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Abstract

Column generation is used alongside Dantzig-Wolfe Decomposition, especially for linear programs having a decomposable pricing

step requiring to solve numerous independent pricing subproblems. We propose a filtering method to detect which pricing subprob-

lems may have improving columns, and only those subproblems are solved during pricing. This filtering is done by providing light,

computable bounds using dual information from previous iterations of the column generation. The experiments show a significant

impact on different combinatorial optimization problems.
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1. Introduction

Dantzig-Wolfe decomposition (DWD) [1] is a well-known al-

gorithm to solve linear optmization problems of the following

form:

min
∑

k∈K

ck · xk

s.t.
∑

k∈K

Ak xk ≥ b

xk ∈ Xk ∀k ∈ K

x ≥ 0 ∀k ∈ K

where Xk is a polytope for each k ∈ K. This method consists

in replacing each variable xk by a convex combination of the

extreme points Xk
= {χk

p : p ∈ Pk} of Xk for each k ∈ K, where

a variable λk
p is associated with each χk

p, p ∈ Pk, leading to the

following equivalent linear optimization problem.

min
∑

k∈K

∑

p∈Pk

(ck · χk
p) λk

p (1)

s.t.
∑

k∈K

∑

p∈Pk

(Ak χk
p) λk

p ≥ b (2)

∑

p∈Pk

λk
p = 1 ∀k ∈ K (3)

λk
p ≥ 0 ∀k ∈ K,∀p ∈ Pk (4)

Since Formulation (1)-(4) usually contains an exponential

number of variables, DWD consists in solving it with a delayed

column generation (CG). A restricted master problem (RMP),

corresponding to (1)-(4) but restricted to a subset of variables,
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is solved. Then, a pricing step occurs which can be decom-

posed into |K| pricing subproblems. The pricing subproblem

associated with k ∈ K corresponds to finding a column of Xk

with a negative reduced cost or to state that such a column does

not exist in Xk. If no subproblem returns a negative reduced

cost column, the solution of RMP is optimal for (1)-(4). Other-

wise, all columns with a negative reduced cost returned by the

subproblems are added to RMP and the algorithm iterates.

In DWD, usually a lot of pricing subproblems are solved

but return no negative reduced cost column. In this paper, we

present a pricing subproblem filtering step that is performed in

each iteration of DWD to determine which pricing subproblems

to solve in this iteration. This filtering step is done by comput-

ing for each k ∈ K a lower bound on the minimum reduced cost

among those of Xk, and solving only the associated pricing sub-

problem when this lower bound is negative, as otherwise, there

is no negative reduced cost column in Xk . By decreasing the

overall number of pricing subproblems solved during DWD, it

improves its performance.

In Section 2, we present a literature overview related to our

work. In Section 3, we present how to compute lower bounds

on the minimum reduced cost. We also explain how to use it to

filter pricing subproblems. We also propose a heuristic method

to improve this lower bound. This allows to filter more pricing

subproblems but sometimes filters ones for which there may ex-

ist a negative reduced cost column. In Section 4, we evaluate

the impact of different filtering strategies in DWD when solving

the linear relaxation of two problems: the generalized assign-

ment problem and the multi-commodity flow problem with side

constraints.

2. Related work

We are not aware of any other method that filters pricing sub-

problems in DWD based on a lower bound of the best-reduced
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cost of a pricing subproblem. However, reducing the running

time of DWD or CG is an active area of research for decades.

To reduce the time at each iteration of DWD, one can stop the

resolution of the pricing subproblems when enough negative re-

duced cost columns are found. For instance, in [2], the Aircrew

rostering problem is solved using a solution method based on

CG. The pricing problem consists in solving for each employee

a shortest path problem with several resource constraints. Since

up to 95% of the CG time is spent in solving the pricing sub-

problems, they stop the pricing at each iteration of CG when a

fixed number of negative reduced cost columns has been found.

Another way to speed up the pricing is to run heuristics to

find negative reduced cost columns and solve the pricing in an

exact way only if the heuristics fail to find ones, see for in-

stance [3, 4] for greedy heuristics for the pricing problem when

solving the graph coloring problem using a branch-and-price

algorithm.

It is also possible to relax some constraints of the pricing

problem to simplify its resolution. However, this generates non

feasible columns which may give infeasible solutions and de-

grade the quality of the DWD bound. This has been done suc-

cessfully for different vehicle routing problems. In such prob-

lems, the pricing reduces to computing resource-constrained el-

ementary shortest path problems which are NP-hard. Remov-

ing (at least partially) the elementary requirement accelerates

the pricing resolution but degrades the quality of the linear

relaxation [5]. This degradation is usually limited by adding

strengthening inequalities [6].

Finally, CG generally suffers from the dual variables’ oscilla-

tions between successive iterations due to the degeneracy of the

linear problem. Numerous stabilization methods have been pro-

posed over the years to tackle and address this issue: box step

method [7], linear penalty function [8], bundle method [9, 10],

smoothing and in-out separation [11] and dual optimal inequal-

ities [12, 13, 14] to name a few. These stabilization methods

tend to decrease the number of iterations of CG or DWD, im-

proving the overall running time.

Note that our filtering approach can be used in combina-

tion with the different mentioned methods. For instance, one

can stop the pricing phase when enough negative reduced cost

columns are found, the search of these columns being done

by solving pricing subproblems that are not filtered with our

method. Moreover, for each of these subproblems, one can run

heuristics to try to fastly find negative reduced cost columns. As

our method is generic, it is possible to relax some constraints in

the pricing subproblems to speed up their resolution. Finally,

since our filter method uses dual variables, it can also be ap-

plied when a stabilization method is used on the restricted mas-

ter problem.

3. Pricing filtering

3.1. Exact filtering

When it comes to subproblems, a basic observation is that

solving a subproblem that has a nonnegative minimum reduced

cost is irrelevant. Thus, having an idea about its minimum

reduced cost sign before computing it can help us to decide

whether or not to solve it. In this context, we investigate the

column generation’s iterative structure and seek to establish a

computable light bound to predict the minimum reduced cost

sign in advance. By doing so, we hope to reduce the number of

solved subproblems without compromising the solution quality

and without heavy computations.

Let RMPt denote RMP at iteration t ≥ 1. RMPt contains for

k ∈ K a subset of extreme points of Xk given by {χk
p : p ∈

Pk,t}. Let (πt, µt) be a dual optimal solution of RMPt where πt

and µt are associated with inequalities (2) and (3), respectively.

The reduced cost of an extreme point χk
p of Xk at iteration t

is (ck − πtAk) · χk
p − µ

t
k
. Let c̄k,t denote the minimum reduced

cost at iteration t among those of Xk. Let Yk be a polyhedron

containing Xk. The following proposition gives a lower bound

of c̄k,t from c̄k,ℓ computed at iteration 1 ≤ ℓ < t.

Proposition 1. For k ∈ K and 1 ≤ ℓ < t, we have:

c̄k,t ≥ c̄k,ℓ
+ µℓk − µ

t
k +min

x∈Yk
((πℓ − πt)Ak) · x

Proof. By definition of c̄k,t, the property of the min function

and since Xk is contained in Yk, we have:

c̄k,t
= min

x∈Xk
(ck − πtAk) · x − µt

k

= min
x∈Xk

(ck − πtAk) · x − µt
k + c̄k,ℓ −min

x∈Xk
(ck − πℓAk) · x + µℓk

≥ c̄k,ℓ
+ µℓk − µ

t
k +min

x∈Xk
((πℓ − πt)Ak) · x

≥ c̄k,ℓ
+ µℓk − µ

t
k +min

x∈Yk
((πℓ − πt)Ak) · x

Proposition 1 provides a lower bound on the best reduced

cost of each pricing subproblem using the information obtained

when solving it to optimality at a previous iteration. Indeed, at

current iteration t of CG, for each k ∈ K and each previous iter-

ation ℓ < t, if the value c̄k,ℓ has been computed and dual values

have also been stored, c̄k,ℓ
+ µℓ

k
− µt

k
+ minx∈Yk ((πℓ − πt)Ak) · x

is a lower bound on c̄k,t. If this lower bound is nonnegative,

this implies that Xk has no negative reduced cost column so

it is useless to solve the pricing subproblem associated with k.

We propose to enhance DWD by filtering pricing subproblems,

that is, not solving pricing subproblems for which we are sure

there is no negative reduced cost column thanks to the lower

bound on the best reduced cost provided in Proposition 1. Note

that to compute the lower bound on c̄k,t given by Proposition 1,

one needs to optimize a linear function over Yk, and this lat-

ter should be chosen so that this optimization is efficient while

providing a tight bound. For instance, as in our experiments, Yk

may be an hypercube containing Xk.

Algorithm 1 presents our modified DWD enhanced with fil-

tering. At each iteration t, RMPt is solved to optimality (line

7), and the dual variable vector πt is stored in Π (line 8). In this

way, it is possible to retrieve all the previous computed dual

values πℓ with ℓ < t. The pricing step is decomposed into |K|

subproblems. For each k ∈ K, a filtering step (lines 10-17)

2



Algorithm 1 DWD with pricing filtering

Input: RMP0

Output: Optimal solution of RMP

1: t← 0

2: Π← ∅

3: Υk ← ∅ for all k ∈ K

4: repeat

5: optimal← True

6: t ← t + 1

7: µt, πt
= dual solution(RMPt)

8: push πt in Π

9: for k ∈ K do

10: f ilter ← False

11: for all (ℓ, c̄k,ℓ, µk
ℓ
) ∈ Υk do

12: LB← c̄k,ℓ
+ µℓ

k
− µt

k
+minx∈Yk ((πℓ − πt)Ak) · x

13: if LB ≥ 0 then

14: f ilter ← True

15: break

16: end if

17: end for

18: if ¬ f ilter then

19: c̄k,t, sk,t ← pricing subproblem (k, µt
k
, πt)

20: push (t, c̄k,t, µk
t ) in Υk

21: if c̄k,t < 0 then

22: optimal← False

23: Add column sk,t to RMPt

24: end if

25: end if

26: end for

27: until optimal

is performed to determine whether it is necessary to solve the

pricing subproblem associated with k (case f ilter equals False)

or not (case f ilter equals True). This corresponds to comput-

ing lower bounds on the minimum reduced cost among those of

Xk (line 12) using Proposition 1 and previous exact resolutions

of this pricing subproblems, and checking whether there exists

one which is nonnegative (lines 13-16). In this case, no negative

cost column exists in X
k and the pricing subproblem associated

with k is not solved. Otherwise, this latter is solved in an ex-

act way (line 19) and returns a minimum reduced cost column

sk,t with reduced cost c̄k,t. The triplet (t, c̄k,t, µk
t ) is stored in Υk

(line 20) in order to be used in the next iterations to compute

lower bounds on the minimum reduced cost of Xk. If the com-

puted reduced cost is negative, the associated column is added

to the restricted master problem (lines 21-24). DWD ends when

no negative reduced cost columns are found during an iteration

(case optimal equals True).

Note that if the pricing subproblem associated with some k ∈

K is solved in a heuristic way, the reduced cost returned by the

heuristic should not be stored in Υk as it cannot be used to find

valid lower bounds in the next iterations, even if it is negative.

Indeed, Proposition 1 requires that c̄k,ℓ is the minimum reduced

cost of the pricing subproblem associated with k at iteration ℓ.

DWD presented in Algorithm 1 stores dual vectors πt at each

iteration t. If the dimension of πt is usually small since many

constraints have been shifted to the pricing subproblems, it can

be memory consuming when the number of iterations of DWD

increases. In this case, one can modify Algorithm 1 to set up

a dynamic memory management for storing these dual vectors,

storing for instance only the last α vectors where α is a fixed

value, or removing dual vectors for which only a small number

of pricing subproblems have been solved to optimality since

in this case, keeping such a dual vector will allow to compute

only a small number of lower bounds at each iteration. In the

same way, for each k ∈ K, it can be interesting to remove some

values in Υk to decrease the number of computed lower bounds,

especially if optimizing on Yk is not efficient.

3.2. Heuristic filtering

Proposition 1 yields a lower bound used to filter pricing sub-

problems, see Algorithm 1. To fasten DWD, we propose to

compute a variant of the lower bound of Proposition 1 when

Yk ⊆ {x : x ≥ 0}. Note that the new value is no more a valid

lower bound of the best reduced cost of a pricing subproblem.

Hence, using it for filtering destroys the exactness of DWD, that

is, the returned solution is still primal feasible but may not be

optimal since some columns may be missing in the last RMP.

However, computational experiments show that there is only

a small degradation of the quality of the solution, whereas it

speeds up a lot the running time.

The lower bound of Proposition 1 depends on the value

minx∈Yk ((πℓ − πt)Ak) · x. If Yk is not tight with respect to Xk,

the lower bound is not tight with respect to the best reduced

cost among those of the extreme points of Xk. To bypass this

issue, we consider a new objective function in this minimization

problem.

At iteration t, for k ∈ K, let I(k, t) be the indices of the con-

straints (2) containing at least one variable of {λk
p : p ∈ Pk,t}.

Consider the vector w defined by wi = max{
(

(πℓ − πt)Ak
)

i, zi}

where zi equals −∞ if i ∈ I(k, t), and 0 otherwise. Whenever

Yk ⊆ {x : x ≥ 0}, minx∈Yk w · x ≥ minx∈Yk ((πℓ − πt)Ak) · x. The

heuristic filtering consists in modifying Algorithm 1 by replac-

ing line 12 by:

LB← c̄k,ℓ
+ µℓk − µ

t
k +min

x∈Yk
w · x

Whenever Yk ⊆ {x : x ≥ 0}, this gives a higher lower bound

(that may be not valid), and more pricing subproblems are fil-

tered.

4. Evaluation

We evaluate our approach on two problems: the multi-

commodity flow problem with side constraints and the gener-

alized assignment problem. Both problems are usually tackled

by considering a Dantzig-Wolfe decomposition and are solved

using a branch-and-price. We study here the impact of filtering

the pricing subproblems when solving the linear relaxation by

DWD.
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For computing the lower bound for filtering, we consider Yk

as the binary hypercube for both problems. Indeed, preliminary

computational results performed on tighter relaxations of Xk for

the multi-commodity flow problem with side constraints show

slight improvements of the lower bound (with more effort to

compute this bound) but not enough to filter more pricing sub-

problems. In particular, for k ∈ K, we tested when Yk is defined

as the incidence vectors of the arc sets with an arc leaving sk,

no arc leaving tk, and at most one arc leaving each other vertex.

We also tested when Yk is the incidence vectors of sets of arcs

with at most αk arcs, where αk is the maximum number of arcs

such that the sum of their delay da is no more than dk.

Since the hypercube is contained in {x : x ≥ 0}, the value

computed for the heuristic filtering is greater than or equal to

the lower bound of Proposition 1. Hence, we also evaluate the

filtering heuristics for both problems.

In our experiments, we keep in memory dual values obtained

at each iteration. However, we compare three strategies for fil-

tering a subproblem associated with some k ∈ K:

• all: all values stored in Υk are used to compute lower

bounds, as described in Algorithm 1,

• computed: only one lower bound is computed using the last

value stored in Υk,

• add: only one lower bound is computed using the last value

(ℓ, c̄k,ℓ, µk
ℓ
) with c̄k,ℓ < 0 stored in Υk.

The first strategy consists in computing all possible bounds

whereas the second (resp. third) strategy uses only the infor-

mation corresponding to the last time the pricing subproblem

associated with k ∈ K was solved (resp. a negative cost column

associated with k was found). All strategies have been tried

for exact and heuristic filterings. In the experimental results,

the name of the strategy is preceded by exact- in case of exact

filtering, and heur- otherwise.

Each strategy is compared with the baseline algorithm (re-

ferred hereafter as baseline) that corresponds to DWD without

any filtering. For the baseline algorithm, the number of solved

pricing subproblems (#Calls), the number of columns in the

last RMP (#Vars) and the running time in seconds (time (s))

of DWD is reported. For each strategy, we report in the tables:

– %rCalls is the percentage reduction of the number of

solved pricing subproblems with respect to the baseline. It

is equal to 100× #Calls−n
#Calls

for a filtering strategy that solves

n pricing subproblems in a DWD for an instance whereas

baseline solves #Calls ones.

– %rTime is the percentage reduction of the running time

with respect to the baseline. It is equal to 100 × time (s)−t
time (s)

for a filtering strategy that solves DWD in t seconds for an

instance whereas baseline solves it in time (s) seconds.

For heuristic filtering methods, we also provide the gap (column

GAP) to measure the quality of the returned solution. It is equal

to 100 × v−v∗

v∗
where v is the cost of the returned solution and v∗

the cost of the solution obtained with no filtering method.

Experiments were conducted on an Intel(R) Xeon(R) CPU

E5-4627 v2 of 3.30GHz with 504GB RAM, running under

Linux 64 bits. A vanilla CG scheme was developed in C++

without any framework, and CPLEX 12.6.3 was used to solve

RMP at each iteration of CG and the pricing subproblems for

the generalized assignment problem. A precision (e.g., pricing

tolerance) of 10−4 is used when checking whether a column has

a negative reduced cost to escape the numerical inaccuracies

complexations [15].

The rest of this section is divided into two parts: the first part

is dedicated to the multi-commodity flow problem with side

constraints whereas the second one is related to the generalized

assignment problem. In each part, we describe the problem and

DWD for solving the linear relaxation and the experimental re-

sults we obtain.

4.1. Multi-Commodity Flow Problem with Side Constraints

The Multi-Commodity Flow Problem with Side Constraints

(MC) consists in routing a set of commodities in a capacitated

network from their source to their target while minimizing the

cost and respecting the capacity and the delay constraints [16].

An instance of MC is defined as follows. Given a directed

graph G = (V, A) where V is the set of vertices and A is the set

of arcs, we associate with each arc a ∈ A a capacity ca, a delay

da (≥ 0) and a routing cost ra (≥ 0). For each vertex v ∈ V , we

define δ+(v) as the set of outgoing arcs and δ−(v) as the set of

ingoing arcs. Furthermore, given a set of commodities K, for

each commodity k, we associate a source vertex sk ∈ V , a target

vertex tk ∈ V , a demand bandwidth bk, a maximal delay dk.

DWD. When not considering delay requirements, the multi-

flow problem can be formulated with a compact integer lin-

ear formulation where variables are the quantity of commodity

k ∈ K that is routed on arc a ∈ A. This formulation is known in

the literature as the arc-flow formulation [17]. However, even if

this formulation is compact, solving its linear relaxation tends

to be challenging for large instances due to the number of vari-

ables and constraints. It is preferable to apply DWD to solve

it. This gives the well-known arc-path linear relaxation. Taking

into account delay requirements can be done by integrating it

in the pricing, that is, by considering only paths satisfying the

delay requirement. More formally, for each commodity k ∈ K,

let Pk be the set of sktk-paths p of G respecting the delay re-

quirement
∑

a∈p da ≤ dk. Let Xk
= {χp : p ∈ Pk} be the set of

incidence vectors of paths of Pk.

Let λk
p denote the fraction of commodity k that is routed along

path p, and let rp =
∑

a∈p ra denote the routing cost of path p.

The linear relaxation of MC is as follows [16]:

min
∑

k∈K

∑

p∈Pk

bk

∑

a∈p

ra λ
k
p (5)

s.t. −
∑

k∈K

bk

∑

p∈Pk | a∈p

λk
p ≥ −ca ∀a ∈ A (6)

∑

p∈Pk

λk
p ≥ 1 ∀k ∈ K (7)

λk
p ≥ 0 ∀k ∈ K,∀p ∈ Pk (8)
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The objective function (5) minimizes the total routing cost.

Inequalities (6) are the capacity constraints that ensure that the

total flow over an arc does not exceed its capacity. The convex-

ity constraints (7) impose that each demand is routed. Note that

in DWD formulation, constraints (7) are equalities, but this can

be relaxed without changing the optimality of the linear relax-

ation. Constraints (8) are the nonnegativity constraints.

Formulation (5)-(8) contains an exponential number of non-

negative variables. The columns are then dynamically gener-

ated, and the pricing problem is decomposed into a subproblem

for each commodity. The pricing subproblem associated with

the commodity k ∈ K consists in determining a path p of Pk that

minimizes the reduced cost
∑

a∈p(ra + bkπa) − µk. This reduces

to computing a resource-constrained shortest sktk-path problem

with respect to arc costs wa = ra+bkπa [18]. In our experiments,

this problem is solved using the algorithm described in [19].

Filters. Using the binary hypercube for Yk, at iteration t, the

lower bound corresponding to the exact filtering on c̄k,t using

the information of iteration ℓ is given by:

c̄k,ℓ
+ µℓk − µ

t
k +

∑

a∈A

min{0, (πℓa − π
t
a)} (9)

Such a bound can be computed in O(|A|). The heuristic filter

consists in restricting the sum in equation (9) to the set of arcs

contained in a path of Pk at iteration t.

Dataset. In our experiments, we used SNDlib instances [20],

and realistic telecommunication instances detailed in [21]. In

the tables reporting the results we obtained on these instances,

the number |V | of nodes, |A| of arcs and |K| of commodities is

given in parentheses after the name of the instance.

Experimental results. An experimental comparison of the dif-

ferent filtering strategies for MC is presented in Tables 1 and 2.

Table 1 shows the results for exact filtering methods. First,

let us remark that for SNDlib instances, the computational time

is small, i.e., less than two seconds for each instance. Conse-

quently, the gain in terms of time can fluctuate between several

runs. Moreover, for these instances, the time spent on the pric-

ing subproblems is small. Therefore, the extra burden due to

the copies of the dual variables in memory and the computation

of the lower bounds may not compensate for the time saved

thanks to the filtered pricing subproblems. However, on Nn in-

stances, as the computational time is longer, filtering speeds up

a lot DWD. For a few instances, it allows us to filter around

half of the pricing subproblems, dividing more or less by two

the running time of DWD. We remark that the best gain in com-

putational time is not always exact-all. Indeed, exact-add pro-

vides better computational time for some Nn instances. This

is because, even if exact-add filters less subproblems, it needs

less time at each iteration to check whether or not a pricing

subproblem is filtered, as it computes only one lower bound

per subproblem. Finally, on some instances (dfn-bwin, india35,

newyork, norway and zib54), all pricing subproblems with no

negative reduced cost columns are filtered by every strategy.

Table 2 shows the performance when heuristic pricing fil-

tering methods are used. The heur-all method provides the

best performance in terms of the number of filtered pricing sub-

problems. For instance, heur-all filters 21% more subproblems

than exact-all.

For SNDlib instances where the computational time is low,

the computational time is reduced on average by 15%. For

Nn instances, where the computational time is higher, the best

method is heur-computed where the computational time is re-

duced on average by 60%. Even if heur-computed slightly

filters less pricing subproblems than heur-all, it has a better

computational time on average. Strategies heur-all and heur-

computed decrease the quality of the linear relaxation by 0.28%

on average, while heur-add always obtains the best solution in

the tested instances. Remark that heur-add gets a better per-

formance in comparison to the exact filtering methods. This

method is a good trade-off between improvement and quality

of the linear relaxation.

To sum up, for MC, the proposed methods provide an impor-

tant speed-up. The exact filtering methods gain an average of

21% of time. Heuristic filtering methods also show good perfor-

mances: the best strategy decreases the computational time up

to 70% and about 29% on average, and it provides near-optimal

solutions with an average gap of 1.2%.

4.2. Generalized assignment problem

The Generalized Assignment Problem (GA) consists in as-

signing a set of items to a set of bins while minimizing the as-

signment cost and without exceeding the bin capacities [22].

An instance of GA is as follows: given m items and a set

K = {1 . . . |K|} of bins, we associate with each bin k, a capacity

Wk (≥ 0), and for each item i contained in bin k a cost ci,k (≥ 0)

and a weight wi,k (≥ 0).

DWD. There exists a compact formulation for GA but its linear

relaxation is usually tackled using DWD, resulting in branch-

and-price algorithms [23].

For each bin k ∈ K, let Pk be the set of feasible assignments

for bin k, that is, the set of item sets whose weight sum does

not exceed the bin capacity. Denote by Xk the set of incidence

vectors of feasible assignments of bin k. By definition, Xk
=

{x ∈ {0, 1}m :
∑m

i=1 wi,k xi ≤ Wk}. The linear relaxation of GA

can be formulated as follows:

min
∑

k∈K

∑

p∈Pk

(
∑

i∈p

ci,k)λk
p (10)

s.t.
∑

k∈K

∑

p∈Pk |i∈p

λk
p ≥ 1 ∀i = 1, . . . ,m (11)

−
∑

p∈Pk

λk
p ≥ −1 ∀k ∈ K (12)

λk
p ≥ 0 ∀k ∈ K,∀p ∈ Pk (13)

The objective function (10) minimizes the assignment cost.

Inequalities (11) ensure that each item belongs to at least one

selected feasible assignment of a bin. Inequalities (12) and (13)
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force a bin to be used at most once. Note that GA is usually pre-

sented as a maximization problem but it can be easily translated

in the minimization form we present, see [24] for details.

Formulation (10)-(13) contains an exponential number of

variables, so columns are dynamically generated. The pricing

problem can be decomposed into one pricing subproblem for

each bin k ∈ K. Denoting by π and µ the dual variables asso-

ciated with inequalities (11) and (12) respectively, the pricing

subproblem associated with bin k ∈ K reduces to find whether

there exists a feasible assignment p ⊆ {1, . . . ,m} for bin k such

that
∑

i∈p(ci,k−πi)+µk is negative. This reduces to the computa-

tion of a binary knapsack problem with m items, each having a

cost equal to (ci,k − πi) and a weight wi,k, the knapsack having a

capacity of Wk. In our experiments, we formulate it as a binary

linear problem and solve it using CPLEX.

Filters. Using the binary hypercube for Yk, at iteration t, the

lower bound corresponding to the exact filtering on c̄k,t using

the information of iteration ℓ is given by:

c̄k,ℓ − µℓk + µ
t
k +

m
∑

i=1

min{0, (πt
i − π

ℓ
i )} (14)

Such a bound can be computed in O(m). The heuristic filter

consists in restricting the sum in equation (14) to the set of items

contained in a feasible assignment of Pk at iteration t.

Dataset. Pricing filtering in DWD is interesting when the num-

ber of solved pricing subproblems with no negative reduced

cost column is large. For GA, when the number of objects is

bigger than the number of bins, this number is small. Hence,

our method is ineffective for GA instances of the OR-Library

[25] so we generate 9 sets of random instances, denoted E1, . . . ,

E9, where the number of bins is greater than the number of

objects. Each set corresponds to 100 randomly generated in-

stances containing the same number of bins (100, 1000 or 5000)

and objects (10, 50, or 100). In the tables reporting the results

we obtained for these sets, the number |K| of bins and m of ob-

jects are given in parentheses after the name of the set.

For a given number of bins and objects, each of the 100 in-

stances is generated as follows. The costs and weights are ran-

domly chosen in the intervals J1, 100K and J5, 20K, respectively.

To ensure the existence of a solution, bin capacities are defined

as follows. An assignement of the objects to the bins is ran-

domly chosen, and the capacity of each bin is set to the sum of

the weights of its assigned objects plus one, if there are any, and

to a random value within the interval J5, 100K otherwise.

Experimental results. Tables 3 and 4 report the average results

obtained for GA with exact and heuristic filtering, respectively.

We remark that the percentage of filtered pricing subprob-

lems is smaller in comparison with MC. Whereas exact-add

does not filter any pricing subproblem in any instance, the other

two exact strategies filter some pricing subproblems for five

sets of instances over the nine tested sets, and the percentage

of filtered subproblems by both strategies are similar. The in-

crease in the computational time for the instances without a

filtered subproblem is small for the exact-computed method,

and a little bit more for the exact-all method. On average,

the exact-all (resp. exact-computed) method filters 6.413%

(resp. 6.406%) of the pricing subproblems and decreases by

14% (Resp. 11.16%) the computational time.

Regarding the heuristic filtering strategies, the best one is

heur-computed which filters 14.23% of the pricing subprob-

lems, resulting in a decrease of 17.20% of the computational

time, but always finds an optimal solution in every tested in-

stance. The heur-all method provides a better improvement

from a computational time point of view with a decrease of

26.76% on average, but results in non-optimal solutions with

a gap up to 23.89% for an instance set and about 3. 75% on av-

erage. Note that for dataset E6, heur-add increases the number

of solved pricing subproblems because the number of iterations

in DWD increases with respect to the baseline.

5. Concluding remarks

From our knowledge, this is the first work that proposes a

filtering method based on the information gathered in previous

iterations. Since the impact of the filtering depends on the prob-

lem and the decomposition, more computational experiments

and research should be done in order to determine for which

kind of problems such a filtering method is interesting. More-

over, heuristic and exact methods could be combined, that is, a

heuristic filtering may be used in early iterations of DWD, and

may be switched to exact filtering when no negative reduced

cost column is found. In our experiments, we did not manage

to speed-up DWD by doing this since in MC, the number of

iterations of DWD is very small, and in GA, the gain with the

heuristic filtering is not enough to overcome the extra iteration

of DWD with exact filtering. Finally, it should be interesting to

develop these filtering methods inside a generic column gener-

ation framework to promote its adoption.
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Instance (|V |, |A|, |K|)
baseline exact-add exact-all exact-computed

#Calls #Added time (s) %rCalls %rTime %rCalls %rTime %rCalls %rTime

dfn-bwin (10, 45, 90) 180 90 0.024 50.00% 16.67% 50.00% 16.67% 50.00% 8.33%

nobel-us (14, 21, 91) 273 100 0.029 0.00% -24.14% 1.47% -10.34% 1.47% -10.34%

polska (12, 18, 66) 198 70 0.031 0.00% 19.35% 4.04% -6.45% 4.04% 9.68%

pdh (11, 34, 24) 120 47 0.038 0.00% 21.05% 10.83% -10.53% 10.83% 0.00%

newyork (16, 46, 240) 480 240 0.042 50.00% 14.29% 50.00% 23.81% 50.00% 9.52%

sun (27, 102, 67) 335 153 0.053 15.52% 9.43% 16.72% 3.77% 14.63% 7.55%

di-yuan (11, 42, 22) 176 62 0.065 7.39% 9.23% 7.95% -3.08% 7.95% 7.69%

nobel-germany (17, 26, 121) 847 206 0.082 6.85% 9.76% 16.17% 26.83% 14.88% 24.39%

norway (27, 102, 67) 1404 702 0.095 50.00% 35.79% 50.00% 28.42% 50.00% 30.53%

ta1 (24, 55, 396) 1584 453 0.099 61.68% 31.31% 64.33% 41.41% 64.33% 28.28%

india35 (35, 80, 595) 1190 595 0.110 50.00% 39.09% 50.00% 32.73% 50.00% 36.36%

france(25, 45, 300) 2100 661 0.184 8.95% 3.26% 13.05% 13.04% 12.33% 9.78%

geant (22, 36, 462) 3234 810 0.192 18.21% 2.60% 31.48% 4.17% 29.72% 0.52%

zib54 (54, 81, 1501) 3002 1501 0.241 50.00% 43.57% 50.00% 50.21% 50.00% 36.93%

nobel-eu (28, 41, 378) 2646 683 0.272 1.85% 4.78% 16.14% 14.71% 14.85% -0.37%

ta2 (65, 108, 1869) 11214 3331 1.098 36.99% 23.95% 46.70% 29.69% 46.70% 29.78%

cost266 (37, 57, 1332) 9324 2555 1.613 3.43% -0.37% 11.65% 3.10% 11.07% 4.03%

N600 (600, 2400, 1000) 7000 1546 5.661 42.40% 40.66% 45.00% 40.43% 40.93% 39.30%

N800 (800, 3200, 2000) 14000 3438 15.036 35.09% 32.73% 37.99% 30.91% 34.00% 31.78%

N1000 (1000, 4000, 4000) 36000 7442 48.988 28.78% 26.57% 31.35% 22.00% 27.67% 25.52%

N1400 (1400, 5600, 10000) 60000 13552 111.846 53.19% 51.14% 55.32% 51.47% 52.15% 50.23%

N1200 (1200, 4800, 8000) 72000 15783 121.757 24.81% 21.21% 27.43% 16.71% 23.86% 20.56%

N1600 (1600, 6400, 12000) 72000 16189 155.376 53.08% 51.32% 55.03% 51.58% 52.03% 50.36%

N1800 (1800, 7200, 15999) 127992 26772 327.129 35.34% 30.41% 37.51% 31.91% 33.71% 28.90%

N2000 (2000, 8000, 16000) 144000 25757 407.631 40.00% 35.83% 42.87% 37.28% 38.36% 34.56%

Table 1: Experimental results on MC with different exact filtering strategies

Instance (|V |, |A|, |K|)
baseline heur-add heur-all heur-computed

#Calls time (s) cost %rCalls %rTime GAP %rCalls %rTime GAP %rCalls %rTime GAP

dfn-bwin (10, 45, 90) 180 0.024 1.83E+07 50.00% 16.67% 0.00% 50.00% 8.33% 0.00% 50.00% 8.33% 0.00%

nobel-us (14, 21, 91) 273 0.029 8.06E+08 0.00% -6.90% 0.00% 1.10% -10.34% 0.00% 1.10% -13.79% 0.00%

polska (12, 18, 66) 198 0.031 7.59E+08 0.00% 12.90% 0.00% 3.54% 9.68% 0.00% 3.54% 12.90% 0.00%

pdh (11, 34, 24) 120 0.038 2.67E+08 0.00% 5.26% 0.00% 0.00% 0.00% 0.00% 0.00% -10.53% 0.00%

newyork (16, 46, 240) 480 0.042 8.46E+04 50.00% 16.67% 0.00% 50.00% 30.95% 0.00% 50.00% 23.81% 0.00%

sun (27, 102, 67) 335 0.053 2.71E+06 15.52% 3.77% 0.00% 28.06% 18.87% 0.00% 27.46% 1.89% 0.00%

di-yuan (11, 42, 22) 176 0.065 1.40E+06 7.39% -4.62% 0.00% 19.89% 3.08% 0.00% 19.89% 6.15% 0.00%

nobel-germany (17, 26, 121) 847 0.082 6.96E+07 6.85% 13.41% 0.00% 25.62% 15.85% 0.00% 25.50% 18.29% 0.00%

norway (27, 102, 67) 1404 0.095 7.05E+05 50.00% 33.68% 0.00% 50.00% 29.47% 0.00% 50.00% 32.63% 0.00%

ta1 (24, 55, 396) 1584 0.099 1.39E+11 62.12% 43.43% 0.00% 65.47% 39.39% 0.00% 65.47% 39.39% 0.00%

india35 (35, 80, 595) 1190 0.110 3.51E+05 50.00% 31.82% 0.00% 50.00% 28.18% 0.00% 50.00% 33.64% 0.00%

france (25, 45, 300) 2100 0.184 1.90E+10 9.00% 12.50% 0.00% 19.57% 16.30% 0.00% 19.33% 9.24% 0.00%

geant (22, 36, 462) 3234 0.192 3.54E+11 18.68% 0.52% 0.00% 42.39% 5.21% 0.04% 41.84% 18.75% 0.04%

zib54 (54, 81, 1501) 3002 0.241 1.18E+06 50.00% 43.57% 0.00% 50.00% 43.15% 0.00% 50.00% 43.57% 0.00%

nobel-eu (28, 41, 378) 2646 0.272 1.57E+09 2.00% 3.31% 0.00% 10.54% -4.78% 0.00% 9.90% -0.37% 0.00%

ta2 (65, 108, 1869) 11214 1.098 3.31E+12 37.90% 27.14% 0.03% 55.83% 38.07% 1.74% 55.83% 39.16% 1.74%

cost266 (37, 57, 1332) 9324 1.613 1.49E+12 3.43% -0.68% 0.00% 13.04% 0.06% 0.00% 12.82% 1.12% 0.00%

N600 (600, 2400, 1000) 7000 5.661 2.08E+07 42.51% 42.78% 0.00% 66.60% 61.44% 0.01% 65.71% 63.12% 0.01%

N800 (800, 3200, 2000) 14000 15.036 5.91E+10 35.18% 34.03% 0.00% 60.04% 55.17% 0.00% 58.69% 56.00% 0.00%

N1000 (1000, 4000, 4000) 36000 48.988 1.06E+12 28.88% 27.30% 0.00% 58.21% 53.32% 2.43% 56.53% 54.45% 2.43%

N1400 (1400, 5600, 10000) 60000 111.846 3.66E+11 53.27% 51.90% 0.00% 69.20% 66.37% 0.00% 68.44% 67.09% 0.00%

N1200 (1200, 4800, 8000) 72000 121.757 7.05E+12 24.89% 22.48% 0.00% 49.86% 42.85% 1.51% 47.82% 43.98% 1.51%

N1600 (1600, 6400, 12000) 72000 155.376 1.26E+12 53.16% 51.95% 0.00% 68.88% 66.49% 0.00% 68.06% 67.00% 0.00%

N1800 (1800, 7200, 15999) 127992 327.129 3.08E+12 35.44% 31.42% 0.00% 64.15% 60.92% 1.44% 62.98% 60.06% 1.44%

N2000 (2000, 8000, 16000) 144000 407.631 6.69E+12 40.13% 36.90% 0.00% 70.69% 69.16% 0.00% 69.70% 68.31% 0.00%

Table 2: Experimental results on MC with different heuristic filtering strategies
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Instance (|K|, m)
baseline exact-add exact-all exact-computed

#Calls #Added time (s) %rCalls %rTime %rCalls %rTime %rCalls %rTime

E1 (100, 10) 800 456 0.49 0.00% -6.12% 12.13% 40.82% 12.13% 16.33%

E2 (100, 50) 1600 945 1.10 0.00% 10.00% 6.25% 27.27% 6.19% 15.45%

E3 (100, 100) 2500 1897 1.61 0.00% 11.80% 3.96% 16.15% 3.96% 19.25%

E4 (1000, 10) 5000 2708 2.58 0.00% 20.54% 19.10% 41.86% 19.10% 38.37%

E5 (1000, 50) 8000 4882 3.08 0.00% -2.60% 0.00% -3.57% 0.00% -0.65%

E6 (1000, 100) 8000 6053 3.56 0.00% -0.84% 0.00% -3.09% 0.00% -1.69%

E7 (5000, 10) 20000 11744 6.68 0.00% 0.30% 16.28% 13.77% 16.28% 14.67%

E8 (5000, 50) 30000 17830 11.34 0.00% -0.53% 0.00% -2.12% 0.00% -0.97%

E9 (5000, 100) 35000 20274 15.21 0.00% -1.12% 0.00% -2.24% 0.00% -0.33%

Table 3: Experimental results on GA with different exact filtering strategies

Instance (|K|, m)
baseline heur-add heur-all heur-computed

#Calls time (s) cost %rCalls %rTime GAP %rCalls %rTime GAP %rCalls %rTime GAP

E1 (100, 10) 800 0.49 17.59 0.13% -6.12% 0.00% 31.38% 30.61% 3.81% 17.25% 8.16% 0.00%

E2 (100, 50) 1600 1.10 78.57 0.00% 11.82% 0.00% 35.44% 43.64% 6.13% 16.44% 24.55% 0.00%

E3 (100, 100) 2500 1.61 198.4 0.00% 10.56% 0.00% 29.72% 33.54% 23.89% 5.96% 23.60% 0.00%

E4 (1000, 10) 5000 2.58 10 0.08% 21.71% 0.00% 26.18% 47.29% 0.00% 22.20% 41.09% 0.00%

E5 (1000, 50) 8000 3.08 50 0.05% -0.32% 0.00% 27.13% 20.78% 0.00% 15.64% 13.64% 0.00%

E6 (1000, 100) 8000 3.56 100 -12.38% -13.76% 0.00% 12.06% 7.02% 0.00% 0.10% -0.84% 0.00%

E7 (5000, 10) 20000 6.68 10 0.00% -1.65% 0.00% 16.28% 13.47% 0.00% 16.28% 14.22% 0.00%

E8 (5000, 50) 30000 11.34 50 0.03% -0.79% 0.00% 24.10% 20.46% 0.00% 14.14% 12.17% 0.00%

E9 (5000, 100) 35000 15.21 100 0.03% -0.92% 0.00% 28.40% 24.06% 0.00% 20.09% 17.29% 0.00%

Table 4: Experimental results on GA with different heuristic filtering strategies
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