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Abstract

In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous
segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider
concurrently complementary information from multiple atlases to produce optimal segmentation
outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of
the atlases with the target image. In particular, the commonly used pairwise registration may result
in inaccurate alignment especially between images with large shape differences. Additionally,
when segmenting a group of target images, most current methods consider these images
independently with disregard of their correlation, thus resulting in inconsistent segmentations of
the same structures across different target images. We propose two novel strategies to address
these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of
both the atlases and the target images, and 2) an iterative groupwise segmentation method for
simultaneous consideration of segmentation information propagated from all available images,
including the atlases and other newly segmented target images. Evaluation based on various
datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS)
framework yields substantial improvements in terms of consistency and accuracy over methods
that do not consider the group of target images holistically.
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1 Introduction

Accurate delineation of different anatomical structures is a critical prerequisite for precise
quantification of brain growth and pathology. Manual labeling by human experts is time
consuming and may fall short in terms of inter-rater consistency even after sufficient
training, making it unsuitable for labeling large datasets. Automatic segmentation methods
(Beucher and Meyer, 1992; Klein et al., 2008; Sethian, 1999), which minimizes human
intervention, are hence highly desirable.

Atlas-based segmentation methods are highly efficient and capable of yielding reproducible
results with accuracy comparable to the manual segmentation (Klein et al., 2008). The basic
assumption of atlas-based segmentation methods is that the knowledge regarding the atlas
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can be carried forward to the target image, modulated by some form of structural similarity
measure that reflects anatomical resemblance (Langerak et al., 2010). This will however be
problematic if the atlas does not match the target image very well. In fact, recent studies
have shown that segmentation accuracy can be significantly improved if a suitable atlas
catering specifically for the target image is employed. The optimal atlas for the target image
(Rohlfing et al., 2004) can be selected among a set of atlases based on either image
similarity (Aljabar et al., 2009) or prior knowledge, such as demographic information (Xue
et al., 2007). The importance of utilizing an optimal atlas has been demonstrated in a
number of hippocampus and cortical/sub-cortical structures related studies (Avants et al.,
2010; Wu et al., 2007).

Instead of using a single ‘optimal’ atlas, more recent approaches employ a multi-atlas
paradigm that typically involves registering all atlases to the target image, and then fuse all
segmentation information from the atlases to produce a final segmentation result (Aljabar et
al., 2009; Artaechevarria et al., 2009; Isgum et al., 2009; Khan et al., 2011; Langerak et al.,
2010; L6tjonen et al., 2010; Sabuncu et al., 2010; Shi et al., 2010). The potential bias
introduced by using only a single atlas can thus be compensated to some extent by
combining information from multiple sources. The atlases can be weighted globally with a
constant weight for all voxels of a particular atlas (Aljabar et al., 2009), locally with specific
weights assigned to local patches (Isgum et al., 2009; Khan et al., 2011), or with an adaptive
local-global combined weighting strategy to achieve greater segmentation accuracy
(Artaechevarria et al., 2009; Shi et al., 2010). Extensive performance comparison of single-
atlas- and multi-atlas-based segmentation methods (Collins and Pruessner, 2010) confirms
that the multi-atlas approach yields higher accuracy. Studies further show that the selection
of a specific subset of atlases for each target image (L6tjonen et al., 2010), can provide more
accurate segmentation results (Aljabar et al., 2009), compared with the case when all, or a
randomly selected subset of, atlases are used. For further improvement, iterative atlas
selection strategies (Langerak et al., 2010) can be employed for refining atlas selection.

State-of-the-art multi-atlas-based segmentation methods are, however, limited due to the
following reasons: 1) The commonly used pairwise registration (Christensen and Johnson,
2001; Klein et al., 2009; Shen and Davatzikos, 2002; Vercauteren et al., 2009) is
problematic when a pair of images under registration have large shape differences; 2) The
registration between atlases and the target images is usually carried out independently,
instead of taking groupwise registration approaches, which are typically more effective in
achieving better registration results (Balci et al., 2007a; Balci et al., 2007b; Hamm et al.,
2010; Jia et al., 2010; Jia et al., 2011; Joshi et al., 2004; Munsell et al., 2009; Wu et al.,
2011); 3) Segmentation is typically performed one image at a time, which may lead to
segmentation inconsistency across images; and 4) Many current implementations lack a
feed-back loop for further segmentation refinement.

In this paper, we present an iterative multi-atlas-based multi-image segmentation
(MABMIS) algorithm for concurrent and consistent segmentation of a group of target
images. Two novel strategies are employed to address the limitations discussed above: 1) a
novel tree-based groupwise registration method for simultaneously registration of both the
atlases and the target images, and 2) an iterative groupwise segmentation strategy for
simultaneously segmentation of multiple target images for improved accuracy and across-
image consistency. Experimental results show that the new tree-based registration
framework can significantly improve registration accuracy, especially for target images with
large anatomical differences compared with the atlases, and the iterative groupwise
segmentation can dramatically improve segmentation consistency over a group of target
images. We will discuss next the details of the MABMIS algorithm.
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2. Methods

In this section, the overall framework of MABMIS is summarized in Fig. 1. All atlases are
first registered to a common space, facilitated by a combinative tree that is constructed based
on an expanded atlas population comprising both the original and the simulated atlases. The
images are represented as nodes on the tree, and the deformation fields relating the
connected nodes are stored for further use. For each of the target images that needs to be
segmented, we locate its most similar image on the tree, so that all atlases can be warped to
the target image based on the stored deformation fields. An initial segmentation of the target
image is obtained via label fusion. Finally, the segmentation results of all target images are
refined with an iterative groupwise labeling strategy until the results converge. Each
component of this proposed framework is detailed in the following sections.

2.1. Combinative-tree-based atlas registration

Most existing multi-atlas-based segmentation methods are focused on improving
segmentation precision after all atlases have been aligned to the target image by, e.g., using
label fusion strategies (Artaechevarria et al., 2009; Khan et al., 2011; Sabuncu et al., 2010)
or optimal atlas(es) selection (Aljabar et al., 2009; Langerak et al., 2010; Wu et al., 2007).
However, it is worth noting that the accurate and reliable registration also plays an
indispensible role in the whole atlas-based segmentation framework and places limits on the
achievable segmentation accuracy.

Intermediate templates guided registration—It is generally difficult to obtain
accurate registration between images with large shape differences. Good initialization of the
spatial transformation can help relieve this difficulty by bringing the images close enough to
avoid local minima. Recently, several intermediate templates (IT) guided registration
methods have been demonstrated to be effective in the registration of brain structural images
(Hamm et al., 2010; Kim et al., 2010; Tang et al., 2009), diffusion tensor images (Jia et al.,
2011), 2D shapes (Munsell et al., 2009), and 3D cortical surfaces (Dalal et al., 2010). The
key concept is to decompose a large deformation, with the help of intermediate templates,
into several smaller ones that can be estimated with higher reliability. According to the
method by which that the intermediate templates are constructed, intermediate templates
based methods can be classified into two categories: 1) intermediate templates generation
(ITG) (Kim et al., 2010; Tang et al., 2009) and 2) intermediate templates selection (ITS)
(Hamm et al., 2009; Jia et al., 2011; Munsell et al., 2009).

ITG methods attempt to construct simulated images that are more similar to the target
images by using statistical deformation models learned from a training dataset (Fig. 2, left).
In (Tang et al., 2009), principal component analysis (PCA) is utilized to learn the variations
of the training deformation fields and generate a set of intermediate templates. In this
method, the training images are first registered to the template to generate a set of training
samples of deformation fields, which are then used to build a statistical model with PCA.
This model can be used to approximate the distribution of deformation fields between the
individual samples and the template. By sampling the PCA space constructed by the top
eigen-vectors, a number of simulated deformation fields are generated for warping the
template to obtain a set of intermediate templates. On the other hand, support vector
regression (SVR) can be also applied in (Kim et al., 2010) to correlate image appearances
with the deformation coefficients for the effective prediction of an initial deformation field
for a target image. These methods correspond to a simple 1-level tree structure, in which all
paths in the top level are represented by the known deformation fields relating the
intermediate templates with the final template (see red dashed arrows in Fig. 2). In this case,
only the residual deformation field between the target image and the intermediate template
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needs to be estimated. In contrast to ITG, ITS methods aim to select the intermediate
templates from a set of real images, and more than one intermediate template may be
traversed by a target image before reaching the final template (Fig. 2, right). A minimum
spanning tree (MST) can be constructed to relate all target images to the final template (Jia
et al., 2011; Munsell et al., 2009), and the registration is performed by warping each target
image progressively towards the final template through a series of intermediate templates.
Note that the differences between the neighboring images on the tree are relatively small,
and thus the deformations between them can be estimated easily with higher accuracy.

We present a novel groupwise image registration framework that combines the key ideas of
ITG and ITS - we construct a combinative tree comprising both the original and the
simulated images. The combinative tree is capable of growing incrementally, allowing new
target images to be appended to it. The three major steps of the combinative-tree-based
registration framework are illustrated in Fig. 3. First, one atlas, determined manually or
automatically from a population of atlases, is denoted as the root of the tree. A set of
simulated images are then generated based on the root atlas/template using a learned
statistical model of deformation fields. Finally, a combinative tree based on the expanded
image set is constructed. At the same time, we estimate the spatial transformations between
all atlases. In the following, we describe in detail the steps involved in Fig. 3.

Generation of simulated images and construction of combinative tree—To
minimize the potential bias, the selected root of the tree should be reasonably representative
of the atlas population. We adopt the method described in (Hamm et al., 2010; Jia et al.,
2011) and select the geometric median image as the root. We assume that the population of
atlases, A=I U L, consist of N intensity images | = {lg, 1, ..., In-1} and their corresponding
label images L = {Lg, L1, ..., Ln—1}. We denote as S = {Sq, S1, ..., Sm-1} the target images
that we want to segment. Our goal is to accurately and consistently segment all images in S
and give segmentation results U = {U, Uy, ..., Up-1} based on the label information
provided in A. Without loss of generality, the root atlas is denoted as Iy. All other atlases {l4,
Io, ..., IN—1} are registered to I to obtain a set of deformation fields, which will be used for
training. A statistical model, e.g., the PCA based model in (Tang et al., 2009) or the
perturbation model in (Kim et al., 2010), can then be adopted to characterize the variability
of the deformation fields. In (Kim et al., 2010; Tang et al., 2009), thousands of simulated
images are generated to ensure the dense sampling of the space of deformation fields. This
approach, however, will cause the expanded set to be significantly biased towards the
simulated images and the root template. Moreover, due to dense sampling, many of the
simulated images are closely similar to each other or the training image, and are hence
redundant. As a remedy, we employ a simulated image selection scheme to reduce the
redundancy in the expanded set. For each simulated image warped to the root image T; € {iy,
To, ..., Tw}, its shortest distance to the atlases is determined by

di=_min_dist(I.1;),i=1,....W.

Jj=0,....N

(1)

where dist(T;, lj) is a distance metric between a pair of images, and W is the number of
simulated images prior to selection. To reduce computational load, we define the distance
metric as the mean squared difference of the intensity differences after affine registration.
Only images with distances larger than the threshold (di,) are kept and used to form the
expanded training set together with the original atlases. A total of K simulated images {ly,
In+1s - IN+k_1} are selected, along with their deformation fields {Gy, Gn+1, ---» ON+k-1}
with respect to the root Iy. The threshold dy, is set so that the number of simulated images is
comparable to that of the original atlases; we set K = 2N.
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After generating and selecting simulated images, an expanded training set is formed. This
training set provides a better sampling of the image space than the real images (Hamm et al.,
2010; Jia et al., 2011) or simulated images (Kim et al., 2010; Tang et al., 2009) alone. We
construct a combinative tree with this expanded training set by using the MST algorithm
described in (Jia et al., 2011; Munsell et al., 2009). In MST-based approaches, a fully-
connected graph is first constructed by calculating the pairwise distances of all pairs of
images. The same distance measure defined above is also used for this purpose. To further
approximate the empirical manifold of the image space, a k-NN sub-graph is extracted by
keeping only the connections between one image and its k nearest neighbors, where k is set
to be able to give a connected k-NN sub-graph. And then, the pairwise distance between two
images on the sub-graph is updated by adopting Dijkstra's algorithm (Dijkstra, 1959). The
MST is finally obtained by applying Kruskal's algorithm (Kruskal, 1956).

On the MST, the relationship of each image to the root template I is indicated by the
respective path on the tree as shown in Fig. 4. Each image that is connected to the root
template via a red dashed arrow is a simulated image with known deformation field
generated from the deformable model. The deformation field of a pair of images connected
by a blue solid arrow is estimated using a deformable registration algorithm. It is possible
that the target or the atlas images are connected to the root template with more than one
path. For example, there are two possible paths for connecting the leftmost atlas of Fig. 4 to
the template, since this atlas is directly connected with a simulated image. In this case, the
shortest path, which has the least number of segments on the path, will be selected for
registration and segmentation. In summary, we can register all atlases to Iy by following
their respective paths on the graph for obtaining the deformation fields {G1, Go, ..., GN-1}-

Registration of the population of atlases to a target image—Each atlas needs to
be aligned to the target image before the segmentation information can be carried over.
However, most existing methods, as illustrated in Fig. 5a, register the atlases independently
with disregard of their correlation. A better strategy is shown in Fig. 5b (Avants et al.,
2010). In this strategy, for each target image, the best-matching atlas is first located, and
since this atlas is related to all other atlases on the tree, the stored deformations can be used
to warp all atlases through the located atlas to the target image. For this to work, we need to
first estimate the deformation fields between every pair of atlases, which can be done by
composing two existing deformation fields by using Iy as a bridge. Note that the deformation
field used for warping each atlas to the root template is calculated by following the
respective path on the tree. Specifically, the deformation field for warping I; to I5 can be

computed as G; o G;l where G; (or Gg) denotes the deformation field estimated from I (or
Is) to the root template Iy and o is the deformation composition operator. Since all
deformations of connected images on the tree are known, the registration problem is now
reduced to the registration of the target image with the best-matching atlas. Since the target
image and its best-matching atlas are relatively similar, the risk of being trapped by local
minima is significantly reduced, and the registration accuracy can thus be improved, as
indicated by the experimental results below. All deformation fields are stored, together with
the tree structure, for use in subsequent steps.

2.2. Initial groupwise labeling

To take advantage of the stored deformation fields between atlases and also the additional
similarity information among all target images, we design a sequential registration and
groupwise segmentation solution, as illustrated in Fig. 6. Two major steps are involved: 1)
All target images are first sequentially attached to the current combinative tree, and 2) All
atlases are registered, using the information provided by the updated tree, to each target
image for initial segmentation.

Neuroimage. Author manuscript; available in PMC 2013 January 2.
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Specifically, we first calculate the distance from each new target image to the current tree,
which is defined as the minimum distance from each target image to any image (simulated
or real image) on the current tree. We then sort all target images according to their distances
to the current tree and select one giving the minimum distance, and then attach the selected
image to the tree as a child node of its respective best-matching image on the tree, as shown
in Fig. 4. Note that if the best-matching image is the root template, the target image is
attached directly to the root template and set it as a child node of the root template. This
process is iterated until all target images have been attached. This expands the tree to
accommodate more images without the need to re-perform all registration. Next, based on
the information given by the tree, we will align all atlases to each of the target images for
initial segmentation.

For example, given a target image, Sj, 0 < j < M, if its parent image is an atlas, we follow the
strategy illustrated in Fig. 5b to warp all atlases to S;. If the parent image is a simulated
image, we trace back to the root template Iy to find the nearest atlas and use the same
strategy in Fig. 5b to align all atlases to S;. After aligning the atlases with the new target
image Sj, an initial segmentation can be obtain through label fusion by concurrent
consideration of information from all warped atlases.

During the sequential registration, an initial segmentation of each new image can be
obtained. To segment S; into different tissue classes or functional ROIs, a multi-atlas-based
segmentation approach is taken. We determine the label of each voxel in the target space by
weighting its local-patch similarity with the aligned atlases in a manner similar to (Isgum et
al., 2009). Specifically, for each atlas I;, i = 0,1, ..., N — 1, its intensity and label images

aligned to S; are denoted as i{ and ﬂ{ respectively. To label the ¢t voxel of Sj, we calculate
the similarity of a (cubic) patch centered at this voxel with each of the aligned atlases.

Denoting the patch intensity difference as e (Sj, 17) the weight signifying the contribution
by the atlas I;, is given as

We (S,, I,) =W (L[( (Sj, i;l)) 5 (2)

2

were @ (Y) :me *" js the Gaussian function. The standard deviation o is set to take
value of the median of {dc' (Sj, 7,{),1’:0, l,....,N- 1}. The Gaussian kernel function is
adopted here to emphasize patches that are more similar to that of the target image, while the
images dissimilar to the target image will be given very small weights. By this way, we
circumvent the need to determine the optimal number of selected atlases (L6tjonen et al.,
2010). After obtaining the initial segmentation results of all target images in S, the
segmentation step with label fusion are repeated to further refine the segmentation results as
described below.

2.3. lterative update of segmentation results

In most multi-atlas-based segmentation algorithms, the segmentation is performed once
without a feedback loop for correcting inconsistent labeling of the same anatomical structure
among different target images. To further improve segmentation consistency, we adopt an
iterative labeling approach where, in each iteration, we update the segmentation result of
each target by using not only the information from the warped atlases, but also the newly
segmented target images.

Neuroimage. Author manuscript; available in PMC 2013 January 2.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Jiaetal.

Page 7

For the new target images S = {Sg, S1, ..., Sm-1}, we denote the initial segmentation results
asU'= {Ué Ui.....U,, } In the t iteration, image Sj's labeling result U} will be updated to

U;” by a weighted label fusion step based on all current segmentation outputs and the
warped atlases. If §j differs significantly from all other target images in S, its segmentation
result is less affected by them and is thus derived mainly from the atlases. Therefore, its
segmentation result will not be significantly affected by further iterations. On the other hand,
if Sj is close to some target images in S, its segmentation result will be influenced and
updated with further iterations. Iterative updating is stopped either when the maximum
number of iterations is reached, or when the average difference of the overlap ratio between
two consecutive iterations is below a pre-defined threshold. In practice, typically only a few
iterations are needed for convergence.

3. Experiments

We evaluate the proposed MABMIS framework on real brain images, by comparing it with
state-ofthe-art algorithms. All images are first affine-registered to a common space, and the
image distance metric is defined to be the mean squared difference of the intensity
differences between a pair of images after affine registration. We use PCA to learn the
statistical model and construct simulated images following the approach described in (Tang
et al., 2009). Diffeomorphic demons (Vercauteren et al., 2009) is used for pairwise
registration. The MST algorithm applied to build the combinative tree is implemented as
described in (Jia et al., 2011; Munsell et al., 2009). Two data sets are used to evaluate
different aspects of the proposed MABMIS method: 1) a subset of 100 images from the
ADNI dataset for extensively assessment of the combinative and incremental tree based
registration method, and 2) LONI LPBAA40 data set with 40 manually labeled images to
judge the segmentation accuracy and consistency based on different ROI labels.

3.1. ADNI Dataset

Registration accuracy is fundamentally important in the atlas-based segmentation methods.
One can reliably propagate atlas information only when the registration is sufficiently
accurate. Thus, we first evaluate the registration accuracy of the proposed MABMIS
framework based on the ADNI dataset (ADNI, 2004).

We apply the proposed method to a subset of the ADNI dataset, consisting of totally 100
images randomly selected with 50 normal controls and 50 mild cognitive impairment (MCI)
patients. Only the preprocessed images in NIFTI format of 1.5T baseline scans for each
subject were used. To reduce sensitivity to intensity variation, the following pre-processing
steps were performed:

1. AC (anterior commissure) - PC (posterior commissure) correction was performed
on all images, which were then resampled to have a common dimension.

2. The N3 algorithm (Sled et al., 1998) was applied with default parameters to correct
for intensity inhomogeneity.

3. Skull stripping was then performed by applying both Brain Surface Extractor (BSE,
Shattuck and Leahy, 2002) and Brain Extraction Tool (BET, Smith, 2002),
followed by further manual editing for clean results.

4. Histogram matching was performed on all images for overall intensity
normalization.

5. FLIRT was applied for affine registration with default parameters (e.g., 12 degrees
of freedom). The template image was determined based on the root of a tree built
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from the dataset. The distance metric was defined as the intensity differences
between two images after pairwise affine registration.

To segment the brains into different tissue types (GM, WM, and CSF), FAST from the FSL
package (Smith et al., 2004; Zhang et al., 2001) was applied after the images were skull-
stripped. Several samples are shown in Fig. 7 to demonstrate the large anatomical
differences within the dataset. Half of the images in each category are randomly chosen for
training, and the rest of the images are used as testing images. To generate the simulated
images, we first locate, from the training images, the median image that gives the minimum
average distance to all other images (Hamm et al., 2010; Jia et al., 2011), and then assign it
as the root (lp) of the tree. All other images in the training set, which will be used as atlases,
are registered, based on their paths to the root of the tree, onto the root image and the
resulting deformation fields are used to train the statistical model. Using the PCA model
(Tang et al., 2009), we select the four eigen-vectors with the largest eigen-values, and
sample along each eigenvector's direction according to a Gaussian distribution to get 4
vectors with different scales. Thus, a total of 44 = 256 simulated deformation fields are
generated by summing up the eigen-vectors weighted by different scales, and the
corresponding simulated images are also obtained by warping the root image. 100 simulated
images are finally selected to be combined with the original images to build the combinative
tree.

On the training images (atlases)—We first evaluate the registration accuracy by
measuring the intensity difference over the registered training image group as atlases. The
intensity differences between each warped atlas and the root image is calculated after
registration using the pairwise registration method (Vercauteren et al., 2009), the statistical
model based registration method (Tang et al., 2009), the tree-based registration method
described in (Hamm et al., 2010; Jia et al., 2011), and the proposed combinative tree based
registration. The distributions of intensity differences, plotted in Fig. 8, indicate that the
proposed method yields smaller alignment discrepancy. Tissue overlap rate evaluation is
also performed using Dice ratio (Dice, 1945) defined as D (U, V) =2 x |[U n V|/ (U +|V]),
where U and V are two regions of the same tissue type in two different images, and ||
denotes the volume of a region. The average tissue overlap rates of all four tissues, i.e., WM,
GM, Ventricle (VN), and CSF, are calculated. With the combinative tree based registration,
the average overlap rate is 83.1%, which is higher than that by the pairwise registration
(80.5%), the statistical model based registration (81.1%), and the tree-based registration
(80.9%). The paired t-test shows that the improvement of the proposed method over the
conventional tree-based registration is significant: p < 0.005 for intensity differences, and p
< 0.01 for overlap rates.

On the test images—We evaluate the registration accuracy of the testing images using
various measures. The results, listed in Table 1, indicate that the proposed method achieves
the best performance among all methods in comparison. In addition to intensity difference
and entropy, segmentation accuracy is also evaluated by computing the average overlap rate
between the ground-truth and the estimated segmentation of each testing image to be
segmented. Table 1 shows the average tissue overlap rates of all four tissues on all registered
test images, again showing the good performance of our method. In addition, as mentioned
in Section 2.3, the initial segmentations could be iteratively refined using additional
information from the newly segmented images. We stop the iteration when the difference in
average overlap rates in two consecutive iterations is less than 0.1%. Over all test images,
our method (MABMIS) gives an initial average overlap rate of 81.0%, and further increases
to 81.9% after the iterative updating, which is much higher than direct pairwise registration
(75.9%), statistical model based registration (78.5%), and the traditional tree-based
registration (78.6%). A paired t-test on the average overlap ratios shows that the
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segmentation accuracy is significantly improved by MABMIS in comparison with all other
methods (p < 0.005).

It is worth noting that the running time of our method is only 60 minutes for registration of
50 images, which is significant lower than the pairwise registration (158 min), the statistical
model based registration (85 min), and the traditional tree-based registration (142 min). Our
method can hence achieve a better registration performance in a shorter amount of time. The
training stage in our framework takes about 2 hours including statistical model building,
simulated image generation, and training data registration to the root template, and
additional 12 hours to achieve the registrations between all pairs of training images. This
part of the computation, fortunately, needs to perform once and the results can be stored for
subsequent processing. In Table 1, WM gives a very high overlap ratio, only second to VN.
The ventricular region usually has the best contrast, and thus the registration accuracy is
significantly higher. Since the overlap ratio for WM is already quite high in the affine-
registered images, it is more difficult to further improve its registration accuracy, compared
with GM and CSF.

3.2. LONI LPBAA40 dataset

The 40 brain images in the LONI LPBA40 dataset (Shattuck et al., 2008) are manually
labeled with a total of 54 ROIs on different cortex and sub-cortex regions. Since the LONI
LPBA40 dataset has a fixed number of subjects, more training subjects means less testing
images, and vice versa. If more subjects are chosen as atlases (i.e., the training subjects), the
registration accuracy of the atlases could increase. But the performance improvement due to
the iterative update will become limited. On the other hand, if fewer subjects are chosen as
atlases, alignment accuracy among images could be affected while segmentation consistency
could be improved as more testing images are involved in iterative update. To balance these,
we select an equal number of images for training and testing. We randomly select 20 images
for training and the other 20 images for testing. We generate 40 simulated images to be used
together with the atlases for constructing the tree. The test images are sequentially attached
to the combinative tree and registered to the template with guidance by their best matches on
the tree. The registration accuracy of the 20 test images is measured by the average overlap
rate of the labels of the aligned images. Our method achieve an average overlap rate of
80.5%, which is higher than the pairwise registration (77.0%), the statistical model based
registration (78.3%), and the traditional tree-based registration (78.7%). The improvement
given by our method over the other methods is statistically significant at p < 0.001 (with
paired t-test). The computation time-cost of our method is about 47 min, which is less than
the pairwise registration (96 min), the statistical model based registration (52 min), and the
tree-based registration (80 min).

In Table 2, we list the Dice ratio, averaged over all ROlIs, between the estimated labels and
the corresponding ground-truth. Using multi-atlas-based labeling, the proposed method
outperforms the other methods using various registration schemes. The result for the single-
atlas-based segmentation using the best-matching atlas is included as a reference. The
average overlap rates for all ROIs given by the three groupwise registration based
segmentation methods are shown in Fig. 9, where our method, MABMIS, tops in 46 out of
54 ROIs. Fig. 10 shows results for qualitative comparison of the segmentation accuracy
given by different methods with the close-up views of two regions provided for
demonstrating the improvement.

To measure segmentation consistency across all target images, the segmentations of all
target images are warped to a common space, which is the root template space in our case.
We then calculate the segmentation overlap rates between all image pairs, and the results are
shown using the box-and-whisker plot in Fig. 11. MABMIS gives the best accuracy, with
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average overlap rates of 83.8% and 85.0% before and after iterative updating, whereas the
other three label fusion based methods give overlap rates of 78.9%, 80.3%, and 80.9%,
respectively. We have also evaluated the performance of our algorithm by repeating 10 runs
of experiments on 10 different sets of training and testing subjects randomly selected from
the LONI LPBA40 dataset. For each run of experiment, we calculated the segmentation
accuracy based on the test images. Thus, the mean and standard deviation across runs can be
measured as given in Table 3, which indicates again that the MABMIS algorithm achieved
much better results compared with other methods.

3.3. Discussions

MABMIS consistently achieves higher segmentation accuracy when compared with state-of-
the-art methods. Two key factors contribute to this improvement: 1) high registration
accuracy gained through the combinative tree based registration, and 2) utilization of
additional information given by the target images in a multi-atlas segmentation setting. In
particular, more accurate registration generally translates to better guide of label
propagation, especially for complex anatomical structures. By using other labeled target
images, the pool of candidate labels for voting is expanded, and more importantly, more
candidate labels are coming from the most similar images. So the voting results could match
the real label with more chance, which is consistent with previously reported results
(L&tjonen et al., 2010). It is also noticed that multi-atlas-based label fusion solution is much
better than single-atlas-based label propagation, even if the atlas is optimally chosen among
the atlas population.

It is worth noting that, in Fig. 10, the labeling result of the proposed MABMIS method
shows a smoother boundary than other methods. There are two possible reasons. First,
improved registration accuracy may increase the smoothness of the boundary after
weighted-voting based segmentation. With better registration accuracy, the boundaries in the
same region of multiple atlases are more consistent, and the voted common boundary will
hence be smoother. This can be observed from Fig. 10. We further note that, from the same
figure, it can be observed that the boundary becomes increasingly smoother as registration
accuracy increases. For example, the result given by the pairwise registration is the least
smooth, while the tree-based and the statistical model based registration methods gives
slightly smoother results since they produce better registration accuracy. The proposed
method achieved the best registration and hence the smoothest boundary. Second, in the
iterative updating step performed in MABMIS, we include not only the original atlases, but
also incorporate other target images into the final atlas set to help segment each target
image. Since there are now an increased number of atlases, the outcome necessarily
becomes smoother with more images taking part in deciding the boundaries.

Note that MABMIS is a general framework capable of incorporating different groupwise
registration and segmentation algorithms. It is also flexible enough to accommodate more
atlases and target images without discarding any existing computation results as long as the
selected root atlas/template can reasonably represent the whole dataset. In the case where the
root atlas is no longer representative of the image population as progressively more images
are augmented, the root image can simply be updated using the augmented image
population. With more images being added to the image population, the combinative tree
becomes increasingly larger. To efficiently determine, for a target image, the best match on
the tree, a simplified distance metric based on down-sampled images, or a fast retrieval
solution (Jacobs et al., 1995), can be adopted.

Although the proposed MABMIS method can significantly improve the labeling results on
multiple images, it takes a significant amount of time for training and requires a large
amount of memory for storing the deformation fields. For example, approximately 14 hours
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are required to train using the ADNI dataset (50 training images with dimensions
216x216x128) and 8 hours using LONI LPBA40 (20 training images with dimensions
220x220x184) on our servers. To make our method applicable to the large-scale dataset, it is
important to reduce the training time and storage requirement. Possible solutions include
optimizing the number of simulated images for the underlying dataset to reduce the training
time and finding more efficient representation of the dense deformation fields to save the
storage space and memory. Future work will be directed to address these issues.

4. Conclusions and future work

In this paper, we present a novel multi-atlas-based multi-image segmentation (MABMIS)
framework for achieving accurate and consistent groupwise image segmentation. In contrast
to other atlas-based segmentation methods, we focus on the problem of simultaneously
labeling a group of images. To this end, two new strategies are proposed: 1) A new image
registration framework based on a combinative and incremental tree for better registration
between atlases and new target images, and 2) a multi-atlas-based segmentation scheme
using an iterative groupwise labeling strategy for improving segmentation accuracy and
consistency. The proposed MABMIS framework was validated using various sets of in vivo
brain images and the results indicate that significant improvement over the state-of-the-art
methods can be achieved. Future work entails evaluation of different fusion schemes and
different groupwise registration techniques for further improving the labeling accuracy.
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Fig. 2.

Two intermediate templates guided registration schemes: intermediate templates generation
(ITG, left) and intermediate templates selection (ITS, right). In ITG, one image is generated,
by warping the template with a known deformation field, as the intermediate template for
each test image. This intermediate template is more similar to the test image than the
original template; therefore, the residual deformation field between each test image and the
intermediate template can be estimated with higher accuracy. In ITS, on the other hand, all
test images are organized into a tree structure with the template as the root. The deformation
field between each test image and the template is thus the combination of several smaller
ones, thus joining several intermediate templates along the path traversed by the test image
to reach the template.
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. % = = betweensimulatedimage

Illustration of a combinative tree, which can be expanded by appending the target images.
For each target image, its best-matching image on the current tree can be an original atlas, a
simulated atlas, or even another target image as shown within the green circle. Some images
(e.g., the left-most atlas) may be connected to the root template via more than one path.
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Two different ways of aligning the atlases to the target image.
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Sequential registration and segmentation of the target images.
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..

Fig. 7.
Sample images from the ADNI dataset. Large anatomical differences remain even after
affine registration: MCI patients (top row) and normal controls (bottom row).
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The distribution of intensity differences of all atlases after registration by four different

methods on ADNI dataset.
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The proposed method (MABMIS) achieves the best overlap rates for 46 out of 54 ROIs.
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Fig. 10.

Comparison of segmentation accuracy. From left to right: (1) the label propagation result
using a best-matching atlas, (2) the label fusion results with the pairwise registration, the
statistical model based registration, the tree-based registration, and MABMIS with iterative
updating, and (3) manual labels (ground-truth).
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Segmentation consistency measured by the average overlap rates given by different multi-
atlas-based image segmentation methods.
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