terms of the equivalent problem (A.1).

Proposition 1 (Exact recovery for the equivalent problem).
Consider graph signal observations Y = P(h̃0)X0 ∈ RN×P,
where X0 adheres to the Bernoulli-Gaussian model with θ ∈
(0, 0.324]. Recall that under Assumption 1, we can write X0 =

P(g̃0)Y. Let P ≥ C′σ−2
m log 4

δ
, where σm = min(σ1, σ2, σ3, σ4)

and σ1 ∈

(
0,
√
πθ3/2

2

]
, σ2 ∈

(
0,
√
πθ
2

]
, σ3 > 0, σ4 ∈ (0, 1),

δ ∈ (0, 1) are parameters, while C′ is a constant that does not
depend on P, σm, or δ. Then ŵ = 1N is the unique solution to
(A.1) with probability at least 1 − δ, if∥∥∥P⊥1 r̄

∥∥∥
2 ≤ cd0, (A.2)

where d0 :=
√

1−σ2
max(Ũ)[(1−σ1)−2θ(1+σ2)](1−σ4)

(1+σ3)
√
θ

.
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Figure 3: Recovery performance on the Epinions dataset. (a) The adjacency matrix W of the sampled directed social network and the (b) the degree distribution of
the symmetrized undirected graph with adjacency A = (W+W⊤)/2. (c) The centered rating data Yobs. (d) Source localization performance is quantified in terms of
the AUC as a function source density level θsr = {0.1, 0.2, 0.3, 0.4}. We compare four different approaches: (i) the proposed estimator (8); (ii) the source localization
on graphs (SLG) algorithm in [28], (iii) the matrix lifting-based approach from [18], and (iv) the naive predictor whereby X̂ = Yobs. We find that Algorithn 1 offers
more robust predictions across a broader range of input sparsity levels.

To establish Proposition 1 (and thus Theorem 1), we will de-
rive a concentration property for hollow matrices with an all-
zero diagonal [cf. (A.10)] that follows from Proposition 2.

Proposition 2. Consider vectors mi ∈ RN , i ∈ {1, . . . ,N}, such
that [mi]i = 0. Suppose X ∈ RN×P is drawn form the Bernoulli-
Gaussian model in in Definition 1, with θ ∈

(
0, e−1

]
. Given

parameters δ ∈ (0, 1), σ1 ∈

(
0,
√
πθ3/2

2

]
, and σ2 ∈

(
0,
√
πθ
2

]
,

let P ≥ C
min(σ2

1,σ
2
2) log 4

δ
for some constant C. Then, for each

i ∈ {1, . . . ,N} we have

(a) Pr
[∣∣∣∣ 1
βiP
∥m⊤i X∥1 − ∥mi∥2

∣∣∣∣ ≤ σ1∥mi∥2

]
≥ 1 − δ

(b) Pr
[∣∣∣∣ 1
βiθP

∥(ω⊤i ) ◦ (m⊤i X)∥1 − ∥mi∥2

∣∣∣∣ ≤ σ2∥mi∥2

]
≥ 1 − δ,

(A.3)
where βi := E

[
∥m⊤i X∥1

]
/∥mi∥2 and ωi = [Ωi1, . . . ,ΩiP]⊤.

The idea behind (a) in (A.3) comes from [44, Theorem 5.1],
namely that the absolute value of linear combinations of i.i.d.
Bernoulli-Gaussian {Xi j}will concentrate to its expectation. For
(b), let xp be the p-th column of X and note that Ωip and |m⊤i xp|

are independent ∀i, p, when mi is a hollow vector. This implies

E
[
∥(ω⊤i ) ◦ (m⊤i X)∥1

]
= E

 P∑
p=1

Ωip|m⊤i xp|


= EX

 P∑
p=1

E
[
Ωip

]
|m⊤i xp|


= θEX

 P∑
p=1

|m⊤i xp|

 .
To prove Proposition 2, we first establish preliminary Lem-

mata 1 and 2 that are similar to [44, Lemma 5.3], and then
prove Lemmata 3 and 4 that follow ideas from [44, Proposi-
tion 5.2]. Specifically, in the first step we show that for a hol-
low matrix M and Bernoulli-Gaussian distributed X, the en-
tries of both of MX and Ω ◦ (MX) have bounded expecta-
tion and variance (cf. Lemma 1 and Lemma 2). Recalling

S := supp(X) = supp(Ω), let X̄ := M̄X and X̄(S) := 1
θ
Ω◦(M̄X),

with M̄ := [m1/∥m1∥2, . . . ,mN/∥mN∥2]⊤ ∈ RN×N . Then in the
second step, in Lemma 3 we show that |X̄ip| (and |X̄(S)

ip |) have
uniform exponential tails, meaning that for some constant b > 0
and all t ≥ 0 we have Pr

[
|X̄ip| ≥ t

]
≤ e−bt. Finally, Lemma 4

asserts that the sum of the entries of both X̄ and X̄(S) will con-
centrate to their entries’ mean.

Lemma 1. Consider vectors m̄i ∈ RN i ∈ {1, . . . ,N}, such that
[m̄i]i = 0, ∥m̄i∥∞ = αi, and ∥m̄i∥2 = 1. Let X̄(S) = 1

θ
Ω ◦

(M̄X) ∈ RN×P, where X ∈ RN×P is drawn form the Bernoulli-
Gaussian model in Definition 1, with θ ∈

(
0, e−1

]
, and M̄ =

[m̄1, . . . , m̄N]⊤ ∈ RN×N . Then E
[
|X̄(S)

ip |
2
]
= 1
θ
, and β0(1 − σ′i) ≤

E
[
|X̄(S)

ip |
]
≤ β0,∀(i, p), where β0 := E

[
|γip|

]
=
√

2/π and

σ′i =


α2

i

θ
, αi ∈ (0,

√
θ] ∩ [N−1/2, 1],

1 −
√
θαi

1 + (1 − α2
i )θ2

2α2
i (1 − θ)

 , αi ∈ (
√
θ, 1] ∩ [N−1/2, 1].

(A.4)

Lemma 2. Consider vectors m̄i ∈ RN i ∈ {1, . . . ,N}, such that
[m̄i]i = 0, ∥m̄i∥∞ = αi, and ∥m̄i∥2 = 1. Let X̄ = M̄X ∈ RN×P,
where X ∈ RN×P is drawn form the Bernoulli-Gaussian model
in Definition 1 with θ ∈ (0, e−1], and M̄ = [m̄1, . . . , m̄N]⊤ ∈
RN×N . Then E

[
|X̄ip|

2
]
= 1 and β0(1 − σ′i) ≤ E

[
|X̄ip|

]
≤

β0,∀(i, p), where σ′i is given by (A.4).

Proof of Lemma 1. Notice that for any (i, p), M̄ii = 0, so X̄(S)
ip =

1
θ
Ωip

∑N
j=1 M̄i jX jp =

1
θ
Ωip

∑
j,i M̄i jΩ jpγ jpθ

−1/2. By condition-
ing on Zip =

∑
j,iΩ jpM̄2

i j = z, then X̄ip = θ
−1/2 ∑

j,i M̄i jΩ jpγ jp

is distributed as Normal(0, z
θ
). Also notice that θX̄(S)

ip = ΩipX̄ip,

where Ωip and X̄ip are independent. Then E
[
|θX̄(S)

ip |
∣∣∣ Zip = z

]
=

θβ0

√
z
θ
, and thus E

[
|X̄(S)

ip |
]
= θ−1/2β0E

[ √
Zip

]
. Following ideas

in the proof of [44, Lemma 5.3], we can derive upper and lower
bounds for E

[ √
Zip

]
.

For the upper bound, we have E
[ √

Zip

]
≤

√
E

[
Zip

]
≤
√
θ.

For the lower bound, we consider two cases, αi <
√
θ and αi ≥

9



√
θ. When αi <

√
θ, we use the strategy in [44, Lemma 5.3].

Let t = Zip

θ
− 1 ≥ −1, and recall that

√
1 + t ≥ 1 + t

2 − t2, hence

E
[ √

Zip

]
=
√
θE

[√
1 + t

]
≥
√
θ

1 + E [
Zip

θ
− 1

]
− E

(Zip

θ
− 1

)2
=
√
θ
(
1 − θ−2var

[
Zip

])
.

Now var
[
Zip

]
=

∑
j,i M̄4

i jvar
[
Ω jp

]
≤

∑
j,i M̄4

i jθ ≤

θα2
i
∑

j,i M̄2
i j = θα2

i (as m̄i has unit ℓ2 norm). Hence,

E
[ √

Zip

]
≥
√
θ(1 − α

2
i
θ

) ≥
√
θ(1 − σ′i), where σ′i =

α2
i
θ

. As a

result, β0(1 − σ′i) ≤ E
[
|X̄(S)

ip |
]
≤ β0,∀(i, p), with σ′i = α

2
i /θ < 1.

When αi ≥
√
θ, we let k bet the index associated with the

maximum entry of m̄i (i.e., αi = ∥m̄i∥∞ = |M̄ik |). Then, we have

E
[ √

Zip

]
= E


√
ΩkpM̄2

ik +
∑
j,i,k

Ω jpM̄2
i j


≥ E


√
ΩkpM̄2

ik +
∑
j,i,k

Ω jpM̄2
i j

∣∣∣Ωkp = 1

 Pr
[
Ωkp = 1

]
(a)
= θαiE

√1 +
1 − θ
θ

t

 ≥ θαiE
[√

et
]
≥ θαiE

[
1 +

t
2

]
= θαiE

1 + θ

2(1 − θ)

∑
j,i,k

Ω jpM̄2
i j

α2
i


(b)
=
√
θ(1 − σ̄i)

In (a) we let t = θ
1−θ

∑
j,i,k

Ω jp M̄2
i j

α2
i
≤ 1, as α2

i ≥ θ. And in

(b), we let σ̄i = 1 −
√
θαi

[
1 + (1−α2

i )θ2

2α2
i (1−θ)

]
. It can be checked that

f (αi, θ) := 1 − σ̄i =
√
θαi

[
1 + (1−α2

i )θ2

2α2
i (1−θ)

]
∈ [θ + θ

2

2 ,
√
θ], for

αi ≥
√
θ and θ ≤ e−1. As a result, for any αi ∈ [

√
θ, 1], we get

σ̄i = 1 − f (αi, θ) ∈ [1 −
√
θ, 1 − θ − θ

2

2 ]. So σ̄i ∈ (0, 1) is a
feasible lower bound for αi ≥

√
θ with θ ≤ e−1.

Note that the feasible range of αi is [N−1/2, 1], and we do not
know whether

√
θ ≤ e−1/2 ≈ 0.6 would be within it. So we

apply the following strategy to select the lower bound σ′i , i.e.,

σ′i =


α2

i

θ
, αi ∈ (0,

√
θ] ∩ [N−1/2, 1]

1 − f (αi, θ), αi ∈ (
√
θ, 1] ∩ [N−1/2, 1].

(A.5)

Besides, we have E
[
|θX̄(S)

ip |
2
]
= E

[
|ΩipX̄ip|

2
]
=

E
[
Ωip

]
E

[
|X̄ip|

2
]
= θ, so E

[
|X̄(S)

ip |
2
]
= 1
θ

as desired. ■

Proof of Lemma 2 Because M̄ii = 0, X̄ip =
∑N

j=1 M̄i jX jp =∑
j,i M̄i jΩ jpγ jpθ

−1/2, for all (i, p). As m̄i has unit ℓ2 norm, upon
conditioning on Zip =

∑
j,iΩ jpM̄2

i j = z, X̄ip is distributed as

Normal(0, z
θ
). Then E

[
|X̄ip|

∣∣∣ Zip = z
]
= β0

√
z
θ
, and E

[
|X̄ip|

]
=

θ−1/2β0E
[ √

Zip

]
. As Zip here is defined exactly as in the proof

of Lemma 1, we also have
√
θ(1 − σ′i) ≤ E

[
Zip

]
≤
√
θ, with σ′i

defined as in (A.5). Notice that we have the same bounds for
E

[
|X̄ip|

]
and E

[
|X̄(S)

ip |
]
. However, for E

[
|X̄ip|

2
]
, the result will

be different, as E
[
|X̄ip|

2
]
= 1. ■

From Lemma 1 and 2, we know for an arbitrary hollow-
matrix M and Bernoulli-Gaussian distributed X with θ ∈
(0, e−1], the product X̄ = M̄X and its masked version X̄(S) have
bounded entries. Next, Lemma 3 establishes their entries have
uniform exponential tails.

Lemma 3. The elements of both X̄ and X̄(S) have uniform ex-
ponential tails. Specifically, Pr

[
|X̄ip| > t

]
≤ e−ut+O(u2), ∀u ∈

[0,
√

2θ/αi], t ≥ 0. Likewise, Pr
[
|X̄(S)

ip | > t
]
≤ e−ut+O(u2),

∀u ∈ [0,
√

2θ3/αi], t ≥ 0.

Proof of Lemma 3. To show that X̄(S)
ip has a uniform exponen-

tial tail for all (i, p), we consider 0 ≤ u ≤ ui =
√

2θ3/αi,

E
[
euX̄(S)

ip

]
= E

[
e

uΩip
θ

∑
j,i M̄i jX jp

]
=

∏
j,i

E
[
e

uΩipΩ jp
θ3/2

M̄i jγ jp

]
=

∏
j,i

Eγ jp

[
θ[θe

u
θ3/2

M̄i jγ jp + (1 − θ)] + (1 − θ)
]

(a)
≤

∏
j,i

[
θ
[
θ(1 + u2M̄2

i j/θ
3) + (1 − θ)

]
+ (1 − θ)

]
=

∏
j,i

(1 + θ−1u2M̄2
i j) ≤

∏
j,i

e
1
θ u2 M̄2

i j = e
u2
θ . (A.6)

Notice that in (a), we have applied: (i) E
[
euX

]
= e

u2
2 ,∀u ≥ 0

when X ∼ Normal(0, 1), so E
[
euθ−3/2 M̄i jγ jp

]
= euθ−3/2 M̄2

i j/2 =

e
u2

2θ3
M̄2

i j because γ jp ∼ Normal(0, 1); and then (ii) eκ ≤ 1 +
2κ,∀κ ∈ [0, 1] as κ = u2

2θ3 M̄2
i j ≤

u2

2θ3α
2
i ≤ 1. All in all, ∀u ∈ (0, ui]

and ∀t ≥ 0 we have

Pr
[
X̄(S)

ip ≥ t
]
= Pr

[
euX̄(S)

ip ≥ eut
]
≤ e−utE

[
euX̄(S)

ip

]
≤ e−ut+ u2

θ .

By symmetry, it follows Pr
[
X̄(S)

ip ≤ −t
]
≤ e−ut+ u2

θ . So

X̄(S)
ip ,∀(i, p) has a uniform exponential tail, i.e., Pr

[
|X̄(S)

ip | > t
]
≤

e−ut+O(u2), ∀u ∈ [0,
√

2θ3/αi], and all t ≥ 0.
To show that X̄ip also has a uniform exponential tail for all

(i, p), we follow a similar approach and consider 0 ≤ u ≤ ui =√
2θ/αi to obtain

E
[
euX̄ip

]
= E

[
eu

∑
j,i M̄i jX jp

]
=

∏
j,i

E
[
e

uΩ jp
θ1/2

M̄i jγ jp

]
=

∏
j,i

Eγ jp

[
θe

u
θ1/2

M̄i jγ jp + (1 − θ)
]

(b)
≤

∏
j,i

[
θ(1 + u2M̄2

i j/θ) + (1 − θ)
]

=
∏
j,i

(1 + u2M̄2
i j) ≤

∏
j,i

eu2 M̄2
i j = eu2

10



Notice that in (b), we applied the same inequalities as (a) in
(A.6). Then ∀u ∈ (0, ui] and ∀t ≥ 0,

Pr
[
X̄ip ≥ t

]
= Pr

[
euX̄ip ≥ eut

]
≤ e−utE

[
euX̄ip

]
≤ e−ut+u2

By symmetry, Pr
[
X̄ip ≤ −t

]
≤ e−ut+u2

as well. So X̄ip,∀(i, p)

has a uniform exponential tail, i.e., Pr
[
|X̄ip| > t

]
≤ e−ut+O(u2),

∀u ∈ [0,
√

2θ/αi], and all t ≥ 0. ■
The final ingredient needed to prove Proposition 2 is Lemma

4, which shows that the ℓ1 norms of the i-th rows of X̄ and X̄(S)

concentrate to βi := E
[
|X̄ip|

]
= E

[
|X̄(S)

ip |
]
.

Lemma 4. Let x̌(S)
i := 1

√
P

(∑P
p=1 |X̄

(S)
ip | − Pβi

)
and

x̌i := 1
√

P

(∑P
p=1 |X̄ip| − Pβi

)
. Then both x̌(S)

i and x̌i have
sub-Gaussian tails (as defined in [44, Definition 2.1]), up to
θ3/2
√

2αi

√
P and θ

√
2αi

√
P, respectively.

Proof of Lemma 4. Firstly, note that E
[
X̄ip

]
= 0 and from

Lemma 2 it follows that var
[
X̄ip

]
= 1, E

[
|X̄ip|

]
= βi. More-

over, according to Lemma 3, X̄ip has an exponential tail, i.e.,
Pr

[
|X̄ip| > t

]
≤ e−ut+O(u2),∀u ∈ [0,

√
2θ/αi], and all t ≥ 0. From

[44, Proposition 5.2, Lemma 2.3], it can be shown that ∀i, x̌i

has a sub-Gaussian tail up to θ
√

2αi

√
P, i.e., E

[
eux̌i

]
< eO(u2) and

E
[
e−ux̌i

]
< eO(u2),∀u ∈

(
0, θ
√

2αi

√
P
)
.

For x̌(S)
i , we also have E

[
X̄(S)

ip

]
= 0 and E

[
|X̄(S)

ip |
]
= βi.

From Lemma 1 we know the only difference with X̄ip

is var
[
X̄(S)

ip

]
= 1

θ
. So we can still apply [44, Propo-

sition 5.2, Lemma 2.3] and show ∀i, x̌(S)
i has a sub-

Gaussian tail up to θ
√

2α3/2
i

√
P, i.e., E

[
eux̌(S)

i

]
< eO(u2) and

E
[
e−ux̌(S)

i

]
< eO(u2),∀u ∈

(
0, θ

3/2
√

2αi

√
P
)
. ■

Proof of Proposition 2. To show (b), from Lemma 4 we know
x̌(S)

i = 1
√

P

(∑P
p=1 |X̄

(S)
ip | − βiP

)
= 1
√

P

(
1
θ
∥[m̄⊤i X]S∥1 − Pβi

)
has a

sub-Gaussian tail up to θ3/2
√

2αi

√
P. As a result, for some σ2 ∈

(0, 1), we have

Pr
[

1
θβiP

∥[m̄⊤i X]S∥1 ≥ 1 + σ2

]
= Pr

[
x̌(S)

i ≥ βi
√

Pσ2

]
≤ e−C′β2

i Pσ2
2 ,

for some constant C′ > 0. We require βi
√

Pσ2 ≤
θ3/2
√

2αi

√
P ⇒

σ2 ≤ min
{
θ3/2
√

2αiβi
, 1

}
. Because θ ∈ (0, e−1] and 1

√
2αiβi
≥ 1
√

2β0
=

√
π

2 , we have
√
πθ3/2

2 ≤ min
{
θ3/2
√

2αiβi
, 1

}
. So it suffices to select

σ2 ∈

(
0,
√
πθ3/2

2

]
. Now for e−C′β2

i Pσ2
2 ≤ δ2 , we have P ≥ C

σ2
2

log 2
δ
,

where C ≥ 1
C′β2

i
is some constant. Putting all pieces together

we have Pr
[

1
θβiP
∥[m̄⊤i X]S∥1 ≤ 1 − σ2

]
≤ δ2 and Proposition 2(b)

follows.
To show (a), notice that from Lemma 4 we know x̌i =

1
√

P
(
∑P

p=1 |X̄ip| − βiP) = 1
√

P
(∥m̄⊤i X∥1 − Pβi) has a sub-Gaussian

tail up to θ
√

2αi

√
P. Following similar steps as above for (b), one

can readily arrive at Proposition 2(a). ■
Having established Proposition 2, we have almost all ingre-

dients needed to prove Proposition 1. Before doing so, we in-
troduce a final lemma to show that Bernoulli-Gaussian random
variables have bounded-energy.

Lemma 5 (Bounded energy). Let {Xip} be i.i.d. random vari-
ables drawn from the Bernoulli-Gaussian model in in Definition
1, with θ ∈

(
0, e−1

]
. For any vector a ∈ RN and some σ3 > 0, if

P ≥ C̆
β2

0σ
2
3

log 2
δ

where C̆ is some constant, we have

∣∣∣∣∑
i,p

ai|Xip|

∣∣∣∣ ≤ (1 + σ3)

∣∣∣∣∣∣∣∣E
∑

i,p

ai|Xip|


∣∣∣∣∣∣∣∣ (A.7)

holds with probability at least 1 − δ.

Proof of Lemma 5. Note that for θ ∈
(
0, e−1

]
, we have

E
[
|Xip|

]
=
√
θβ0, E

[
|Xip|

2
]
= 1, and var

[
|Xip|

]
= 1 − θβ2

0 > 0,
for i ∈ {1, . . . ,N}, p ∈ {1, . . . , P}. Besides, |Xip| has an upper
sub-Gaussian tail since it has the folded Normal distribution
and,

Pr
[
|Xip| ≥ t

]
≤ e−

1
2 t2
,

Similar to [44, Lemma 2.4], one can show E
[
eu|Xip |

]
≤

e
√
θβ0+Cu2

, for some constant C and all u > 0. Now, let X̆i :=
1
√

P

∑P
p=1(|Xip| −

√
θβ0), so E

[
X̆i

]
= 0, var

[
X̆i

]
= E

[
X̆2

i

]
= 1.

Following similar ideas as in the proof of Lemma 4, one has

E
[
euX̆i

]
=

P∏
p=1

E
[
eu/
√

P(|Xip |−
√
θβ0)

]
≤ (eC u2

P )P = eO(u2).

An analogous calculation also yields E
[
e−uX̆i

]
≤ eO(u2).

Let āi = ai/∥a∥22, for i ∈ {1, . . . ,N}. From [44, Lemma 2.2],
both Y̆1 :=

∑
i āiX̆i and Y̆2 := −

∑
i āiX̆i have sub-Gaussian tails,

i.e., Pr
[
Y̆1 ≥ t

]
≤ e−C̆1t2

and Pr
[
Y̆2 ≥ t

]
≤ e−C̆2t2

, for some con-

stants C̆1, C̆2. Hence w.p. at least 1 − e−C̆1t2
, we have

N∑
i=1

āi
√

P

P∑
p=1

(|Xip| −
√
θβ0) < t

⇒
∑
i,p

ai(|Xip| −
√
θβ0) < ∥a∥22

√
Pt

⇒
∑
i,p

(
ai|Xip| − E

[
ai|Xip|

])
< σ3E

∑
i,p

ai|Xip|

 ,
where σ3 :=

√
Pt

E[∑i,p āi |Xip |] =
t

√
θPβ0

. If we let Pr
[
Y̆1 ≥ t

]
≤

e−C̆1t2
≤ δ

2 , then we will have P ≥
C̆1
θβ2

0σ
2
3

log 2
δ
. One can

also derive the other bound from Pr
[
Y̆2 ≤ −t

]
≤ e−C̆2t2

, i.e.,

−
∑

i,p ai|Xip| < −(1 − σ3)E
[∑

i,p ai|Xip|
]

w.p. at least 1 − e−C̆2t2
.

To complete the proof, set C̆ = max(C̆1, C̆2)/θ. ■
Proof of Proposition 1. To prove ŵ = 1N is the unique solution
to problem (A.1), it is equivalent to say for all feasible perturba-
tions δ ∈ RN such that r̄⊤δ = 0, then ∥P(1N + δ)X∥1,1 ≥ ∥X∥1,1

11



holds for any Bernoulli-Gaussian random X ∈ RN×P with
high probability. Here we define the hollow matrix M(δ) as
P(δ) with 0 diagonal elements (i.e., M(δ)i j = P(δ)i j,∀i , j;
M(δ)ii = 0, ∀i). We can compute the sub-gradient of ∥P(1N +

δ)X∥1,1 at δ = 0N as,

∥P(1N + δ)X∥1,1 ≥ ∥X∥1,1 + ∥[M(δ)X]Sc∥1,1 +

P∑
p=1

ϵ⊤pP(δ)xp

≥ ∥X∥1,1 + ∥M(δ)X∥1,1 − 2∥[M(δ)X]S∥1,1 +
∑
i,p

|Xip|⟨vi ◦ vi, δ⟩.

(A.8)
Applying the Lemma 5, we can bound the above last term in
(A.8) as

∑
i,p

|Xip|⟨vi ◦ vi, δ⟩ ≥ − (1 + σ3)
∣∣∣∣E ∑

i,p

Ωip|γip|
√
θ
⟨vi ◦ vi, δ⟩

∣∣∣∣
= − (1 + σ3)

√
θPβ0|1⊤Nδ|, (A.9)

where we used β0 := E
[
|γip|

]
=

√
2
π
.

Next, we are going to bound ∥M(δ)X∥1,1 − 2∥[M(δ)X]S∥1,1
by applying Proposition 2. Let m⊤i be the i-th row of the hollow
matrixM(δ), i.e., M(δ) = [m1, . . . ,mN]⊤ ∈ RN×N . Likewise,
let ω⊤i be the i-th row of Ω. Then from (a) and (b) in (A.3),
we have ∥m⊤i X∥1 ≥ (1 − σ1)βiP∥mi∥2 and −∥ω⊤i ◦ (m⊤i X)∥1 ≥
−(1 + σ2)βiθP∥mi∥2. So we obtain

∥m⊤i X∥1−2∥ω⊤i ◦ (m⊤i X)∥1 ≥ [(1 − σ1) − 2θ(1 + σ2)]βiP∥mi∥2

≥ [(1 − σ1) − 2θ(1 + σ2)](1 − σ4)β0P∥mi∥2,

where the last inequality holds because Lemma 1 asserts that
βi ∈ [(1 − σ′i)β0, β0], for some σ′i ∈ (0, 1). Specifically, given a
hollow-vector mi with αi = ∥mi∥∞/∥mi∥2, the σ′i can be com-
puted via (A.4). Hence, we can let σ4 = max{σ′i}

N
i=1 and by ver-

tically stacking the row vectors m⊤i , i ∈ {1, . . . ,N}, the bound

∥M(δ)X∥1,1 − 2∥[M(δ)X]S∥1,1
≥ [(1 − σ1) − 2θ(1 + σ2)](1 − σ4)β0P∥M(δ)∥2,1 (A.10)

holds with probability at least 1−δ. Summing (A.9) and (A.10),
we have

∥M(δ)X∥1,1 − 2∥[M(δ)X]S∥1,1 +
∑

ip

|Xip|⟨vi ◦ vi, δ⟩ (A.11)

≥ [(1 − σ1) − 2θ(1 + σ2)](1 − σ4)
(
∥M(δ)∥2,1 −C1|1⊤Nδ|

)
,

where we defined C1 =
(1+σ3)

√
θ

[(1−σ1)−2θ(1+σ2)](1−σ4) . When θ ≤ 1−σ1
2(1+σ2) ,

we have C1 > 0 and the lower bound will be non-negative if
∥M(δ)∥2,1 ≥ C1|1⊤Nδ|. To show such a θ is feasible, recall that in

Proposition 2 we require that θ ∈
(
0, e−1

]
, σ1 ∈

(
0,
√
πθ3/2

2

]
, and

σ2 ∈

(
0,
√
πθ
2

]
. Hence we need,

θ ≤
1 − (

√
π/2)θ3/2

2(1 +
√
πθ/2)

⇒ f (θ) :=
√
πθ2 + 2θ +

√
π

2
θ3/2 − 1 ≤ 0.

As f (θ) is monotonically increasing in θ ∈
(
0, e−1

]
and f (0) =

−1 < 0, f (e−1) > 0, there exists only one solution θm ∈
(0.324, 0.325) such that f (θm) = 0. So the feasible range is
θ ∈ (0, θm], or for convenience we let θ ∈ (0, 0.324].

Going back to establishing the lower bound in (A.11) is non-
negative, note that ∥M(δ)∥22,1 ≥ ∥M(δ)∥2F and so it will be suf-
ficient to show ∥M(δ)∥2F ≥ C2

1 |1
⊤
Nδ|

2. For convenience, let’s de-
compose r̄ = c

N 1N + d and δ = a1N + b, where 1⊤Nb = 1⊤Nd = 0.
From the constraint r̄⊤w = r̄⊤(1N + δ) = c, we know r̄⊤δ = 0
and a = − d⊤b

c . So δ = − d⊤b
c 1N + d. Then we have

∥M(δ)∥2F −C2
1 |1
⊤
Nδ|

2 = ∥M(b)∥2F −C2
1

∣∣∣∣∣∣d⊤b
c

∣∣∣∣∣∣2
= ∥b∥2

1 − ∥∥∥∥∥∥
[

Ũ
(C1/c)d⊤

]
b̄
∥∥∥∥∥∥2

2


(⋆) ≥ ∥b∥2

1 − σ2
max(Ũ) +

C2
1

c2 ∥d∥
2
2

 ,
(A.12)

where we let Ũ := (V ◦ V)P⊥1 ∈ RN×N and b̄ = b/∥b∥2. The
inequality in (⋆) considers the ‘worst-case’ d should be colinear
to the dominant right singular vector of Ũ, i.e., given the SVD
Ũ = ÛΣV̂⊤, then d/∥d∥ = v̂1 is the first column of V̂1.

To ensure 1 −
(
σ2

max(Ũ) + C2
1

c2 ∥d∥2
)
≥ 0, we bound ∥d∥2 as

∥d∥22 ≤
c2(1 − σmax(Ũ)2)

C2
1

=
c2(1 − σmax(Ũ)2)[(1 − σ1) − 2θ(1 + σ2)]2(1 − σ4)2

(1 + σ3)2θ
,

(A.13)
which is (A.2), completing the proof. ■

Appendix B. Proof of Theorem 2

When the observations are corrupted by noise N ∈ RN×P, i.e.,
Y = P(h̃0)X+N ∈ RN×P, the optimization problem (10) can be
rewritten as the following equivalent problem

ŵ = arg min
w
∥P(w)X+P(g̃0 ◦w)N∥1,1, s. to r̄⊤w = c (B.1)

with the change of variable w = g̃ ◦ h̃0 we used in Appendix A.
Again, r̄⊤ = r⊤diag(g̃0) is consistent with (A.1). In this case,
the solution to (B.1) ŵ is not expected to be 1N , so we let ŵ =
1N + δ̂ = 1N +

(
− d⊤b̂

c 1N + b̂
)
=

(
1 − d⊤b̂

c

)
1N + b̂ as before,

where d = r̄ − c
N 1N . Then our goal will be to bound the error

of problem (B.1), i.e., ŵ − 1N , which is expected to vanish if
the observations were not corrupted by noise. Once this goal
is achieved, the recovery error of (10), i.e., ˆ̃g − g̃0 can also be
bounded since ˆ̃g − g̃0 = g̃0 ◦ (ŵ − 1N).

By jointly considering (A.8)(A.11)(A.12), and from (A.12)
we can conclude that, if (A.13) is satisfied, e.g. ∥d∥ ≤
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c
√

(1−σ2
max(Ũ))

C1
= cd0, the following holds

∥M(δ)∥2,1 −C1|1⊤Nδ| ≥
√
∥M(δ)∥2F −C1|1⊤Nδ|

≥

√
C2

1 |1
⊤
Nδ|

2 + ∥b∥22

1 − σ2
max(Ũ) −

C2
1

c2 ∥d∥
2
2

 −C1|1⊤Nδ|

= ∥b∥


√

1 − σ2
max(Ũ) −

C2
1

c2 ∥d∥
2
2(1 − σ2

5) −
C1

c
σ5∥d∥2

 ,
(B.2)

where σ5 := |d⊤b|
∥b∥∥d∥ ∈ [0, 1].

Let Q := (1+σ3)
√
θ

c

[√
c2d2

0 − (1 − σ5)2∥d∥22 − σ5∥d∥2
]
. Note

that Q ≥ 0 and then we have

∥P(ŵ)X + P(g̃0 ◦ ŵ)N∥1,1 = ∥P(ŵ)[X + P(g̃0)N]∥1,1
≥ ∥P(ŵ)(X + N(S ))∥1,1 − ∥P(ŵ)N(C)∥1,1

≥ ∥X + N(S )∥1,1 + β0PQ∥b̂∥2 − ∥P(ŵ)N(C)∥1,1

(B.3)

where N(S ) := [P(g̃0)N]S denotes the sub-matrix ofP(g̃0)N that
has the same support S as X, and its complement as N(C) :=
[P(g̃0)N]SC = P(g̃0)N − [P(g̃0)N]S. The last inequality holds
as X and X + N(S ) have the same support. Next, let’s find the
upper bound for ∥P(ŵ)N(C)∥1,1

∥P(ŵ)N(C)∥1,1 =

∥∥∥∥∥∥
(
1 −

d⊤b̂
c

)
N(C) + Vdiag(b̂)V⊤N(C)

∥∥∥∥∥∥
1,1

≤ ∥N(C)∥1,1 + (d0∥N(C)∥1,1 + ∥[N(C)]⊤V ⊙ V∥1→2)∥b̂∥2.
(B.4)

Note that we expect w0 = 1N as the ‘ideal’ noise-free solution
of (B.1), so c = r̄⊤1N . For optimality, we should have

∥P(ŵ)X + P(g̃0 ◦ ŵ)N∥1,1 ≤ ∥P(w0)X + P(g̃0 ◦ w0)N∥1,1
= ∥X + N(S )∥1 + ∥N(C)∥1,1.

(B.5)
From (B.3), (B.4) and (B.5) we find

∥X + N(S )∥1,1 + ∥N(C)∥1,1 ≥ ∥X + N(S )∥1,1 − ∥N(C)∥1,1

+ (β0PQ − d0∥N(C)∥1,1 − ∥[N(C)]⊤V ⊙ V∥1→2)∥b̂∥2

and while β0PQ−d0∥N(C)∥1,1−∥[N(C)]⊤V⊙V∥1→2 > 0, we have

∥b̂∥2 ≤
2∥N(C)∥1,1

β0PQ − d0∥N(C)∥1,1 − ∥[N(C)]⊤V ⊙ V∥1→2
.

Because ˆ̃g = g̃0 ◦ ŵ, the difference vector between ˆ̃g and the
‘ideal’ ground-truth g̃0 is dg = ˆ̃g− g̃0 = g̃0 ◦w− g̃0 = g̃0 ◦ (ŵ−
1N) = g̃0 ◦ δ̂. Recalling that δ̂ = − r̄⊤b̂

c + b̂ =
(
IN − 1N

r̄⊤
c

)
b̂ and

β0 =

√
2
π
, we can bound the ℓ1 or ℓ2 norms of dg as

∥dg∥l = ∥g̃0 ◦ δ̂∥l

=

∥∥∥∥∥∥diag(g̃0)
(
IN − 1N

r̄⊤

c

)
b̂
∥∥∥∥∥∥

l

≤

∥∥∥∥∥∥diag(g̃0)
(
IN − 1N

r̄⊤

c

)∥∥∥∥∥∥
l→2
∥b̂∥2

≤

2
∥∥∥∥diag(g̃0)

(
IN − 1N

(r◦g̃0)⊤

c

)∥∥∥∥
l→2
∥N(C)∥1,1√

2
π

PQ − d0∥N(C)∥1,1 − ∥[N(C)]⊤V ⊙ V∥1→2

,

where ∥ · ∥l stands for the ℓ1 and ℓ2 norms when l = 1, 2, respec-
tively. ■

Appendix C. Epinions Data Sampling and Pre-Processing

Appendix C.1. Sampling

Here describe the implemented sampling design applied to
Yobs. The goals of data sampling are: (i) the resulting obser-
vation density should be as high as possible; and (ii) all of the
users in the sampled dataset should be connected. To achieve
those goals, for k = 1, 2, . . . we repeat the following three steps.
Step 1: From the previous item set Ik we pick all items that
have been rated by at least Nmin = 150 users from Uk, and let
the new item set be Ik+1. Step 2: From the previous user setUk

we pick all users who have rated at least Nmin items in Ik+1 and
let the new user set be the user set candidate U′k+1. Step 3. To
maintain the connectivity of the user network, we randomly se-
lect a user fromU′k+1 and collect all of the users (withinU′k+1)
that are accessible from this user (including the selected user)
to generate the new user set Uk+1. The above three steps are
repeated until there is no feasible update for {Ik,Uk}.

Appendix C.2. Pre-processing

As hinted by the results in Theorem 1, the unbiasedness of
the graph signals is crucial to satisfactory performance of the
proposed approach. Hence we centered the rating matrix by
adjusting the range from [1, 5] to [−2, 2].
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