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Abstract

The purpose of this study is to identify white matter microstructure changes following bilateral 

upper extremity motor skill training to increase our understanding of learning-induced structural 

plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects 

performed two visuo-spatial motor training tasks over 9 sessions (2–3 sessions per week). Subjects 

controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a 

body machine interface. Before the start and within 2 days of the completion of training, whole 

brain diffusion tensor MR imaging data were acquired. Motor training increased fractional 

anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona 

radiata, and the body of the corpus callosum by 4.19% on average indicating white matter 

microstructure changes induced by activity-dependent modulation of axon number, axon diameter, 

or myelin thickness. These changes may underlie the functional reorganization associated with 

motor skill learning.
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 Introduction

Performing complex motor skills is a fundamental component of ordinary human life. The 

ability to learn and modify motor skills is a requisite for adapting to an ever-changing 

environment (Davidson and Wolpert, 2003). Through practice, new motor skills are acquired 

and existing ones are continuously refined. Motor skill learning (acquisition, retention, and 

refinement of motor skills) relies on the capability of the nervous system to create new 

patterns of neural activation for accomplishing new tasks or for recovering motor functions 

lost to disability (Kantak and Winstein, 2012). This reorganization is a continuous process 

throughout life as the nervous system recruits the necessary neural components to optimize 

task performance and meet environmental demands.

Most models of learning have been developed around the Hebbian theory of plasticity 

(Dudai, 1989; Hebb, 1949). For healthy adults, the overall brain structure was seen as rather 

static and inert, and historically, the significance of learning induced-plastic changes at the 

structural level had been mostly disregarded (Fields, 2011). Recent advances in neural 

imaging have made in vivo characterization of the nervous system microstructure possible. 

Information gained from these technologies has advanced our understanding of the 

relationship between brain structure and learning, and recent studies have begun 

demonstrating that the brain at the structural level is a much more dynamic organ than we 

were previously aware.

Learning-induced structural changes of cortical and subcortical areas have been reported to 

occur in both gray and white matter. Using voxel-based morphometry, cross-sectional 

studies have identified regional differentiation of gray matter volume between expert and 

non-expert musicians (Bermudez and Zatorre, 2005; Gaser and Schlaug, 2003; Han et al., 

2009), golfers (Jancke et al., 2009), and basketball players (Park et al., 2009). Additionally, 

the magnitude of these gray matter changes has further been shown to correlate with 

experience (e.g., years spent typing for professional typists) (Cannonieri et al., 2007; 

Maguire et al., 2000). Longitudinal studies have further strengthened the link between 

structural plasticity and learning (Boyke et al., 2008; Draganski et al., 2004; Driemeyer et 

al., 2008; Scholz et al., 2009; Taubert et al., 2010). Following 3 months of practicing a motor 

task (juggling), Draganski and coworkers demonstrated transient increases in gray matter 

volume in regions associated with visual motion processing (Draganski et al., 2004). 

Strikingly, Driemeyer and coworkers have reported structural changes after only 7 days of 

juggling practice (Driemeyer et al., 2008). Paralleling the changes seen in gray matter, 

several studies (Bengtsson et al., 2005; Han et al., 2009) have demonstrated regional 

differentiation of white matter tracts by using diffusion tensor imaging (DTI). DTI non-

invasively measures the direction and rate of water diffusion within tissue. Water restricted 

by white matter fibers results in anisotropic diffusion along the axon. The common measure 

of diffusion anisotropy used in DTI studies is a normalized measure of the variance of the 

diffusion ellipsoid at each voxel called fractional anisotropy (FA) (Basser and Pierpaoli, 

1996). The physiological parameters that affect the FA value include axon number, axon 

diameter, and myelin thickness of the white matter tissue (Beaulieu, 2009). DTI studies 

investigating motor skill learning-induced structural changes in white matter have employed 

juggling (Scholz et al., 2009) and balance (Taubert et al., 2010) tasks.
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Here, we investigate learning-induced changes in brain connectivity following training with 

a body machine interface (BMI), where subjects learn to use the movement of their 

shoulders and upper arms to control a cursor on a computer screen to solve different tasks. 

The purpose of this study is to identify white matter changes by comparing FA values pre 

and post bilateral upper extremity motor skill training in healthy subjects. This will lead to a 

greater understanding of learning-induced structural plasticity and, specifically, the neural 

substrates responsible for the reorganization of residual motor ability. This information will 

potentially aid in enhancing clinical strategies in physical rehabilitation and facilitate the 

learning processes related to assistive devices used in impaired subjects.

 Methods

 Subjects

Eleven healthy, right-handed volunteers (mean age, 26 years; range: 22–35 years; 2 

females), with no known history of motor impairment participated in this study, after 

obtaining written informed consent approved by the local ethics committee. Exclusion 

criteria were: professional musicians for potentially bilateral increased use of upper 

extremities and smokers for possible brain structure and functional changes induced by 

nicotine administration and addiction (Lee et al., 2013). One subject played the violin non-

professionally. All subjects were naive to the experimental setup.

 Body Machine Interface

Body Machine Interfaces (BMI) translate signals derived from body motions into commands 

for external devices (see (Casadio et al., 2012) for a review). Subjects controlled a computer 

cursor with bilateral simultaneous movements of the shoulders and upper arms. The body 

signals were recorded non-invasively with four infrared video cameras (V100, Naturalpoint 

Inc., OR, USA) that tracked four small, low cost, active infrared markers (two on the 

shoulders and the other two on the upper arms), and converted into the two coordinates of 

the cursor in real-time with a custom software package (Modification of a C++ Software 

Development Kit supplied by Naturalpoint). This was a many-to-one map where each cursor 

location corresponded to an entire range of body configurations. Shoulder and upper arm 

positions were captured at 75 samples per second and the cursor position was displayed in 

real time on a LCD computer screen (OpenGL software) with visual feedback rate of 60Hz.

This BMI seeks a low-dimensional subspace of control signals within a higher dimensional 

space of upper body movements that remain available to the tetraplegic users of powered 

wheelchairs. Briefly, this BMI is based on:

a. Capturing upper body motions using four infrared cameras to track four active 

infrared sources attached to the subject’s upper-body garments (Figure 1). 

These sensors acquired eight signals (two for each camera).

b. Extracting the structure of movement variance in the space of body motion 

signals with principal component analysis (Jolliffe, 2002).

c. Establishing a linear correspondence from the sub-space of maximal mobility 

(SSMM) to the space of control signals. The SSMM is defined by the two 
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highest principal eigenvectors of the body signals capturing the highest amount 

of motion.

d. Converting to a cursor control signal with real-time feedback.

At the beginning of each training session, subjects calibrated the interface by performing 

self-selected free upper body motions. The map between the body and the control space of 

the cursor was defined during this calibration phase and remained calibrated within each 

session. To establish the body/cursor map, the interface allowed subjects to choose the 

movements that they preferred or found easier to perform. Although it is possible to move 

the cursor with the movement of only one shoulder, no specific instructions were given on 

how to control the cursor. The body movements were highly symmetric and they all chose 

the same strategy to move the cursor:

a. forward - both shoulders moved forward and/or up;

b. backward - both shoulders moved backward;

c. right - the right shoulder moved backward the left shoulder moved forward;

d. left - the right shoulder moved forward and the left shoulder moved backward.

 Training

Subjects performed visuo-spatial motor training tasks over 9 sessions: 2 to 3 sessions per 

week for a total of 3 to 4 weeks of training. Each session lasted about 1 hour (from a 

minimum of 50 minutes to a maximum of 60 minutes). Each training session contained four 

tasks (i) reaching test, where subjects performed 30 center-out movements (ii) 10 minutes of 

driving a wheelchair in a virtual environment, (iii) 25–35 minutes playing a Tetris-like game 

and (iv) a repeat of the reaching test in the first step. The training time for Tetris varied 

between 25 and 35 min to maintain the total amount of practice with the BMI constant 

across sessions and subjects. Therefore the Tetris training time depended on the duration of 

both the reaching task and the calibration procedures. The Tetris time was shorter in the 

early sessions and became longer during the later training sessions.

At the beginning and the end of each session, the subject’s performance was tested in a 

reaching task where subjects controlled the cursor in a continuous space. Starting from the 

same central position, subjects moved the cursor toward one out of six possible peripheral 

locations presented in random order and equi-spaced over a circle with five centimeters 

radius. No visual feedback was provided for the first 0.4 seconds after the cursor left the 

initial position in two randomly selected trials per direction. To quantify skill learning, 

accuracy (reaching error), smoothness (jerk index), and duration of the movements were 

computed as follows: (1) Accuracy (reaching error), i.e., the distance between the cursor and 

the target, after 0.4 s, with and without visual feedback. A smaller error indicated improved 

performance, i.e., subjects moved faster and/or aimed better at the target. (2) Smoothness 

(jerk index), the third derivative of cursor position normalized with respect to the duration 

and the path length of the trajectory according to Teulings et al. (Teulings et al., 1997). A 

smaller jerk index means more smooth movements. (3) Movement duration: the time elapsed 

between the beginning and the end of the movement. As the threshold for detecting the 

movement, we considered the 10% of the peak speed. A shorter duration means faster speed.
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When playing Tetris, subjects activated a virtual keyboard by moving from a central key to 

four surrounding keys, left, right, top and bottom to manipulate different shapes of falling 

objects. Completing a horizontal line of ten blocks without gaps caused the row of blocks to 

disappear, thus clearing the shaft. When subjects improved their performance, the game 

entered a more challenging level where the shapes fall at a faster rate. The game failed when 

the stack of pieces reached the top of the shaft and new pieces were unable to enter. Subjects 

repeated the game until the time limit allocated for Tetris (see above) was reached. The 

average rows cleared per minute was recorded for each session.

For the task of driving in a simulated environment, subjects controlled a virtual wheelchair 

over paths with increasing difficulty. The virtual environment for wheelchair navigation has 

a visual feedback rate of 30 Hz (Wheelchair Net Software 2.1, Oregon Research Institute). 

The vehicle can either advance or back-up along a line perpendicular to the screen or can 

turn, both clockwise and counterclockwise. Therefore the virtual wheelchair was operated 

by two commands specifying: a forward/backward linear speed v and a right/left turning 

speed ω. Average driving speed was recorded during 10 minute driving sessions.

 Statistical analysis

The Wilcoxon signed-rank test was performed to evaluate the effect of training on motor 

skill performance. We compared the performance of the first and last sessions in terms of 

accuracy (reaching error), smoothness (jerk index), and speed (duration) of the movements 

in the reaching tasks, rows cleared per minute in the Tetris game; and average driving speed 

of the wheelchair in the simulated environment. The significance level was set to p=0.05.

 MRI Data Acquisition

MR imaging data were collected within one week prior to the start of training (two 10 min 

DTI sessions) and within 2 days of completion of training (one 10 min DTI session). Pre-

training (baseline) image collection consisted of two DTI sessions where subjects were 

asked to leave after the first DTI session and re-enter the scanner after 30 min for the second 

DTI session. These two pre-training sessions serve as within subject control and were 

compared with each other to test the reliability of DTI at baseline, then concatenated into 

one long session to optimize the diffusion tensor estimation before comparing with post 

training to investigate training effect (Jung et al., 2010; Monnig et al., 2013).

MR imaging data were collected using a 3.0 Tesla Siemens Tim Trio MR scanner with a 32-

channel head coil and B17 software. Whole brain diffusion tensor imaging data (60 

directions, TR/TE=9000/83ms, 2×2×2 mm, 72 slices, b value=1000 s/mm2, in-plane matrix 

resolution, 112 × 130, flip angel=90°, GRAPPA with acceleration factor of 2) plus 8 images 

with no diffusion b=0 s/mm2 interleaved throughout the acquisition starting at the beginning 

of the sequence and after each block of 10 diffusion weighted images were acquired.

 Diffusion Data Analysis

 FA, MD, AD, RD estimation—All analyses were conducted with FSL Diffusion 

Toolbox (FDT) (version 4.1.7, www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford, UK) (Jenkinson et 

al., 2012). DTI data were motion and eddy current corrected before the diffusion tensor was 
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calculated for each voxel. Fractional anisotropy (FA) maps were derived based on the 3 

eigenvalues (λ1, λ2 and λ3) of each tensor, i.e. 

. Mean Diffusivity (MD) maps were derived 

as the average of the 3 eigenvalues, i.e. . Axial Diffusivity (diffusion along 

the principle diffusion directions) is the eigenvalue of the principle diffusion direction, i.e. 

λ1. Radial Diffusivity (diffusion perpendicular to the principle diffusion directions) maps 

were derived as the mean of the other 2 eigenvalues, i.e. .

 Tract-based spatial statistics (TBSS)—To localize brain changes, voxelwise 

statistical analysis of the FA data was carried out using TBSS (Tract-Based Spatial Statistics, 

see (Smith et al., 2006) for full details). First using the 1mm isotropic FA standard-space 

template (FMRIB58_FA) as a target, all FA data were aligned into a common standard space 

using the nonlinear registration tool FNIRT (Andersson et al., 2007a, b). Next, the mean FA 

image across all subjects and all time points was created and thinned to create a mean FA 

skeleton (thresholded at 0.2), which represents the centers of all tracts common to the group. 

Each subject’s aligned FA data were then projected onto this skeleton and the resulting data 

were fed into voxel-wise cross-subject statistical analysis. A two sample paired t-test was 

used to compare between pre and post training, i.e. design matrix contained one regressor 

for differences between pre and post training, and 11 additional regressors for individual 

subject means. Two t-contrasts (pre < post training and pre > post training) were estimated. 

Similarly a two sample paired t-test was used to compare two baseline sessions (baseline 1> 

2 and baseline 1<2 were estimated.). 5000 permutations were run to test for statistical 

significance using the ‘randomise’ command in FSL as described by Smith et al. (Smith et 

al., 2006). The statistical maps were corrected for multiple comparisons (PFWE < 0.025, 

multiple comparison corrected for two contrasts: pre- < post- training and pre- > post- 

training) using threshold-free cluster enhancement (TFCE). Significant clusters from the 

analysis were separately masked and anatomically identified using the JHU ICBM-DTI-81 

white-matter atlas in FSL (Hua et al., 2008).

 Region of interest (ROI) analysis—Four major clusters (contains more than 200 

voxels) that showed learning induced changes were identified on the FA skeleton based on 

TBSS results. Detailed analyses within these four clusters were performed to confirm and 

help interpret the findings from TBSS. (1) The mean FA values within four major clusters 

for skeletonized FA maps for baseline 1, baseline 2, the two baselines concatenated, and post 

training were extracted. (2) To better understand the changes in FA, the mean MD, AD, and 

RD within each of the four major ROIs were calculated for each subject. The average change 

post training relative to baseline was calculated at the group level. (3) Four major clusters 

were de-projected onto each individual subject’s native-space FA map for each scanning 

session. This allowed us to confirm that the voxels showing significant effects were indeed 

located within the white matter in each individual by visual inspection (individual results not 

shown).
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 Tractography—We used tractography to better understand the spatial location and 

connectivity of the white matter fibers identified by the four ROIs. To identify white matter 

tracts associated with changes in FA, the major four clusters showing significant learning 

induced differences on the skeleton were de-projected to each individual’s native space and 

probabilistic tractography was performed with the native ROI clusters acting as the seed 

masks (Behrens et al., 2007) using Bedpostx and probtracx commands in FSL. Briefly, 

bedpostx runs Markov Chain Monte Carlo sampling to build up distributions on principal 

diffusion directions at each brain voxel, which allows modeling of crossing fibers. Probtracx 

then repetitively samples from the distributions of voxel-wise principal diffusion directions, 

each time computing a streamline through these local samples to generate a probabilistic 

streamline or a sample from the distribution at the location of the true streamline. By taking 

many such samples, the posterior distribution on the streamline location or the connectivity 

distribution was determined. All brain voxels will have a value representing the connectivity 

value between that voxel and the seed voxel (i.e., the number of samples that pass through 

that voxel). Pathways in individual subjects were thresholded to include only voxels that had 

10% of maximum value (Zarei et al., 2007), binarized, transformed to standard MNI space, 

and then overlaid to produce population probability maps for each pathway reflecting the 

proportion of the population in which a tract was present.

 FA correlation with motor performance—We calculated the correlation with FA 

change and motor performance gain. In the major four clusters that showed significant 

differences for learning, an average FA change (post minus pre) for each individual within 

all four major clusters was calculated and correlated with their behavior motor performance 

gain (i.e. performance improvement from final session compared to initial session of 

training) using spearman rank correlation. The motor performance indicators include speed 

(duration), smoothness (jerk index), and accuracy (reaching error) of the movement from the 

reaching test; the average lines cleared rows per minute from the Tetris game; and average 

driving speed of the virtual wheelchair. The three parameters from reaching test were 

averaged across all movements (with and without visual feedback) in each session. False 

discovery rate (FDR) correction was used to correct for multiple comparisons.

 Results

 Motor Performance

Subjects improved their performance with training and the improvement was evident in all 

tasks. As shown in Figure 2, in the Tetris game the average rows cleared per minute 

increased from 1.4±0.14 at baseline (session 1) to 4.8±0.29 (mean±SE) at the end of the 

training (session 9) (p<0.001). The average driving speed of the virtual wheelchair measured 

during navigation under the same environment increased from a baseline speed of 3.7±0.15 

to 4.1±0.09 miles per hour during the final phase of training (p=0.005). In the reaching test 

(Figure 2), the movements became smoother, faster, and more accurate with practice (ps< 

0.001) for both trials with (red) and without (black) visual feedback (see Methods). Since 

the degree of changes from learning across the training sessions were not significantly 

different for trials with and without visual feedback (ps >0.05), the performance gain used in 

the correlation analysis with FA was computed from all trials.
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 Voxel-wise whole brain FA changes (TBSS)

There were no significant differences between the two baseline DTI sessions. There were no 

significant findings for the pre > post training, i.e., learning induced FA decreases. When 

comparing post>pre training, motor training increased FA values were localized to the white 

matter in the right hemisphere except for one cluster in the left corona radiata. Structures 

that showed an increased FA following training included the following areas in the right 

hemisphere, the posterior and anterior limbs of the internal capsule, the external capsule, the 

anterior and superior corona radiata, the body of the corpus callosum, and the superior 

longitudinal fasciculus as shown in Figure 3 and Table 1.

 ROI analysis

FA values from the regions showing significant differences were extracted as described and 

averaged across subjects. There was a 4.19% increase in FA value from 0.5327±0.0044 to 

0.5548±0.0049 (mean±SE). The mean FA values within the four major clusters of the 

skeletonized FA maps for baseline 1, baseline 2, two baselines concatenated, and post 

training are shown in Figure 4A. Consistent with results from whole brain analysis, the ROI 

analysis results confirmed that there are no differences between two baselines measures and 

post training showed higher FA values across all four major clusters. Within the four 

clusters, the changes in FA, MD, RD, and AD are shown in Figure 4B. MD and RD tend to 

decrease while AD remains unchanged. Decreases in RD together with unchanged AD lead 

to the increase in FA and decrease in MD.

 Tractography

Population tractography, using the four clusters as seed masks, is shown in Figure 5. Green 

indicates the cluster in the posterior corona radiata (pCR) ascending into the primary motor 

cortex (M1) and primary somatosensory cortex (S1), descending to the posterior internal 

capsule (pIC), and some fibers crossing to the contralateral hemisphere at the body of the 

corpus callosum (bCC). Blue indicates tracts originating from the superior corona radiate 

(sCR) ascending to the premotor cortex (PMC), descending to the pIC and cerebral 

peduncle, and not crossing the midline and remaining in the right hemisphere. Pink indicates 

tracts originating from the bCC, which connect bilaterally to the supplementary motor area 

(SMA) and the PMC. Red indicates tracts originating from the anterior internal capsule 

(aIC). These tracts almost entirely overlap the tracts form the sCR (blue).

 FA correlation with behavior

Correlations between FA changes and motor performance gain are summarized in Table 2. 

Significant correlations between FA changes and improvements in performance were found 

in bCC and aIC for movement duration (r=0.8727, pFDR=0.018 and r=0.7636, pFDR=0.046) 

and for jerk index (r=0.8455, pFDR=0.021 and r=0.8273, pFDR=0.021).

 Discussion

Our results show that 9 hours of motor skill training over 3 to 4 weeks improved motor 

performance and induced mainly unilateral increases in FA values in distributed white 

matter structures over the right hemisphere (non-dominant motor tracts), especially along the 
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corticospinal tract and corpus callosum. There was a 4.19% increase in FA value from 

0.5327 to 0.5548, which is in line with the juggling study of Scholz et al. (Scholz et al., 

2009). Furthermore, the degree of changes in FA is positively correlated with improvements 

in some aspects of performance, such as duration and smoothness of movement, but not with 

movement accuracy. Larger increases in FA correspond to greater improvement in motor 

performance. There were no significant FA value reductions induced by training. The 

regions showing learning-induced changes included: (1) part of the pCR along the cortical 

spinal tracts that connects M1 and S1 and descends to the pIC (Green in Figure 5); (2) sCR 

and aIC along the cortical spinal tracts connecting PMC, pIC, and the cerebral peduncle; and 

(3) the bCC which connects bilateral SMA and PMC. The corticospinal tracts are integral in 

voluntary, discrete, skilled movements and are the longest and largest descending fiber tract 

in humans. The corticospinal tract originates from the neurons in the (M1, PMC, SMA, and 

S1), leaves the cerebral cortex via the corona radiata to the posterior limb of the internal 

capsule, and descends through the cerebral peduncles to finally synapse on motoneurons 

located in the anterior horn of the spinal cord (Kandel et al., 2012). The corpus callosum 

connects the left and right hemispheres facilitating interhemispheric communication. The 

bCC interconnects the motor, premotor and supplementary motor areas as demonstrated by 

tractography (Hofer and Frahm, 2006). We find similar tracts when the clusters identified 

with TBSS are used as seed regions for tractography (Figure 5). Further, FA values of CC 

had been shown to be correlated with bimanual motor coordination (Bonzano et al., 2008). 

PMC, SMA, M1, and S1 are major cortical structures involved in motor skill learning 

(Dayan and Cohen, 2011; Hardwick et al., 2013; Ungerleider et al., 2002). Our results 

suggest that white matter microstructures interconnecting these key regions showed learning 

induced changes and that these changes are related to the individual performance 

improvement in speed and smoothness of movement. These findings suggest the presence of 

changes in the white matter localized in fibers connecting cortical circuits (within and across 

hemispheres) involved in motor skill learning and these have not been reported earlier. Prior 

longitudinal neuroimaging studies of motor learning only reported FA changes in white 

matter of the (1) inferior to the intraparietal sulcus after 6 weeks of juggling (Scholz et al., 

2009), and (2) below the primary motor cortex after one week of motor adaptation (Landi et 

al., 2011), and (3) the frontal and parietal regions after 6 weeks of a whole-body balancing 

task (Taubert et al., 2010). Previous cross-sectional studies did report experience-dependant 

changes in similar areas, though the directions of the FA changes are not consistent. Expert 

musicians have been shown to have increased FA in the internal capsule in comparison to 

non-experts (Bengtsson et al., 2005; Han et al., 2009), and the degree of change in FA was 

shown to correlate with the amount of practice (Bengtsson et al., 2005). Conversely, a study 

by Jäncke and coworkers found regional decreases in FA in the corticospinal tract, internal 

and external capsule, and inferior occipitofrontal fascicle in expert golfers compared to non-

experts. The authors explained these findings as a reduced need for cortical input resulting 

from excessive training (Jancke et al., 2009).

Neuroanatomical studies (Alexander et al., 1986) in non-human primates suggested the 

existence of modular striato-thalamo-cortical circuits dedicated to the generation and control 

of specific sensory-motor behaviors. Similar striato-cortical structures in humans have been 

observed in a DTI study by Lehericy and colleagues (Lehéricy et al., 2004). In more recent 
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theories of motor learning the basal ganglia are seen to have a key role in the learning of new 

sequences of actions, whereas the motor cortex is likely to participate in executive motor 

control and adaptation (Shmuelof & Krakauer, 2011). In the present study, we found 

evidence that by practicing body motions in the novel environment of the body-machine 

interface, subjects enhanced the inter-hemispheric connectivity and also the interactions 

between the striatum, motor cortex, somatosensory cortex, and SMA along pathways that 

are consistent with the proposal of Alexander and colleagues. In other words, the modular 

interactions between basal ganglia, motor cortex, somatosensory cortex, and SMA may play 

a key role in the reorganization of motor skills required to operate a body-machine interface. 

Earlier studies of this type of reorganization with both unimpaired and spinal cord injured 

participants (Casadio et al., 2010; Danziger and Mussa-Ivaldi, 2012) have supported the 

hypothesis that the brain forms a map of the transformation between the motion of the body 

and the motion of the controlled cursor. This corresponds to forming, through practice, an 

“internal model” of the novel task (Shadmehr and Mussa-Ivaldi, 1994; Wolpert et al., 1998). 

Therefore, our findings suggest that the process of learning a new sensory-motor map may 

lead to the formation of a new neural striato-cortical circuit that supports an internal model 

of the operational environment.

The right-sided unilateral observed differences in FA is expected because all of the 

volunteers were right handed. The non-dominant motor tracts in the right hemisphere are not 

as well tuned for the high level of control required to operate the BMI. The largest 

improvements in motor performance are expected from the left side of the body and thus the 

right cortical spinal tracts; although, previous studies have found no consistent associations 

between handedness and FA in the corticospinal tracts (Imfeld et al., 2009; Reich et al., 

2006; Westerhausen et al., 2007). Due to limitations in the design of the training task (see 

below in the limitations), we could not directly test this hypothesis by correlating changes in 

FA with unilateral behavior measures. And due to the asymmetric skeleton used in the TBSS 

analysis, a direct comparison of FA values in the left and right hemispheres is not possible.

Given the observations of anisotropy in healthy nonmyelinated fibers, the axonal membranes 

are believed to be the primary reason in hindering water diffusion perpendicular to the 

fibers. The degree of anisotropy is usually correlated most strongly with axon number and 

density, but it is also modulated by the addition and loss of myelin along the axonal sheath 

(Beaulieu, 2002) (Johansen-Berg and Behrens, 2009). Since the possibility for growth of 

new axons in the mature brain is low, especially within a short period of time (3–4 weeks in 

the current study), the structural changes observed in the current study might occur in 

existing axons. This may be due changes in the myelination pattern, in which myelin 

lamellas increase in number and become more tightly packed leading to increased FA and 

decreased MD. Several cellular and molecular mechanisms have been proposed to explain 

learning induced neuroimaging observations (Zatorre et al., 2012), including a change in 

myelination. Myelin controls the speed of impulse conduction through axons. It also affects 

the synchrony of impulse traffic between distant cortical regions and is critical for optimal 

mental performance and learning (Fields, 2008). Myelin can influence conduction velocity 

by regulating the axon diameter, the thickness of the myelin sheath, the number and spacing 

of the nodes of Ranvier, and the nodal structure and molecular composition of ion channels 

in the node and paranodal regions. In addition to controlling conduction velocity, myelin 
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proteins directly control synapse formation by inhibiting axon sprouting. This limits the 

critical period for synaptic plasticity and learning. Ultimately, histological studies are 

required to link neuroimaging observations and underlying cellular mechanisms. A recent 

study by Blumenfeld-Katzir et al. in 2011 (Blumenfeld-Katzir et al., 2011) reported a 2–4% 

increase in FA in the corpus callosum in a rat model following 5 days of training on the 

Morris water maze task (a spatial navigation task). Histology found increased Myelin Basic 

Protein (MBP, a myelin marker) staining in the rats’ corpus callosum, which was the only 

cellular marker that showed significant changes among neuronal, synaptic, dendritic, and 

astrocyte markers. This finding links the increase in FA to myelin sheath formation, thus 

implying an increase in the cellular organization and packing of axons induced by motor 

learning. In our study, the observed increased FA values may indicate microstructural 

changes of myelin thickness in white matter induced by learning to control the BMI. The 

close interrelationship between myelinating glia and neurons enables them to act together to 

alter white matter for faster, highly tuned information processing. The FA measure from 

diffusion imaging is likely affected by the combined changes of AD and/or RD. To elucidate 

these changes in FA, we examined AD, RD, and MD changes for the regions showing 

significant changes in FA. As shown in Figure 4B, the changes in AD are minimal, but RD 

decreased in all the major ROIs which leads to the increase in FA and decrease in MD. 

Previous studies in animals suggest that a decrease in RD can be induced by increased 

myelination (Gulani et al., 2001; Harsan et al., 2007; Ono et al., 1995; Song et al., 2002; 

Zhang et al., 2009). With reduced extracellular space due to increased myelin, the mean 

diffusivity of water will also decrease. These results further confirm that the changes we 

observed in FA are due to the microstructural changes of myelin thickness.

 Clinical implications

We showed that eleven unimpaired subjects using a simple BMI for playing computer games 

for approximately 9 hours exhibited structural brain changes. Although preliminary, this 

result is significant for the clinical impact of the BMI, since it suggests an anatomical basis 

for long term structural changes in brain connectivity related to the reorganization of 

residual motor abilities after a few training sessions. Learning induced plasticity is relevant 

both to rehabilitation and to the skilled use of assistive devices. For example, in high-level 

spinal cord injury (SCI) subjects, cortical atrophy following a significant level of disability is 

a well-known complication (Freund et al., 2011). Several studies have proved that the 

sensory motor system undergoes functional reorganization following repeated practice of a 

motor task. However, it remains to be understood whether functional reorganization of brain 

circuits results from the formation of new pathways or from the activation of dormant 

synapses. A recent study (Henderson et al., 2011) showed that in 20 SCI subjects with 

complete injury at the thoracic level, the representation of the little finger in the 

somatosensory cortex moved medially towards the area of sensory loss, i.e., the lower part of 

the body. These changes resulted from the growth of new lateral connections. The 

combination of BMI and DTI can be an effective framework for further investigating these 

structural brain changes, especially in SCI subjects. Furthermore, these BMIs will provide 

severely impaired subjects with a powerful tool to enhance the proficient use of assistive 

devices, while promoting the reorganization process of both brain and body.
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 Limitations

The design of the study lacks a between subjects control group with no training or a control 

group with the same type of physical activity, but without learning component for 

comparison. However, numerous studies have already demonstrated the longitudinal 

reliability of DTI measures, including previous learning studies where control groups did not 

show FA changes (Scholz et al., 2009; Taubert et al., 2010). In our present study we used 

within subject control (two baseline scans) avoiding the effect of between-subjects variance 

and did not observe any FA changes in the two baseline sessions in the whole brain analysis 

as well as in the ROI analysis (Figure 4A). Furthermore, all significant FA changes indicated 

that FA increased following training. There were no significant changes in the Pre > Post 

training contrast providing more confidence in the findings of this study.

Due to the nature of the training, it is hard to design a control task with the exact same type 

of physical activity, but without a learning aspect (e.g., having the upper limb displaced 

passively to simulate the movements during training). Therefore, we are unable to 

completely distinguish whether the observed changes in FA originated from the remapping 

of body motion or just from the physical aspect of the training or both. However we found 

significant correlations between FA changes and performance changes, which suggest 

changes in FA is related to learning. Also Ostry et al. (Ostry et al., 2010) have shown that 

motor learning affects both motor and sensory functions while passive limb movements 

induce no sensory changes. The finding that white matter serving S1 regions is involved 

indicates that passive movement alone would not lead to the observed changes in the current 

study.

We did not have the capability to well-characterize the body movements in 3D: each camera 

saw only one marker with no possibility to reconstruct the 3D motion or precisely quantify 

the movement of each part of the body. However, based on our observations, the movements 

used by the subjects during the training were highly symmetric and body centered.

 Conclusion

Although a growing number of structural neuroimaging studies have reported significant 

changes in gray matter density and white matter microstructure in the adult human brain 

following training, training-dependent structural plasticity in humans is still controversial 

(Draganski and Kherif, 2013; Erickson, 2013; Fields, 2013; Thomas and Baker, 2013a, b). 

Our findings provide further evidence suggesting that the practice of upper-body motions 

within the context of a novel task induces specific changes in the white matter tracts that 

connect somatosensory, premotor, motor, and supplementary motor cortical areas; brain 

regions known to support motor learning. These changes predominantly occurred in the right 

hemisphere while some also occurred in the inter-hemispheric pathways via the corpus 

callosum. Better performance was associated with higher FA and lower RD values in these 

selected white matter tracts. Overall, these structural changes demonstrate the functional 

reorganization and brain plasticity associated with motor skill learning. Brain plasticity is 

critical for successful physical rehabilitation as well as control of assistive devices. The 

ability to monitor these structural changes may allow patient specific rehabilitation programs 
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and devices to be designed for optimal recovery. Future research will investigate white 

matter changes in spinal cord injury patients following training using a BMI.
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Highlights

• White matter changes induced by motor training with a body-machine 

Interface

• On average fractional anisotropy increased by 4.19% with training

• FA increases were mostly localized to non-dominant corticospinal tract

• Findings suggest functional reorganization associated with motor skill 

learning
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Figure 1. 
Brain Machine Interface concept. The subject’s movements are detected by sensors placed 

on the upper body (red dots). As the subject engages in spontaneous movements, the sensor 

signals define a point moving in a high dimensional space (here represented in 3D). The 

calibration procedure establishes a correspondence between the plane that captures the 

highest amount of signal variance with the plane of the display, where the sensor signals are 

represented as a moving cursor.
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Figure 2. 
Performance improvements across different tasks. Top-left panel: Tetris score, the average 

rows cleared per minute for each session (mean±SE). Reaching task: reaching error, total 

duration, and jerk index for both trials with (red) and without (black) visual feedback of the 

cursor within the first 0.4 sec.
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Figure 3. 
Brain regions showing training-induced FA changes. Brain regions (Red-Yellow) showed 

significant increases in FA values induced by training, overlaid on top of the mean FA maps 

from all subjects. The regions are thickened for visualization purpose only.
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Figure 4a

Figure 4b

Figure 4. 
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(A) Mean FA values within four major clusters for skeletonized FA maps for baseline 1, 

baseline 2, two baselines concatenated, and post training. (B) Mean % change in FA, MD, 

AD, and RD within the four major ROIs across all subjects.
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Figure 5. 
Group tractography using the four major clusters as seed masks: pCR (Green), sCR (Blue), 

bCC (Pink) and aIC (Red) (x=14, y=−16, z=56 mm). Green: cortical spinal tracts connecting 

primary motor and primary sensory cortices and descend to the posterior internal capsule; 

Blue and pink: cortical spinal tracts connecting premotor, posterior internal capsule and the 

cerebral peduncle; note that blue and pink tracts mostly overlap; and Red: corpus collusum 

connecting bilateral supplementary motor and premotor cortices.
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Table 1

The size and peak coordinate of the clusters showing significant FA increase post training.

Cluster size (#voxels) T value p-value max-coordinate (mm) in 
MNI space

525 4.91 0.02 19 −41 38 Posterior corona radiata R (pCR)

260 2.83 0.021 19 −7 43 Superior corona radiata R (sCR)

233 4.59 0.022 15 0 33 Body of corpus callosum (bCC)

217 5.42 0.021 22 −6 18 Anterior limb of internal capsule R (aIC)

109 5.94 0.021 27 −45 42 8% Superior longitudinal fasciculus R

47 3.77 0.024 33 −3 7 External capsule R

47 4.41 0.023 35 −6 1 External capsule R

44 5.40 0.023 34 −14 3 External capsule R

43 3.58 0.021 27 −1 21 Superior corona radiata R

37 3.67 0.024 32 −14 10 External capsule R

36 2.52 0.022 30 −9 22 Superior corona radiata R

29 5.06 0.025 −17 37 9 Anterior corona radiata L

28 2.88 0.023 33 −32 35 Superior longitudinal fasciculus R

23 3.85 0.023 20 −15 44 5% Corticospinal tract R

20 2.14 0.023 28 −14 30 Superior corona radiata R

17 2.99 0.022 19 5 40 Superior corona radiata R

13 2.32 0.022 26 −21 43 11% Superior longitudinal fasciculus R, 11% Corticospinal tract 
R

9 2.05 0.025 18 −7 3 Posterior limb of internal capsule R
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