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Abstract

The iterative hard thresholding algorithm (IHT) is a powerful and versatile algorithm for compressed

sensing and other sparse inverse problems. The standard IHT implementation faces several challenges

when applied to practical problems. The step-size and sparsity parameters have to be chosen appropriately

and, as IHT is based on a gradient descend strategy, convergence is only linear. Whilst the choice of

the step-size can be done adaptively as suggested previously, this letter studies the use of acceleration

methods to improve convergence speed. Based on recent suggestions in the literature, we show that a host

of acceleration methods are also applicable to IHT. Importantly, we show that these modifications not

only significantly increase the observed speed of the method, but also satisfy the same strong performance

guarantees enjoyed by the original IHT method.

Index Terms

Compressed Sensing, Iterative Hard Thresholding.

1. INTRODUCTION

Compressed Sensing (CS) [1] [2] is a sub-Nyquist sampling strategy in which a sparse or approximately

sparse signal x ∈ RN is sampled with a linear sampling operator Φ. The samples y ∈ RM are potentially

corrupted by observation noise e ∈ RM , so that

y = Φx + e. (1)

In CS M << N , so that we need to exploit the sparsity of x to be able to recover x given only y and

Φ.

Conceptually, we would want to find the sparsest estimate x̂, that is a vector x in which only a small

number of elements are non-zero, such that ‖y −Φx̂‖2 is smaller than some tolerance. Unfortunately,
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due to the combinatorial nature of the sparsity constraint, this is an NP hard computational problem.

Instead, CS reconstruction is typically solved using either a convex relaxation of the recovery problem

[1] such as

min
x̂
‖x̂‖1 : ‖y −Φx̂‖2 ≤ ε, (2)

or a greedy algorithm such as the Compressive Sampling Matching Pursuit (CoSaMP) [3] or the Iterative

Hard Thresholding (IHT) algorithm [4], [9].

The IHT algorithm is an iterative method

xn+1 = Hk(x
n + µΦT (y −Φxn)), (3)

where Hk is the hard thresholding operator that sets all but the k largest (in magnitude) elements1 in a

vector to zero.

IHT is a very simple algorithm and yet, it can be shown that, under certain conditions, IHT can recover

sparse and approximately sparse vectors with near optimal accuracy [4]. However, in practice, there are

two issues with this simple scheme. 1) The step-size µ has to be chosen appropriately to avoid instability

of the method and 2) IHT has only a linear rate of convergence.

Recently, several approaches have been proposed to address these issues ([5], [6], [7] [8]). In [10],

a normalised IHT (NIHT) algorithm was suggested in which µ is choosen adaptively in each iteration.

This was shown to guarantee the stability of NIHT. In [10], the step-size is set to

µ =
‖ΦT

Γn(y −Φxn)‖22
‖ΦΓnΦT (y −Φxn)‖22

(4)

in each iteration, where Γn is the support set of xn. Whilst this is sufficient to guarantee convergence

under certain RIP conditions [10], if these conditions fail, then an additional line search was proposed

in [10] to guarantee stability. A similar approach was suggested in [8], where again µ is calculated as

in (4), but this time, the set Γ is the union of the support of xn and the support of Hk(Φ
T (y−Φxn)),

which again guarantees stability and performance under RIP conditions. Maleki [6] suggested the use

of a projection onto the selected subspace within the IHT framework, whilst Qiu and Dogandzic [5]

proposed the Expectation-Conditional Maximisation Either (ECME) algorithm, which replaces the IHT

step-size with the pseudo-inverse of Φ.

x̃n+1 = Hk(x
n + ΦT (ΦΦT )−1(y −Φxn)). (5)

1In case the k largest elements are not defined uniquely, Hk is allowed to choose from the offending elements in an arbitrary

way. For example, it can use a respecified ordering or random selection.
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This is guaranteed to converge, as the use of the inverse matrix (ΦΦT )−1 guarantees stability, thus

circumventing the need to tune µ. Importantly, as pointed out in [5], if (ΦΦT ) is the identity matrix

(that is, if the rows of Φ are orthonormal), then the ECME algorithm is identical to the IHT algorithm

with µ = 1. Thus, if Φ has orthonormal rows, then the IHT algorithm with µ = 1 is guaranteed to be

stable (that is, the automatic step-size selection step in IHT is not required in this case). However, if

(ΦΦT ) is not diagonal, then the ECME algorithm requires the pre-computation and storage of the inverse

matrix (ΦΦT )−1, which might not be feasible for certain large scale problems. More importantly, for

many problems, Φ itself is structured so that Φ and ΦT can be applied using fast algorithms, whilst no

such fast methods are guaranteed to exist for ΦT (ΦΦT )−1. The NIHT algorithm therefore remains an

important alternative.

Qiu and Dogandzic further suggested a double over-relaxation scheme [5] to address the convergence

speed issue. After calculating an update x̃ as in (5), x̃ is combined with the two previous estimates xn

and xn−1 to reduce a specific cost function. The new estimate is then again thresholded. If this newly

thresholded estimate has a lower cost than x̃n+1 itself, then this new estimate is accepted, whilst x̃n+1

is used otherwise. This double relaxation approach (abbreviated DORE) led to a significant improvement

in the convergence speed of the method as compared to the IHT algorithm.

Furthermore, Qiu and Dogandzic [5] provided a performance bound for sparse recovery under a ‘2k-

sparse subspace quotient condition’2

ρ2k = min
x:‖x‖0≤2k

‖ΦT (ΦΦT )−1Φx‖22
‖x‖22

> 0.5. (6)

Inspired by these results and related work in [7] and [8], this letter studies the use of similar acceleration

schemes in IHT. Our main contribution is to analyse the accelerated IHT algorithms based on the

Restricted Isometry Property commonly used in CS theory. Importantly, we can show that the accelerated

IHT algorithms have exactly the same strong, near optimal recovery results enjoyed by standard IHT.

This result is a direct generalisation of a similar result by Foucart derived in [7].

2. ACCELERATION OF IHT

The accelerated IHT algorithm (AIHT) is any method that calculates an initial update

x̃n+1 = Hk(x
n + µΦT (y −Φxn)), (7)

2Here and throughout, ‖x‖0 denotes the number of non-zero elements in the vector x.
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where µ can either be fixed or chosen adaptively using (4). However, instead of continuing the iterative

process with x̃n+1, following the same reasoning as in [5], we suggest the use of a strategy that tries to

find an estimate xn+1, that satisfies two conditions:

1) xn+1 is k-sparse,

2) xn+1 satisfies ‖y −Φxn+1‖2 ≤ ‖y −Φx̃n+1‖2.

Any algorithm that calculates such an estimate will be called an accelerated IHT algorithm3.

One can use different approaches to update x̃n+1. These can be roughly split into two categories,

methods that only update the non-zero elements in x̃n+1 and methods that are allowed to update all

elements of x̃n+1 but which use a second thresholding step to guarantee the new estimate is k-sparse.

The first type of approach is conceptually the simplest. For example, assume the set of non-zero

elements in x̃n+1 is Γ̃. If ΦΓ̃ is the matrix with the columns not in the set Γ̃ removed and if x̃n+1

Γ̃
is

defined similarly, then all we need to do is to optimise the cost function ‖y − ΦΓ̃x̃‖22. This approach

has first been proposed and analysed by Foucart in [7]. This optimisation can be done for example with

a gradient (as in [7]) or conjugate gradient algorithm, which when initialised with x̃n+1

Γ̃
, will always

produce estimates that satisfy the condition 2) above. Importantly, in practice, it is advisable to only run

a small number of gradient or conjugate gradient steps in each IHT iteration so not to spend too much

time in optimising the cost function in the inner loop (see below).

The double-overrelaxation approach of [5] falls into the second category of approaches and uses two

relaxation steps

x̃n+1
1 = x̃n+1 + a1(x̃n+1 − xn), (8)

x̃n+1
2 = x̃n+1

1 + a2(x̃n+1
1 − xn−1), (9)

where, for the AIHT algorithm, the line search parameters a1 and a2 can be calculated in closed form to

minimise the quadratic cost function ‖y−Φx̃n+1
1 ‖22 and ‖y−Φx̃n+1

2 ‖22 respectively. With this approach,

x̃n+1
2 is no longer guaranteed to be k-sparse, so that the optimisation step needs to be followed by an

additional thresholding step, which in turn is likely to increase the quadratic cost. It can thus happen

that ‖y − ΦHk(x̃
n+1
2 )‖22 > ‖y − Φx̃n+1‖22, which would violate our second condition. Thus, if ‖y −

ΦHk(x̃
n+1
2 )‖22 > ‖y−Φx̃n+1‖22, we set xn+1 = x̃n+1 (and thus waste the computations of the relaxation

step) whilst we use xn+1 = Hk(x̃
n+1
2 ) otherwise.

3Note however that, just because an algorithm satisfies the two conditions does not necessary mean it will automatically be

faster than traditional IHT. Nevertheless, we use the term accelerated IHT here for this general class of methods to highlight

the fact that we are in general primarily interested in algorithms of this class that demonstrate clear computational advantages.
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3. THEORETICAL ANALYSIS OF AIHT

The advantage of AIHT methods is that, as long as each estimate xn+1 satisfies the two conditions

given above, then AIHT has the same recovery guarantees as IHT itself. In CS, these guarantees are

typically stated in terms of the Restricted Isometry Property (RIP). For a given matrix Φ, the Restricted

Isometry Constants (RIC) of order 2k are the largest α2k and smallest β2k, such that

α2k‖x1 + x2‖22 ≤ ‖Φ(x1 + x2)‖22 ≤ β2k‖x1 + x2‖22 (10)

holds for all k sparse vectors x1 and x2.

AIHT satisfies the following performance bound that states that, as long as Φ has RICs that are not

too different, then AIHT can recover any signal x to near optimal accuracy.

Theorem 1: For arbitrary x, given y = Φx + e where Φ satisfies the RIP with β2k ≤ µ−1 < 1.5α2k,

after

n? =

⌈
2

log(‖ẽ‖2/‖xk‖2)

log(2/(µα2k)− 2)

⌉
(11)

iterations4, the AIHT algorithm calculates a solution xn
?

satisfying

‖x− xn
?‖2 ≤ (1 + c

√
β2k)‖x− xk‖2 + c

√
β2k
‖x− xk‖1√

k
+ c‖e‖2. (12)

where c ≤
√

4
3α2k−2µ + 1, ẽ = Φ(x− xk) + e and xk is the best k-term approximation to x.

Note that the above theorem holds for both, fixed and variable step sizes, as long as the condition on µ

remains satisfied. In situations in which the constants α2k and β2k are unknown, the step-size selection

in (4) can be used. For this setting, theoretical results can be derived mirroring the approaches in [10]

and [8].

Proof: The proof is an extension of the proof in [11] and establishes an upper bound on ‖x−xn+1‖2.

We here only summarise the main steps, concentrating on those areas that differ from [11]. As in [11],

we have

‖x− xn+1‖2 ≤ ‖xk − x‖2 +

√
2

α2k
(‖y −Φxn+1‖22 + ‖ẽ‖22), (13)

where ẽ = Φ(x− xk) + e.

The proof of [11] is modified by realising that, by the second condition of the acceleration scheme,

any AIHT algorithm satisfies

‖y −Φxn+1‖22 ≤ ‖y −Φx̃n+1‖22. (14)

4Note that for ‖ẽ‖2 < ‖xk‖2, then log(‖ẽ‖2/‖xk‖2) is negative and, for our condition of µ and α2k, so is log(2/(µα2k)−2).

Therefore, the algorithms requires a positive number of iterations, unless ‖ẽ‖2 > ‖xk‖2, in which case the the error bound is

already fulfilled trivially by x0 = 0, so that no iterations are required.
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It is thus sufficient to bound ‖y−Φx̃n+1‖22, which can be done as follows (where g = 2ΦT (y−Φxn)).

‖y −Φx̃n+1‖22 − ‖y −Φxn‖22

= −〈(x̃n+1 − xn),g〉+ ‖Φ(x̃n+1 − xn)‖22

≤ − 2

µ
〈(x̃n+1 − xn),

µ

2
g〉+

1

µ
‖x̃n+1 − xn‖22

=
1

µ

[
‖x̃n+1 − xn − µ

2
g‖22 − ‖

µ

2
g‖22
]

=
1

µ

[
inf

x:‖x‖0≤k
‖x− xn − µ

2
g‖22 − ‖

µ

2
g‖22
]

= inf
x:‖x‖0≤k

[
−〈(x− xn),g〉+

1

µ
‖x− xn‖22

]
≤ −〈(xk − xn),g〉+

1

µ
‖xk − xn‖22

= −2〈(xk − xn),ΦT (y −Φxn)〉+ α‖xk − xn‖22 + (
1

µ
− α)‖xk − xn‖22

≤ −2〈(xk − xn),ΦT (y −Φxn)〉+ ‖Φ(xk − xn)‖22 + (
1

µ
− α)‖xk − xn‖22

= ‖y −Φxk‖22 − ‖y −Φxn‖22 + (
1

µ
− α)‖xk − xn‖22

= ‖ẽ‖22 − ‖y −Φxn‖22 + (
1

µ
− α)‖xk − xn‖22.

The inequalities are due to (from top to bottom) 1) the RIP condition and the choice of β ≤ 1
µ , 2) the

fact that xk is k-sparse and 3) the RIP condition again. The third equality is due to the definition of

x̃n+1 = Hk(x
n + µ

2 g).

Thus, wrapping up as in [11], we get the bound

‖x− xn+1‖22 ≤

√(
2

µα2k
− 2

)
‖(xk − xn)‖22 +

4

α2k
‖ẽ‖22

+‖xk − x‖2 (15)

Therefore, the condition 2( 1
µα2k

− 1) < 1 implies that

‖x− xn‖2 ≤
(

2

µα2k
− 2

)n/2
‖xk‖2 +

√
4

3α2k − 2/µ
‖ẽ‖2 + ‖xk − x‖2,

so that the theorem follows using Lemma 6.1 in [3].

4. NUMERICAL SIMULATIONS

Three experiments were conducted in which two accelerated IHT approaches were compared. In the

first approach three conjugate gradient steps were used per inner iteration (AIHTCG), whilst the other
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approach used the double-over-relaxation method of [5] (AIHTDORE). The normalised IHT algorithm

(NIHT) and the ECME algorithm with the double-over-relaxation (DORE) as proposed in [5] were also

used. Both the AIHT as well as the IHT methods used the automatic step-size selection approach which

we slightly modified here to reduce the number of line searches. In each iteration, the current proposed

step-size was compared to the previously used step-size and the smaller of the two was used. We also

relaxed the line search criterion in [10] so that a line search was only initialised when the proposed

step-size µ > 1.5(‖xn+1−xn‖22)/(‖Φ(xn+1−xn)‖22) . For the ECME algorithm, the matrix inverse was

precomputed, the cost of which was not counted toward the computation time shown (All simulations

were run on a 8GB 2.8 GHz Intel Core i7 Macbook Pro computer.). All algorithms were stopped once

‖xn+1 − xn‖22/N < 10−9. The code for the simulations is available on the author’s webpage.

In the first experiment, random matrices Φ ∈ R256×512 were created with i.i.d. normal entries followed

by normalisation of the columns of Φ. For each sparsity k in the interval from 1 to 128, 1000 matrices

were generated and k-sparse vectors x were drawn with the k non-zero entries also drawn from the

unit variance normal distribution. No noise was added. Figure 1(a) shows the average Signal to Noise

Ratio (SNR) (top panel) and the average computation time in seconds (lower panel) for each sparsity

level k/M . It is clear that both acceleration methods work well with IHT. Both significantly improve

the convergence speed of the method, however, ECME is still somewhat faster in this example and also

works somewhat better in terms of signal recovery when k/M ≈ 0.35.

Figure 1(b), which shows the average computation time for the above experiment when AIHT uses

1, 3, 5 and 10 conjugate gradient steps, demonstrates that it is advisable to only use a small number of

such steps.

To show a problem instance in which ECME (DORE) has a clear disadvantage, figure 2 shows the

computation times for a larger problem where Φ was a sparse matrix. Here Φ ∈ R2560×5120 had only 52

non-zero elements in each row so that multiplication by Φ and ΦT can be done fast, whilst multiplication

by the dense matrix (ΦΦT )−1 as used in ECME is costly. The non-zero entries were drawn from an

i.i.d. normal and the columns were then normalised to unit length. Results are averaged over 10 problem

instances and k ∈ {250, 500, 750, 1000}. All other parameters were the same as in the first experiment.

Note again that the computation time shown here does not include the time required to calculate the

matrix inverse, which here took about 20 seconds on average, which is two orders of magnitude larger

than the computation time required by for the IHT type methods!

The third example used the Shepp-Logan image of size 512× 512 (see figure 2), where between 50 to

70 radial slices were sampled from the 2D-Fourier transform of the image which were then used as the
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Fig. 1. Panel (a) shows average SNR (20 log10 ‖x‖2/‖x− x̂‖2) and computation time (seconds) for the four algorithms using

Φ ∈ R256×512 with i.i.d. normal entries and normalised rows with x only k non-zero entries drawn form a unit variance normal

distribution. Panel (b) shows a comparison of average computation times for AIHT with 1, 3, 6 and 10 conjugate gradient steps.

measurements y. The image was assumed to be k sparse in the Haar Wavelet domain with k = 3769. The

algorithms were run with the same parameters as before but stopped once ‖xn+1 − xn‖22/N < 10−16.

Figure 3, which also gives the results obtained by back-projection, shows the Peak Signal to Noise

Ratio (PSNR) for each estimate as well as the computation time. NIHT is seen to be significantly slower

than the other approaches. In contrast, using three iterations of a conjugate gradient solver per iteration

to accelerate the NIHT algorithm not only significantly reduces the computation time but also lead to

significantly better PSNR values. The DORE algorithm, which in this example does not have to use matrix

inversion due to the orthogonality of the observation matrix (and is thus identical to our AIHTDORE

method), shows comparable performance.
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Fig. 2. Average computation time (in seconds) (a) and SNR (b) for the four algorithms using Φ ∈ R2560×5120, where each

row of Φ has only 52 non-zero entries (at random locations and with i.i.d. Gaussian values) and normalised rows. x had

k ∈ {250, 500, 750, 1000} non-zero entries drawn form a unit variance normal distribution.
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Fig. 3. Reconstruction accuracy and computation time for the 512 × 512 Shepp-Logan phantom image which was sampled

taking between 50 to 70 equally spaced radial slices from the 2D Fourier transform of the image and reconstructed assuming

sparsity in the Haar wavelet domain. Shown are the PSNR (20 log10 ‖x‖∞/‖x− x̂‖2) and the computation time in seconds for

different ratios of sparsity (k) to number of observations (M).

5. DISCUSSION AND CONCLUSION

The Iterative Hard Thresholding algorithms is a simple yet powerful tool to reconstruct sparse signals.

Not only does it give near optimal recovery guarantees under the RIP, it is also very versatile and can
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be easily adapted to a range of constraint sets [11] as well as to non-linear measurement systems [12].

Inspired by the recently developed ECME algorithm, we have here introduced and analysed an accelerated

IHT framework. We have in particular looked at two acceleration strategies, the use of a conjugate

gradient method and the use of the double-over-relaxation approach of [5], though other approaches

can equally well be slotted into the AIHT algorithm. Our main contribution was to show that, if done

correctly, then any accelerated IHT algorithm inherits the strong recovery bounds from the IHT algorithm.

Furthermore, combining these acceleration methods with NIHT significantly increased the algorithm’s

empirical convergence speed, making the accelerated NIHT algorithm a strong competitor to the ECME

method. Importantly, the accelerated NIHT method is extremely simple to implement and does not require

the computation, storage and repeated use of matrix inverses. This is an advantage in many compressed

sensing applications where the measurement matrix is often sparse or based on fast transforms such as

the wavelet and Fourier transforms.
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