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a b s t r a c t

In this paper, we consider a particular form of inequalities which involves product of multiple variables
with rational exponents. These inequalities can equivalently be represented by a number of conic
quadratic forms called cone constraints. We propose an integer programming model and a heuristic
algorithm to obtain the minimum number of cone constraints which equivalently represent the original
inequality. The performance of the proposed algorithm and the computational effect of reformulations
are numerically illustrated.
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1. Introduction

In this paper, we consider a particular form of inequalities of
the n-block-power-m type as described in Definition 1. These are
encountered in a wide range of optimization models in differ-
ent fields such as engineering, finance, robust optimization and
combinatorics. Special cases of them commonly appear in the
constraints set of optimization models including convex power
functions [1], antenna design, portfolio optimization, truss design
and signal filter design (see [8]). In the following sections we
will show that an n-block-power-m inequality can equivalently
be expressed with a number of second-order (quadratic) cones
(see Definition 2), which will be referred as conic reformulation
in the rest of the paper. Reformulating the original optimization
problem with inequalities of more general forms equivalently
with cone constraints facilitates their solutions by user-developed
programs or available commercial solvers. For example, when a
linear optimization problem involves an inequality of the form
given in (1), it may be difficult to solve. However, when the
problem is expressed in a form that involves only quadratic cone
constraints, then it belongs to the well known class of Second
Order Cone Programming (SOCP), for which a vast number of
solution approaches exist. Hence, the contribution of our work
lies in an intermediate stage of an optimization problem where a
general inequality given in the form above is converted to cone
inequalities that are handled with more ease. We will also see
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below that a conic reformulation results in creation of several
simpler inequities that equivalently represent the original one,
but such a reformulation is not unique. Hence from both practical
and theoretical point of view it is desirable to obtain an equiva-
lent representation with minimum number of conic constraints.
We will refer to a conic reformulation with minimum possible
number of conic constraints as the minimal reformulation. For the
reformulation, we provide an iterative power reduction scheme
which creates a new inequality at each iteration. We propose an
Integer Programming (IP) model and a fast heuristic algorithm
to obtain the minimum number of cone constraints which are
equivalent to an n-block power-m inequality in its initial form. The
performance of the proposed algorithm and the computational
effect of reformulations are also illustrated.

The rest of the manuscript is organized as follows. In
Section 2, we give preliminary definitions and a brief discussion
of the related literature to demonstrate how an n-block-power-m
inequality is convertible to cone constraints. In Section 3 we
provide our reformulation scheme together with analytical re-
sults. Then we propose an IP model and a heuristic algorithm for
reformulation. In Section 4 we present the performance of the
proposed algorithm in generating minimal reformulations, and a
short numerical study to illustrate the computational benefit of
minimal reformulations. We conclude the paper with potential
applications of our results in Section 5.

2. Preliminaries and literature review

In this section we provide the basic definitions needed for
the reformulation of an n-block-power-m inequality. In line with
the usual convention of the optimization models, throughout this
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article all variables are assumed to be non-negative. Also, (.)⊺
denotes the transpose of a vector (.).

We begin by introducing the special form of inequalities men-
tioned above.

Definition 1. For m, n ∈ N, an inequality of the form

t2
m

0 ≤ t r11 t r22 · · · t
rn
n (1)

where t0 ∈ R, the variables t1, t2, . . . , tn ∈ R+ are non-identical
and r1 + r2 + · · · + rn = 2m with r1, . . . , rn ∈ N, is an n-block
power-m inequality.

Mathematically speaking, inequalities of the above form can
appear directly or after an algebraic conversion of a variety of
functions including logarithmic Tchebychev approximation, har-
monic mean of a positive affine function, hypograph of the geo-
metric mean, inequalities involving the sum of quadratic or linear
fractions, and inequalities involving p-norms and rational powers
(see [2,3]).

Definition 2. The second-order (Lorentz) cone, Cn, (n ≥ 2) in Rn

is defined as

Cn
=

{
(x1, . . . , xn)⊺ ∈ Rn

: x21 ≥
n∑

i=2

x2i

}
. (2)

The terms ‘‘quadratic cone’’ and ‘‘ice-cream cone’’ are other
common terminologies for the definition above.

Definition 3. The rotated second-order cone, Cn
r , (n ≥ 3), in Rn

is defined as

Cn
r =

{
(x1, . . . , xn)⊺ ∈ Rn

: x1x2 ≥
n∑

i=3

x2i

}
. (3)

Note that in SOCP models, a linear function is minimized over
the intersection of an affine set and the Cartesian product of
second-order cones (see [8] for further details).

Remark 1. It is easy to verify by simple algebra that if x =
(x1, x2, x3 . . . , xn)⊺ ∈ Cn

r for (n ≥ 3) then x̃ =
( x1+x2

2 ,
x1−x2

2 , x3, . . . ,
xn)⊺ ∈ Cn.

According to (3), if n = 3, a 2-block-power-1 inequality is
the same as a 3-dimensional rotated cone, which will be re-
ferred to as a ‘cone constraint’. Formally, conic reformulation of an
n-block-power-m inequality refers to equivalently expressing it by
a number of distinct 2-block-power-1 inequalities.

Conic reformulation of a special case of an n-block-power-m
inequality has been discussed in [2,4]. In particular they consid-
ered the case where ri = 1, i = 1, . . . , n = 2m and showed that
the inequality

s2
k

0 ≤ s1s2 . . . s2k , k ≥ 1, (4)

where s0 ∈ R and s1 ≥ 0, . . . , s2k ≥ 0, can be expressed
equivalently by 2k

− 1 cone constraints. This upper bound is
based on the so-called ‘‘tower-of-variables’’ [4] construction. In
this design, at each level ℓ, ℓ = 1, . . . , k, an auxiliary variable
wp,(ℓ) is associated to each pair of variables. Without loss of gen-
erality consider two consecutive variables {s2p−1 and s2p} if ℓ = 1,
or {w2p−1,(ℓ−1) and w2p,(ℓ−1)} otherwise, p = 1, . . . , 2k−ℓ. Then,
the corresponding cone constraint w2

p,(1) ≤ s2p−1s2p or w2
p,(ℓ) ≤

w2p−1,(ℓ−1)w2p,(ℓ−1) is added. Therefore, in the first level, ℓ = 1,
2k−ℓ new inequalities are created. After replacement of the new
auxiliary variables in lieu of their corresponding paired variables
and a power reduction in both sides of (4), it is re-written as
s2

k
−1

0 ≤ w1,(1)w2,(1) . . . w2k−1,(1). The latter inequality has the same

structure. Hence, the procedure continues in similar fashion in the
following levels by creating 2k−ℓ new cone constraints at level ℓ
resulting in the creation of 2k−1

+ 2k
+ · · · + 1 cone constraints

in total.
The tower-of-variables construction is not unique due to the

possible permutations in the order of the variables. Moreover, in
a more general form as the n-block-power-m inequality, where
some of the variables can be identical, the combinations of some
variables are reducible to a linear inequality. For instance, w2

≤

uu is a redundant cone constraint as it is equivalent to w ≤ u for
non-negative variables u and w.

In conic reformulation of an n-block-power-m inequality, we
aim to obtain a minimal conic reformulation by excluding such
redundancies and repetitions. To the best of our knowledge, this
has not been addressed in the literature before. A result related
to ours but restricted to a special case is given in [10] which
establishes that ρ ∈ N number of cone constraints are needed
to equivalently represent an inequality in form of y2

ρ

0 ≤ yk11 yk22 yk33
wherein k1, k2, k3 ∈ Z+, k1 + k2 + k3 = 2ρ and two of them are
odd numbers.

3. Problem statement

Conic reformulation of an n-block-power-m inequality rests on
a simple fact given in the following lemma.

Lemma 1. The inequality t2
m

0 ≤
∏n

i=1 t
ri
i is equivalent to,

t2
m

0 ≤ t
rı1−α

ı1 t
rı2−α

ı2 w2α
∏

i̸=ı1,ı2

t rii , (5a)

w2
≤ tı1 tı2 , (5b)

wherein tαı1 and tαı2 are paired and 0 ≤ α ≤ min(rı1 , rı2 ).

The following example illustrates how Lemma 1 is invoked
successively to reformulate a 3-block-power-4 inequality.

Example 1. t80 ≤ t21 t
3
2 t

3
3 :

⇔ t80 ≤ t12 t
3
3w

4
1, w2

1 ≤ t1t2, (α1 = 2);

⇔ t80 ≤ t23w
4
1w

2
2, w2

2 ≤ t2t3, (α2 = 1);

⇔ t80 ≤ w4
1w

4
3, w2

3 ≤ t3w2, (α3 = 2);

⇔ t20 ≤ w1w3, (α4 = 4).

The selection of α and the two variables which are paired
together at each iteration are the key factors in constructing the
set of cone constraints itself and its cardinality denoted by Λ.
In the following, we provide an upper bound on the minimum
number of iterations for the process above. To that end, first note
that any positive integer number can be uniquely represented
by the sum over powers of 2 as is used to obtain its binary
representation. Let Ω(r) be the set of powers of 2 whose sum
equals r , for r ∈ N. For example, Ω(5) = {1, 4} and Ω(8) = {8}
so |Ω(5)| = 2 whilst |Ω(8)| = 1.

Remark 2. The cardinality of Ω(r) equals the number of ‘1’s in
the binary representation of r ∈ N.

A useful mathematical characterization of Ω(r) is provided
below.

Remark 3. For r ∈ N assuming |Ω(0)| := 0, we have |Ω(r)| =
1+ |Ω(r − 2⌊log2 r⌋)|.

Proposition 1. An n-block power-m inequality can be represented
by at most Λ =

∑n
i=1 |Ω(ri)|−1 many 2-block-power-1 inequalities

using Λ− 1 additional auxiliary variables.



R. Kian, E. Berk and Ü. Gürler / Operations Research Letters 47 (2019) 489–493 491

Proof. The proof rests on the iterative use of Lemma 1. Let r (k)i be
the updated value of ith exponent at iteration k, i = 1, . . . , n +
k, where any index i > n corresponds to the new auxiliary
variable at iteration i− n, which appeared as w in (5a) and (5b).
By iteratively invoking Lemma 1, choosing an arbitrary pair of
variables tı1 and tı2 and setting the value of α with a number
in Ω(r (k)ı1 ) ∩ Ω(r (k)ı2 ) ̸= ∅ at iteration k, the updated exponents
at any two successive iterations k − 1 and k differ only in three
elements as |Ω(r (k)ı1 )| = |Ω(r (k−1)ı1 )|−1, |Ω(r (k)ı2 )| = |Ω(r (k−1)ı2 )|−1
and |Ω(r (k)n+k)| = 1. Thus, at each iteration the total cardinality of
these sets is reduced by 1, which implies that the procedure will
stop after Λ =

∑n
i=1 |Ω(ri)|− 1 iterations (i.e., when (5a) itself is

a 2-block-power-1 inequality). □

3.1. Minimal conic reformulation: An IP model

As illustrated in Example 1, the successive application of
Lemma 1 is terminated when the original n-block-power-m in-
equality reduces to two blocks of positive exponents, each being
2m−1. In addition, from Proposition 1 we know that no more
than Λ iterations are needed (using powers-of−2 decomposition).
Thus, we are able to propose an IP model to minimize the number
of iterations where Lemma 1 is invoked in (6)–(15) with the
following decision variables whose numbers are bounded by Λ.

Decision variables:
yki : A binary variable which equals 1 if variable i is selected at
iteration k; 0, otherwise.
Rk
i : The updated exponent of ith variable at the end of iteration k.

wk: A binary variable which equals 0 if the initial n-block-power-m
inequality has completely decomposed to 2-block-power-1 in-
equalities (cone constraints) before iteration k; 1, otherwise.
αk: A non-negative integer which denotes the reduction amount
in exponents of the selected variables (see Lemma 1).
zki : An auxiliary non-negative integer variable for linearization
purpose.

min Γ =

Λ∑
k=1

wk, (6)

s.t.

R0
i = ri i = 1, . . . , n, (7)

α0 = 0, (8)

Rk
i = Rk−1

i − αkyki ,
t = 1, . . . , Λ,

i = 1, . . . , n+ t, (9)

Rk
n+k = 2αk, k = 1, . . . , Λ, (10)

wk
≤ 2m−1

− αk−1, k = 1, . . . , Λ, (11)

2m−1(1− wk) ≤ αk−1, k = 1, . . . , Λ, (12)
n+k−1∑
i=1

yki = 2wk, k = 1, . . . , Λ, (13)

wk, yki ∈ {0, 1},
k = 1, . . . , Λ,

i = 1, . . . , n+ k, (14)

αk, Rk
i ∈ Z+, k = 1, . . . , Λ,

i = 1, . . . , n+ k. (15)

Constraint (9) is nonlinear due to the multiplication of αk by yki ,
which can be linearized as follows:

Rk
i = Rk−1

i − zki ,
k = 1, . . . , Λ,

i = 1, . . . , n+ k, (16)

zki ≤ 2myki ,
k = 1, . . . , Λ,

i = 1, . . . , n+ k, (17)

zki ≤ αk,
k = 1, . . . , Λ,

i = 1, . . . , n+ k, (18)

zki ≥ αk − (1− yki )2
m,

k = 1, . . . , Λ,

i = 1, . . . , n+ k, (19)

zki ∈ Z+, k = 1, . . . , Λ,

i = 1, . . . , n+ k. (20)

Constraints (7) and (8) initialize original values of the exponents
and α, respectively. Constraint (9) calculates updated values of
exponents while (10) assigns the exponent value of the newly
defined auxiliary variables throughout the iterations. Constraints
(11) and (12) are for determining if the stopping rule of the conic
reformulation process is satisfied (wk

= 0) or not (wk
= 1) at

iteration k. If not, constraint (13) forces the model to choose two
additional variables to be paired. Finally, Constraints (14) and (15)
define the type of our decision variables. The optimal objective
value is bounded from above (i.e., Γ ∗ ≤ Λ).

3.2. A heuristic reformulation

Although an exact solution can be found by the above IP
model, to automate the user intervention, we propose a heuristic
algorithm based on the iterative use of Lemma 1. We first de-
fine the greatest-common-powers-of −2-cardinality of two integer
numbers as,

G(k1, k2) :=
⏐⏐Ω(k1) ∩Ω(k2)

⏐⏐. (21)

A simple rule is employed in our heuristic at each iteration k
for the selection of variables and the power by which they are
reduced, αk. That is, the pair of variables with maximum greatest-
common-powers-of −2-cardinality of their exponents is selected;
then αk is set as the summation of the common powers-of −2
elements within their exponents. This procedure is summarized
in Algorithm 1. In the following example below, the impact of our
algorithm in choosing variables and αk is illustrated.

Algorithm 1 Conic reformulation of n-block-power-m inequality

Input: m,n, (ri, . . . rn) where
∑n

i=1 ri = 2m.
Output: Set of 2-block-power-1 inequalities.
1: k← 0, S ← ∅ ▷ S =set of cone constraints
2: R0

i ← ri for i . . . n.
3: do
4: (ı1, ı2)←arg max

(i1,i2)|1≤i1<i2≤n(t)
G(Rk

i1
, Rk

i2
)

5: H← Ω(Rk
ı1 ) ∩Ω(Rk

ı2 )
6: k← k+ 1
7: αk ←

1
2

∑
h∈H

h

8: if αk = 2m−1 then S ← S ∪ {t20 ≤ tı1 tı2} else S ←
S ∪ {t2k+n ≤ tı1 tı2}

▷

tk+n is a new auxiliary variable in addition to the existing ones in the initial
n-block-power-m.

9: Rk
i ← Rk−1

i − αk, for i = ı1, ı2
10: Rk

n+k ← 2αk

11: while (αk < 2m−1)

Example 2. t80 ≤ t21 t
3
2 t

3
3 :

⇔ t80 ≤ t21w
6
1, w2

1 ≤ t2t3 (α1 = 3);

⇔ t80 ≤ w4
1w

4
2, w4

2 ≤ t1w1 (α2 = 2);

⇔ t20 ≤ w1w2 (α3 = 4)

which can be verified by our proposed IP model that is a minimal
reformulation.
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Fig. 1. Number of cone constraints obtained by Algorithm 1 vs. its upper
bound/minimum.

4. Numerical study

First we discuss the performance of Algorithm 1 in producing
minimal reformulations. To this end, we used 35 instances of
n-block-power-m inequalities (2 ≤ m, n ≤ 7), whose exponents
were purposefully chosen to be difficult. (For the construction of
the test bed, the reader is referred to Appendix.)

The number of cone constraints, required for the conic re-
formulation of the above-mentioned instances, are illustrated in
Fig. 1.

According to our unreported additional tests, Algorithm 1 was
able to obtain minimal reformulations for all instances obtained
by minimization counterpart of (22)–(26). Its computation times
are negligible in the order of milliseconds for the tested instances,
while solving the IP model is prohibitively costly. For example,
for our worst instance with m = 7 and n = 7, it took over
66 h for ILOG CPLEX 12.8 to stop even without obtaining the
optimal solution (with relative MIPGap of 19.54%) and we could
not optimally solve instances with m > 8 on a high performance
Linux based server.

Apart from the way that n-block-power-m inequalities are
minimally reformulated, in the next subsection we demonstrate
the computational advantage of such a minimal formulation in
different solver packages by an example.

4.1. A sample problem test

A valuable library of conic optimization problems has been
gathered recently in (http://cblib.zib.de/). Among those, we have
chosen the portfolio optimization problem with higher moment
coherent risk measures (HMCR) as it is a convenient example
for the issues discussed in this paper (see (32.a)–(32.g) in [7]).
For that model we have set p = 2.5, α = 0.9, J = 1024,
r0 = 0.5%, n = 50 and rij is drawn from a lognormal distribution
with parameters µ = 51.9 and σ = 103.1 according to data
description in [7]. Constraint t ≥ (wp

1+· · ·+w
p
J )

1/p in that model
can be re-written equivalently as t ≥ u1 + · · · + uJ , w

p
j ≤ ujtp−1

for j = 1, . . . , J . The latter inequality is easily convertible to
3-block-power-⌈log2 r⌉ where p = r/s such that r, s ∈ N. The
3-block-power-3 inequality formed from r = 5 and s = 2 here,
was reformulated in Examples 1 and 2 differently with 3 and 4
cone constraints, respectively. The computations corresponding
to these two formulations are denoted by Ex.1 and Ex.2 in Table 1.

In addition to the obtained rotated cone constraints, using
(2), we have also modeled the problem with the Lorentz cones
and have fed both into MATLAB via YALMIP interface (see [9]).

Table 1
Computation time (in seconds) for the conic reformulated models.
Cone type: Lorentz Rotated

Solver Ex.1 Ex.2 Ex.1 Ex.2

CPLEX 18.96 21.82 22.40 29.36
Gurobi 2.89 5.00 15.97 21.30
Mosek 3.83 8.42 15.89 21.50
SDPT3 11.66 11.89 22.86 29.17
ECOS 2.52 2.98 15.49 20.89
SeDuMi 397.98 634.81 408.97 705.76

Each configuration was solved with three commercial solvers
namely CPLEX, Gurobi, Mosek; and three free solvers namely,
ECOS, SDPT3, SeDuMi (see [5,11,12], respectively) on a personal
computer equipped with Intel Core 2 Duo Processor, 2.1 GHz and
a RAM of 2 GB.

Each number shown in Table 1 is the average of the total
computation time (including model creation and solving) over 6
replications of the same instance. Regardless of the solver em-
ployed, the model with a smaller set of cone constraints requires
considerably less computation. Another crucial observation in this
experiment is that the model formulated with second-order cone
constraints computationally outperforms the one with rotated
cone constraints. Therefore, it is better to further convert the
obtained 2-block-power-1 inequalities to the Lorentz cone form
rather than leaving this task to the solvers.

5. Conclusion

In this paper, we considered a special type of inequalities
termed as n-block-power-m and proposed a reformulation algo-
rithm to equivalently express it by conic inequalities. The perfor-
mance of the reformulation is also demonstrated by numerical
examples. Recently, a class of problems called p-order conic opti-
mization is introduced by Mosek (although has not been put into
practice in its interface yet) and it covers problems with con-
straints including p-norm. To the best of our knowledge (see [6]),
the solver reduces these types of constraints to several second-
order cones. We therefore expect that our proposed algorithm
efficiently provides such reductions and may provide significant
benefits if embedded in such packages.
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Appendix

In order to generate the test bed with difficult instances, we
have used an auxiliary IP model whose construction is based
on Proposition 1 and Remark 2. Let xij ∈ {0, 1}, i = 1, . . . , n,
j = 0, . . . ,m − 1 be jth digit in the binary representation of ri,
i = 1, . . . , n. That is, ri = (xi,m−1, . . . , xi,1, xi,0)2. Thus, according
to Remark 2, Λ (defined in Proposition 1) can be written as
(22) which is maximized subject to constraints (23)–(26) in the
following IP model.

maxΛ =

⎛⎝ n∑
i=1

m−1∑
j=0

xij

⎞⎠− 1, (22)

s.t.

http://cblib.zib.de/
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m−1∑
j=0

xij ≥ 1, i = 1, . . . ,m, (23)

m−1∑
j=0

2j
( n∑

i=1

xij
)
= 2m, (24)

n∑
i=1

xi0 ≥ 2, i = 1, . . . ,m, (25)

xij ∈ {0, 1}. (26)

Constraint (23) guarantees positiveness of the exponents and
(24) assures that their summation equals 2m to comply with the
definition. Constraint (25) limits the model to obtain irreducible
inequalities by having at least two odd exponents. By solving this
IP for a given n, m and converting the obtained optimal binary
solution xij to the decimal form, the desired difficult exponents
instances are retrieved.
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