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Abstract
Multivariate pattern recognition methods are increasingly being used to identify multiregional
brain activity patterns that collectively discriminate one cognitive condition or experimental group
from another, using fMRI data. The performance of these methods is often limited because the
number of regions considered in the analysis of fMRI data is large compared to the number of
observations (trials or participants). Existing methods that aim to tackle this dimensionality
problem are less than optimal because they either over-fit the data or are computationally
intractable. Here, we describe a novel method based on logistic regression using a combination of
L1 and L2 norm regularization that more accurately estimates discriminative brain regions across
multiple conditions or groups. The L1 norm, computed using a fast estimation procedure, ensures
a fast, sparse and generalizable solution; the L2 norm ensures that correlated brain regions are
included in the resulting solution, a critical aspect of fMRI data analysis often overlooked by
existing methods. We first evaluate the performance of our method on simulated data and then
examine its effectiveness in discriminating between well-matched music and speech stimuli. We
also compared our procedures with other methods which use either L1-norm regularization alone
or support vector machine based feature elimination. On simulated data, our methods performed
significantly better than existing methods across a wide-range of contrast-to-noise ratios and
feature prevalence rates. On experimental fMRI data, our methods were more effective in
selectively isolating a distributed fronto-temporal network that distinguished between brain
regions known to be involved in speech and music processing. These findings suggest that our
method is not only computationally efficient, but it also achieves the twin objectives of identifying
relevant discriminative brain regions and accurately classifying fMRI data.
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Introduction
Multivariate pattern recognition (MPR) methods are rapidly becoming a popular tool for
analyzing fMRI data (Cox and Savoy, 2003; De Martino et al., 2008; Haynes et al., 2007;
Kriegeskorte et al., 2006; Mourao-Miranda et al., 2005; Pereira et al., 2009). These methods
use fMRI data to detect activity patterns in brain regions that collectively discriminate one
cognitive condition or participant group from another. Most fMRI studies that use MPR
methods restrict the analysis to specific brain regions of interest (ROI) (Cox and Savoy,
2003; Haynes et al., 2007), however this approach is problematic if the ROIs are not known
a priori. In these cases, a data-driven approach that incorporates multiple brain regions is
desirable for several reasons. For one, it is possible that no single brain region can accurately
discriminate given a set of experimental stimuli, task conditions or participant groups, and
simultaneously incorporating multiple brain regions may be necessary to describe the
distributed networks sub serving differential brain processes. Therefore, the MPR method
used in fMRI data analysis should, ideally, consider activity patterns in all brain regions, and
identify the subset of regions that discriminates between experimental conditions in an
unbiased manner. Hereafter, we refer to MPR methods that include activity patterns across
the entire brain as “whole brain classifiers.”

Designing a whole brain classifier presents a number of technical challenges since the
number of regions considered in the analysis of fMRI data (“features”) is large compared to
the number of observations (trials or participants). Typically, this results in over-fitting of
the data, leading to high classification accuracies for data used in designing the classifier,
but poor classification accuracies for independent “test” data. Furthermore, a common
characteristic of fMRI data is that the number of brain regions involved in a given cognitive
task is typically small relative to the total number of brain regions. Selecting the brain
regions that are most relevant in discriminating cognitive tasks/condition overcomes the
problem of over-fitting and improves the generalization performance of the classifier.
Furthermore, identifying these relevant regions is also critical for understanding which brain
regions can discriminate between stimulus conditions. Taken together, the problem of whole
brain classification can be distilled to two key problems: (1) feature selection, or selection of
only those relevant regions that discriminate between cognitive conditions, and (2)
designing a classifier using these selected regions.

The problem of feature selection has been extensively studied by the machine learning
community (Kohavi, 1997). The overall goal of feature selection is to identify subsets of
features that are most useful in discriminating two or more conditions of interest. Existing
methods for feature selection can be grouped in two categories: filter and wrapper (Guyon,
2003; Kohavi, 1997). In the filter strategy, features are selected independent of
classification, and the selected features are then used in designing the classifier. The features
are ranked based on univariate scores such as correlation or mutual information between a
feature and an experimental manipulation. This strategy has been implemented in a number
of fMRI studies (Haynes and Rees, 2005; Mitchell, 2004; Mourao-Miranda et al., 2006). A
limitation of the filter strategy is that this method applies only univariate measures and
therefore does not consider the relationships between features while selecting them. This is a
major limitation since fMRI data is inherently multivariate, with strong spatial correlation
between neighboring voxels. Furthermore, this method does not consider classifier
performance in selecting features. In contrast, the wrapper strategy utilizes methods in
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which features are selected that maximize the performance of the classifier. The selected
features are then used in designing the classifier, as in the support vector machine-based
recursive feature elimination algorithm (SVM-RFE) developed by (Guyon, 2002),(Guyon,
2003). This method has been applied for feature selection and classification of fMRI data by
De Martino and colleagues (De Martino et al., 2008). A weakness of this approach is that
thresholds used to select features are arbitrary and different datasets may require different
settings of thresholds (De Martino et al., 2008).

An alternative strategy was recently proposed to simultaneously address the problem of
feature selection and classifier design (Krishnapuram et al., 2005; Tipping, 2001; Zou and
Hastie, 2005). In this strategy, feature selection is included as part of the classifier design,
ensuring efficient use of data and faster computation time since the classifier does not need
to be repeatedly trained during feature selection. In this approach, regularization is used to
prevent over-fitting of the data and thereby improve generalizability of the classifier.
Regularization-based approaches have been successfully applied to problems such as EEG/
MEG source localization (Phillips et al., 2002), classification of multi sensor EEG data (van
Gerven et al., 2009) and gene selection in micro data analysis (Zou and Hastie, 2005).
Moreover, these approaches are well-suited for the analysis of fMRI data which, as
mentioned earlier, is characterized by large number of features and limited training data.
SVM based feature selection using L1, L2 or L0 regularization methods were also proposed
in the literature (Bi et al., 2003; Perkins et al., 2003; Weston et al., 2003).

Here, we present a novel method LR12, based on logistic regression with a combination of
L1 and L2 norm regularization to accurately estimate discriminative brain regions from
whole brain fMRI data. The use of L1 norm regularization results in sparse solutions,
thereby helping in feature selection. However, when features are highly correlated, as in
fMRI data, using only L1 norm regularization selects only a subset of relevant features.
Using L2 norm regularization in addition to L1 helps in selecting all correlated and relevant
voxels. Furthermore, our method uses a novel and fast component-wise update procedure to
estimate discriminative brain regions; this procedure is used to maximize the logistic
regression cost function that includes L1 and L2 norm regularization (Krishnapuram et al.,
2005). The L1 norm and fast estimation procedure ensure rapid computation and a
generalizable solution. The L2 norm provides additional benefit by including correlated
brain regions in the solution, a critical step often overlooked by existing methods. We first
evaluate the performance of our LR12 method, on simulated data and then examine its
effectiveness in discriminating between well-matched music and speech stimuli. We also
compared our procedures with other logistic regression methods and SVM-RFE.

Methods
Logistic regression with regularization

Logistic regression fits a separating hyper plane that is a linear function of input features
between two conditions or classes. Here, we interchangeably use the terms conditions and
class labels. Given a set of training data, the goal is (1) to estimate the hyper plane that
accurately predicts the class label of a new example and (2) identify a subset of the features
that is most informative about the class distinction. Let x = [x1,x2,…..,xp]t ∈ RP be a vector
of input features (voxels) and y (y is a binary variable which is either 0 or 1) be its class
label. Let D = {(xi,yi},i = 1,2 …., N be a set of N training examples. Under the logistic
regression framework, the probability that the i-th example belongs to class 1 is defined as

(1)
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where, hθ(x) is a logistic function given by  and θ ∈ Rp is a vector of weights
associated with each feature. These weights are estimated from the training data D by using
the maximum likelihood method wherein the following log-likelihood is maximized

(2)

The above cost function results in a solution that accurately predicts the class label of a new
example. In the context of fMRI analysis, the prediction accuracy of this solution is limited
because the number of features (voxels) are far greater than the number of observations (p ≫
N). To overcome this problem, regularization can be applied by assuming a prior on the
weights. In an ideal case, the regularization should force the weights to be large for features
which are sensitive to class labels and exactly zero for other features. Such a constraint
achieves the twin objectives of classifier design with good prediction accuracy and the
automatic detection of relevant features, which is very important for interpreting brain
imaging data.

A commonly used Gaussian prior on weights lead to L2 regularization and the
corresponding cost function to be maximized is

(3)

where, γ controls the degree of regularization. Maximizing this cost function results in a
regularized solution wherein the magnitudes of weights corresponding to irrelevant features
are reduced to small values but not exactly to zero. This cost function is also concave, which
can be optimized using the conventional iterated readjusted weighted least squares
(IRWLS). Another commonly used prior is the Laplacian, a sparsity promoting prior, which
has been used successfully in regression analysis (Tibshirani, 1996). This prior makes
weights corresponding to irrelevant features to be exactly zero. The cost function that needs
to be maximized in this case is

(4)

(5)

where, the operator | | returns the absolute value of |θ(k)|. This cost function is also concave,
but cannot be optimized using IRWLS since it is not differentiable at the origin. Optimizing
this cost function results in a sparse solution when the features are uncorrelated. In the case
of correlated features, which are the case in fMRI data wherein the adjacent voxels are
highly correlated, only a subset of these correlated features is selected. However in the
context of fMRI, we require all the regions (or features) to be selected which differentiate
the two class conditions. This grouping effect can be introduced by combining L1 and L2
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regularization (Zou and Hastie, 2005). The required cost function to be maximized in this
case is now

(6)

where the parameters γ1 and γ2 respectively control the degrees of L1 and L2 norm
regularization. Maximizing this cost function results in a sparse solution even when the
features are correlated. In the following section, we describe a novel bound optimization
method we developed to maximize Llg(θ). This bound optimization method does not require
computing the inverse of the Hessian matrix at each iteration and has been applied
successfully to maximize both Lg(θ) and Ll(θ) (Krishnapuram et al., 2005). It can be easily
scaled to applications such as whole brain classification where the feature dimension is very
high.

Bound optimization
Let L(θ) be the cost function to be maximized. In the bound optimization approach, L(θ) is
optimized by iteratively maximizing a surrogate function Q,

(7)

where, θ ̂k is the solution at k-th iteration. This procedure monotonically increases the cost
function at each iteration if Q satisfies the condition that L(θ) − Q(θ|θ ̂k) attains its minimum
at θ = θ ̂k (Krishnapuram et al., 2005).

When L(θ) is concave, surrogate function Q(θ|θ ̂k) can be constructed by using a bound on
the Hessian matrix H(θ). If there exists a nonnegative matrix B such that H(θ) − B is
nonnegative then it can be shown that

(8)

is a valid surrogate function. g(θ) denotes the gradient of L(θ) with respect to θ. The matrix
B is given by (Krishnapuram et al., 2005)

(9)

The component-wise update procedure can be used to maximize Q. Specifically, the
surrogate function Q is maximized with respect to one of the components of θ while fixing
the remaining components to their current values. This procedure avoids the inversion of the
Hessian matrix. Since the cost function is concave in parameters, the global optimal solution
is guaranteed.
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Most importantly, this approach can be used for both L1 and L2 regularization and the
combination of both. For joint regularization of L1 and L2, the surrogate cost function of
Llg(θ) to be maximized is

(10)

The update rule for the m-th component of θ is given by

(11)

Here, only the m-th component of θ is updated while all other components are held at their
values in the previous iteration. Bmm denotes the m-th diagonal entry of B, gm(θ ̂k) is the m-th
element of the gradient vector, g(θ ̂k), and

(12)

is a soft threshold function. This update equation ensures that the value of Q is non-
decreasing at each iteration and is sufficient to guarantee monotonicity of the procedure.

Choice of γ1 and γ2
In Equation 10, the parameters γ1 and γ2 respectively control the degree of L1 and L2
regularization. The performance of the classifier and selection of features depends on the
choice of these parameters. These parameters were derived from the data using a
combination of grid search and a three-way cross validation procedure. This procedure
consists of two nested loops. In the outer loop, the data was split into N1 (N1 = 10) folds.
One fold was used as test data for estimating the generalizability of the classifier and was
involved neither in determining the weights of the classifier nor in the estimation of the
parameters. In the inner loop, the remaining N1 − 1 folds were further divided into N2 (N2 =
10) folds. N2 − 1 folds were used as the training data and the remaining fold was used as the
validation data. For each combination of γ1 and γ2, we obtained the discriminative weights
using the training data and estimate the class labels of the validation data. We repeated the
above procedure N2 times by leaving a different fold as validation and the remaining folds as
the train data. We obtained the average classification accuracy of the classifier across the N2
folds for every combination of γ1 and γ2. We chose that combination of γ1 and γ2 for which
this accuracy was maximum. We then obtained the discriminative weights by training the
classifier using all the N2 folds with the optimal parameters obtained above. We estimated
the class labels of the test data which was left out in the outer loop using these
discriminative weights. We repeated the above procedure N1 times by leaving a different
fold as the test data. We estimated class labels of the test data at each of the N1 folds and
computed average classification accuracy obtained at each fold, termed here as the cross
validation accuracy (CVA). We then computed the final discriminative weights using all the
data with average parameters obtained in N1 folds and evaluated the performance metrics
such as sensitivity, false positive rates and accuracy in feature selection, described below,
based on these weights. In the gird search, the value of γ1 was varied logarithmically from
2−2 to 25 in steps of 2 and γ2 is varied logarithmically between 10−1 to 104 in steps of 10.
The optimal values are searched in a logarithmical grid to cover a wide range of values.
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Feature selection using SVM (SVM-RFE)
Feature selection using SVM based recursive feature elimination was developed by Guyon
and colleagues (Guyon, 2002). This method was applied for feature selection in fMRI by
(De Martino et al., 2008). Feature selection and generalizability of this approach was
estimated using the two-level cross validation procedure described in (De Martino et al.,
2008). In this procedure, the data was divided in to N1 (N1=10) folds. One fold was used as
test data which was used only to estimate the generalizability of the classifier and does not
influence the computation of discriminative maps. The remaining N1 − 1 folds were used as
the training data. This training data was further divided into N2 (N2=5) splits. The
discriminative weights were obtained by training the linear SVM classifier using N2 − 1
splits leaving out one split. The above procedure was repeated N2 times by leaving out one
split at a time. Average absolute discriminative weights were then computed using the N2
discriminative weights obtained above. Recursive feature elimination (RFE) was performed
R (R=10) times based on these average weights. At each feature selection level, voxels
corresponding to the smallest rankings were discarded and the remaining voxels were used
to train the classifier at next level. In our implementation we discarded 10% of the lowest
ranking weights at each RFE level. The generalization performance at this feature selection
was assessed using the test data which was left out. The entire procedure was repeated N1
times by leaving out different fold as test data. Final generalization performances and
discriminative maps of each RFE level were obtained as the average over N1 folds. We
selected the RFE level for which the generalization performance (CVA) was highest. To
compute the performance metrics such as sensitivity, false positive rates and accuracy in
feature selection, we used the discriminating weights computed in the following two ways.
In the first approach, we used the average discriminative maps obtained as the average over
N1 folds at the RFE level at which the CVA was highest. This approach was also taken in
(De Martino et al., 2008). Here, we refer to this approach as SVM-RFE1. In the second
approach, we retrain the classifier using the entire dataset and obtain the discriminating
weights by applying RFE up to the level at which CVA was maximum. We refer to the
performance evaluation by this approach as SVM-RFE2. This approach of obtaining
discriminating maps is similar to the one employed in sparse logistic regression method. We
have reported the results obtained by this approach in addition to the first approach to have a
fair comparison with sparse logistic regression methods.

Initial voxel reduction
De Martino et al. (2008) reported that cross-validation accuracy improved with initial voxel
reduction, particularly at lower CNRs (De Martino et al., 2008). To further examine this
issue, we used a similar voxel reduction method and selected a subset of the most activated
voxels in both classes. We applied this procedure to examine how the performance of these
methods improves with respect to the case where no initial voxel reduction is applied. For
initial voxel reduction, we applied the same univariate activation based method used by De
Martino et al. (De Martino et al., 2008). In this method, the voxels were sorted
independently using a scoring function and the union of top N′ voxels per class were
selected. The score for v-th voxel in i-th class (Si(v)) is defined as:

(13)
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Where, μi(v) and  are mean and variance of v-th voxel computed across ni observations in
i-th class. Note that this initial voxel reduction was performed only on the training data in
the cross validation procedure and no test data was used in this step.

Evaluation of classifier performance
The performance of the classifier on simulated datasets in selecting relevant features was
assessed by computing the sensitivity, false positive rate, accuracy in feature selection and
the 10-fold cross-validation accuracy (CVA) based on the optimal parameters γ1 and γ2 in
sparse logistic regression method and the best feature elimination level in SVM-RFE
method. The performance metrics such as sensitivity, false positive rate and accuracy were
computed as follows:

(14)

(15)

(16)

where, TP is the number of true positives, TN is the number of true negatives, FN is the
number of false negatives and FP is the number of false positives. TP, FP, TN and FN were
determined as follows:

a. TP: By counting the number of non-zero discriminative weights in the
discriminative regions of the simulated data.

b. FP: By counting the number of non-zero discriminative weights in the non-
discriminative regions of the simulated data.

c. TN: By counting the number of discriminative weights which are exactly zero in
the non-discriminative regions of the simulated data.

d. FN: By counting the number of discriminative weights which are exactly zero in
the discriminative regions of the simulated data.

In single subject analysis, CVA accuracy can be evaluated by training a classifier over
several experimental runs. In group-level analysis, CVA can be evaluated across subjects
performing two different experiments. The latter procedure was used in this study. Here we
refer to logistic regression with L1- norm regularization as LR1 and logistic regression with
both L1 and L2 norm as LR12. We also use a special case of LR12 where the parameter γ2 is
set to a high value (10000) and the optimal value of γ1 is found using the above cross-
validation procedure. We refer to this method as universal soft thresholding (LR12-UST) for
reasons discussed elsewhere (Grosenick et al., 2008; Zou and Hastie, 2005).

Simulated data
The performance of LR12, LR12-UST, LR1 and SVM-RFE were assessed using simulated
datasets. This data consists of two discriminating regions responding to two conditions but
with different amplitudes. Simulated datasets were constructed by creating summary
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statistics (Z-scores) of fMRI time series data and then adding signals in multiple predefined
regions using procedures similar to those described by De Martino et al (De Martino et al.,
2008) and Wang et al. (Wang, 2009). The datasets were created at various contrast-to-noise
ratios (CNRs) and prevalence rates.

In this simulated dataset, we create two classes (or conditions) with two non-overlapping
discriminatory regions. This simulation method is similar to that used in (De Martino et al.,
2008) but with the following extensions:

a. We directly simulate summary statistics (Z-scores) rather than voxel time-series.

b. We generated datasets with several different prevalence rates, rather than using just
one rate.

c. We introduce spatial correlations in both discriminating as is typically the case in
fMRI data.

d. The distribution of voxels within the “activated” regions was simulated with
spatially contiguous correlations. In typical fMRI data, clusters of contiguous
voxels respond to a condition. Therefore, we simulate the voxels responding to
these conditions as spatially correlated contiguous voxels.

We created discriminative regions in the following way: In region-1, the level of activations
in class-1 is greater than that in class-2. In region-2, the levels of activation in class-1 are
less than that in class- 2. The differences between the levels are simulated in such a way that
a fixed contrast to noise ratio is satisfied. Since in actual fMRI data, adjacent active voxels
are spatially correlated, in our simulations we introduced spatial correlations among the
discriminating voxels.

We simulated high spatial correlation (Pearson correlation coefficient ρ = 0.7) for voxels in
region-1, class-1; medium correlation (ρ = 0.5) in region-1, class-2. Conversely, high spatial
correlation (ρ = 0.7) for voxels in region-2, class-2; medium correlation (ρ = 0.5) in
region-2, class-1. The other non-discriminating voxels in both classes have no spatial
correlation.

More specifically, for class1, region-1, s-th observation for i-th feature  was simulated as
follows:

(17)

where, Z1 is chosen as 1 and p1 is the number of discriminating features in class 1, region-1.
εi, i = 1.....p1 were generated using Matlab’s mvnrnd function where in the correlation
between εi’s was set to 0.7 and variance of each εt was set to 1.

For class-2, region-1, s-th observation for i-th feature  was simulated as follows:

(18)

where, Z2 is chosen such that certain CNR is satisfied. Here, CNR is defined as
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(19)

where, σ is noise variance which is set to 1. In class-2, εt’s were generated such that the
spatial correlation between them was 0.5 and variance was 1. In non-discriminating regions,
data was generated such that there is no correlation between voxels.

(20)

(21)

Data was generated similarly in region-2 in both classes but with the difference that the
spatial correlations and activation levels in region-2, class-2 was greater than that in
region-1, class-1 as mentioned earlier. We chose to introduce different spatial correlations in
the same region across two classes in order to simulate spatially discriminative patterns in
the data in addition to the discriminative features with respect to activation levels. We
generated 25 observations (s=25) in each class.

The datasets were generated with CNR = 0.1, 0.3, 0.5, 0.75, 1, and 1.5 and for each CNR we
generated datasets with feature prevalence rates of 0.5%, 1%, 2.5%, 5%, 10% 20%, 30%,
40% and 50%. The total number of voxels for each dataset was 40,000. Here, we define
prevalence rate as the percentage of discriminating voxels in both regions compared to
actual number of voxels.

Experimental data
We examined the performance of each method on fMRI data acquired from 20 participants
during an auditory experiment involving music and speech stimuli. Music stimuli consisted
of three familiar and three unfamiliar symphonic excerpts composed during the Classical or
Romantic period, and speech stimuli were familiar and unfamiliar speeches (e.g., Martin
Luther King, President Roosevelt) selected from a compilation of famous speeches of the
20th century (Various, 1991). All music and speech stimuli were digitized at 22,050 Hz
sampling rate in 16-bit. A pilot study in a separate group of participants was used to select
music and speech samples that were matched for emotional content, attention, memory,
subjective interest, level of arousal, and familiarity (Abrams et al., submitted).

Each music and speech excerpt was 22–30 seconds in length. To present the stimuli to the
participants in the scanner, we programmed two runs (one each for music, and speech) into
Eprime V1.0 (Psychological Software Tools, 2002). We counterbalanced and randomized
the order of the individual excerpts.

Participants were instructed to press a button on a magnetic scanner-compatible button box
whenever a sound excerpt ended. Response times were measured from the beginning of the
experiment and the beginning of the excerpt. The button box malfunctioned in eight of the
scans and recorded no data, but because the main purpose of the button press was to ensure
that participants were paying attention, we retained those scans, and they were not
statistically different from the other scans. All participants reported listening attentively to
the music and speech stimuli.

Ryali et al. Page 10

Neuroimage. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Images were acquired on a 3T GE Signa scanner using a standard GE whole-head coil
(software Lx 8.3). Images were acquired every 2 seconds in two runs, each lasting 8 min., 4
seconds. A custom-built head holder was used to prevent head movement during the scan.
Twenty-eight axial slices (4.0 mm. thick, 1.0 mm skip) parallel to the AC/PC line and
covering the whole brain were imaged with a temporal resolution of 2 seconds using a T2*-
weighted gradient-echo spiral in-out pulse sequence (TR = 2000 ms, TE = 30 ms, flip angle
= 80°, 262 time frames & 224 time frames, respectively, and 2 interleaves). The field of
view was 200 × 200 mm, and the matrix size was 64 × 64, providing an in-plane spatial
resolution of 3.125 mm. To reduce blurring and signal loss arising from field in
homogeneities, an automated high-order shimming method based on spiral in-out
acquisitions was used before acquiring functional MRI scans (Kim et al., 2000). Images
were reconstructed, by gridding interpolation and inverse Fourier transform, for each time
point into 64 × 64 × 28 image matrices (voxel size 3.125 × 3.125 × 5.0 mm). A linear shim
correction was applied separately for each slice during reconstruction using a magnetic field
map acquired automatically by the pulse sequence at the beginning of the scan (Glover and
Lai, 1998).

To aid in localization of the functional data, a high-resolution T1-weighted spoiled grass
gradient recalled (SPGR) inversion-recovery 3D MRI sequence was used with the following
parameters: TR = 35 ms; TE = 6.0 ms; flip angle = 45 °; 24 cm field of view; 124 slices in
coronal plane; 256 × 192 matrix; 2 averages, acquired resolution = 1.5 × 0.9 × 1.1 mm. The
images were reconstructed as a 124 × 256 × 256 matrix with a 1.5 × 0.9 × 0.9-mm spatial
resolution. Structural and functional images were acquired in the same scan session.

Data were pre-processed using SPM5 (www.fil.ion.ucl.ac.uk/spm). Images were corrected
for movement using least-squares minimization without higher order corrections for spin
history, and were then normalized to stereotaxic MNI coordinates using nonlinear
transformations (Friston et al., 1996). Images were then resampled every 2 mm using sinc
interpolation and smoothed with a 4-mm Gaussian kernel to reduce spatial noise. T-scores
(T maps) for the contrasts [Music – Rest] and [Speech – Rest] were computed for each
subject using a general linear model. The T-maps computed for these two contrasts were
then used for classification.

Results
We first compare the performance of LR12, LR12-UST, LR1, and SVM-RFE on simulated
datasets by evaluating the sensitivity, false positive rate, accuracy in feature selection and
cross-validation accuracy provided by each of these methods at various CNRs and feature
prevalence rates. We then compare these methods on experimental data.

Performance on simulated dataset
Figure 1 shows 10-fold cross validation accuracies obtained using LR12, LR12-UST, LR1,
SVM-RFE1 and SVM-RFE2 methods. For CNRs of 0.1 and 0.3, the CVAs obtained by
these methods are only about chance level (0.5). The classification accuracies obtained by
these methods improve for CNRs of 0.5 and above and are comparable.

Figure 2 shows the accuracies in feature selection obtained by LR12, LR12-UST, LR1,
SVM-RFE1 and SVM-RFE2 methods. Accuracies of LR12, LR12-UST and LR1 improved
with the increase in CNRs. For CNRs of 0.5 and above, LR12 performed better than LR12-
UST, LR1 and SVM-RFE at most of the prevalence rates. Between the two SVM-RFE
methods, accuracies obtained by SVM-RFE2 were better than that achieved by SVM-RFE1.
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Figures 3 and 4 respectively show sensitivities and false positive rates obtained by each of
the methods. For low CNRs of 0.1 and 0.3, the sensitivities obtained by all methods are
poor. SVM-RFE1 shows higher sensitivity but with very high false positive rates as shown
in Figure 4. For CNRs of 0.5 and above, sparse logistic regression methods (LR12, LR12-
UST and LR1) performed better than SVM-RFE1 and SVM-RFE2. Among the logistic
regression methods, LR12 has higher overall performance with respect to accuracies in
voxel selection as shown in Figure 2. Between the two SVM-RFE methods, SVM-RFE1
resulted in higher sensitivities compared to SVM-RFE2 as shown in Figure 3 but at the cost
of higher false positives (Figure 4).

Univariate methods based on general linear models are generally used to analyze fMRI data.
These methods take only differences in activation levels in voxels between conditions while
multivariate methods presented here consider both spatial and activation level differences in
the data. In order to examine whether the conventional univariate approach is sensitive in
finding discriminative voxels, we applied two-sample T-test on the simulated data at a p-
value of 0.05, corrected for multiple comparisons using false discovery rate. The sensitivity
of univariate two-sample T-test was poor compared to other methods at CNRs of 0.75 and
below as shown in Figure 3.

Effects of initial voxel reduction
We applied a voxel reduction step in conjunction with LR12 and SVM-RFE at a prevalence
rate of 0.5%, identical to the rate used by De Martino et al (2008). We selected a union of
top 2000 voxels, corresponding to 10 times the number of discriminating voxels. Table 1
compares the performance of these methods with and without voxel reduction step.

Table 1A shows that CVA improved with voxel reduction step for both LR12 and SVM-
RFE at 0.5% prevalence rate, particularly at low CNRs (0.1– 0.5). The improvement is more
significant for LR12 at lower CNRs. The CVAs achieved by LR12 are higher than that of
SVM-RFE with and without voxel reduction. Tables 1B, 1C and 1D show accuracies,
sensitivity and false positive rates in voxel selection with and without voxel reduction step at
0.5% prevalence rate. In this case, the performance of SVM-RFE1 and SVM-RFE2 in voxel
selection accuracy improved at both low and high CNRs (Table 1B) with voxel reduction.
However, the sensitivity in voxel selection achieved by LR12 after voxel reduction is better
than that of SVM-RFE1 and SVM-RFE2 (Table 1C) but at marginally higher false positives
(Table 1D) for CNRs above 0.5. Although the false positive rates of SVM-RFE1 and SVM-
RFE2 reduced with the initial voxel reduction (Table-1D) but their sensitivities decreased
(Table-1C) compared to the case where there was no voxel reduction.

Performance on experimental fMRI data
We examined the performance of the four classification approaches on fMRI data from an
auditory experiment examining neural processing of global acoustical differences between
music and speech. Using the four classification methods, we quantified the cross-validation
accuracies for the Music vs. Speech conditions. In addition to performing whole-brain
analyses, we also performed the exact same analyses using a mask as a means of excluding
deactivated voxels and including only those voxels which showed increased signal levels
during music and/or speech stimuli (Supplemental Figure S1).

LR12 and LR12-UST Methods—LR12 and LR12-UST classified a distributed cortical
network in the frontal, temporal, and parietal and occipital lobes, as shown in Figure 5A and
5B, respectively. LR12 and LR12-UST methods identified nearly identical voxels
throughout these cortical structures, with LR12-UST indentifying a slightly larger extent of
voxels relative to LR12. Temporal lobe structures identified using these methods included
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large portions of bilateral anterior and posterior divisions of the middle and superior
temporal gyri and temporal poles, as well as right-hemisphere planum temporale. Both
methods also identified bilateral parahippocampal gyri, left-hemisphere hippocampus,
amygdala, and putamen, as well as right-hemisphere insula. Frontal lobe structures
identified using LR12 and LR12-UST methods included bilateral frontal orbital cortex (BA
47), frontal poles, and post-central gyri. In the parietal lobe, LR12 and LR12-UST methods
identified bilateral angular gyri as well as a number of occipital cortical regions, including
the occipital pole and inferior and superior lateral occipital cortex bilaterally. Finally,
discriminating voxels were also found in anterior and posterior cingulate and paracingulate
cortex in the left-hemisphere as well as the cerebellum and brainstem. The cross validation
accuracies obtained by LR12 and LR12-UST were 58.67% and 58.33% respectively in
classifying music versus speech.

LR1 Method—Brain regions that LR1 discriminated were extremely focal (Figure 5C).
This method revealed an extremely small collection of voxels in the left-hemisphere
posterior middle temporal gyrus, inferior lateral occipital cortex, and cerebellum.
Discriminated voxels in the left-hemisphere were sparse, where fewer than 5 voxels were
selected in each of these left-hemisphere brain regions; LR1 did not identify any voxels in
the right-hemisphere. This method revealed substantially fewer voxels than any of the other
classification methods. The cross validation accuracy in classifying music versus speech by
this method was 51.66%.

SVM-RFE Method—The SVM-RFE1 (Figure 5D) and SVM-RFE2 (Figure 5E) methods
were considerably less selective compared to the other methods. Not only did SVM-RFE1
and SVM-RFE2 identify all of the cortical and subcortical structures revealed using both
LR12 and LR12-UST methods, they also identified a large number of additional voxels
throughout the brain. The additional structures identified by SVM-RFE1 and SVM-RFE2
covered a large extent of the cortex, including many voxels in white matter areas of the
brain. Compared to L1, LR12 and LR12-UST methods, the SVM-RFE methods were far
less specific. The cross validation accuracy in classifying music versus speech by these
methods was 54%. Note that CVAs obtained by SVM-RFE1 and SVM-RFE2 were exactly
the same. They differ only with respect to the discriminative map computations.

LR1, LR12, LR12-UST and SVM-RFE Methods Using a Functional Mask—In
addition to performing whole-brain analyses, we also performed the exact same analyses
using a functional mask as a means of excluding deactivated voxels and including only those
voxels which showed increased signal levels during music and/or speech stimuli
(Supplemental Figure S1). Similar to results from the whole-brain analysis, results varied
considerably among the classification methods, with LR1 showing a relatively sparse
collection of voxels, LR12 and LR12-UST methods showing intermediate specificity, and
SVM-RFE1 and SVM-RFE2 showing less specificity compared to the other methods.
Between SVM-RFE1 and SVM-RFE2 methods, SVM-RFE2 was more specific, while
SVM-RFE1 showed nearly every voxel within the masked brain regions as discriminating
voxels. Furthermore, the LR12-UST method again showed a slightly larger extent of voxels
compared to LR12. Both LR12 and LR12-UST methods indentified voxels in bilateral
superior and middle temporal cortex, medial temporal lobe structures, frontal orbital cortex
(BA 47) and frontal pole, and the cerebellum and brainstem. The cross validation accuracies
provided by LR12, LR12-UST, LR1 and SVM-RFE were respectively 67.33%, 62.6%,
70.67% and 70% (again, CVAs obtained by SVM-RFE1 and SVM-RFE2 were exactly the
same).
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Discussion
We developed a novel whole-brain classification algorithm based on logistic regression for
analysis of functional imaging data. Our LR12 method incorporates L1 and L2 norm
regularization to achieve optimal feature selection in the presence of highly correlated
features. This method provides three key improvements over existing methods: first, LR12
method can be scaled to whole-brain analysis; second, the method provides a data-driven
mechanism to eliminate voxels which do not discriminate between two classes, while
retaining voxels which can distinguish between the two classes of stimuli; and third, LR12
does not depend on any preset parameters. Critically, comparison of our classification
algorithm with LR12-UST, LR1 and SVM-RFE on simulated datasets revealed superior
performance in terms of accuracy of feature selection at various CNRs and feature
prevalence rates. On the experimental data, LR12 was more effective in selectively isolating
a distributed fronto-temporal network that distinguished between brain regions known to be
involved in speech and music processing.

Advantages of LR12 method for classification of fMRI data
We used the bound optimization strategy along with the component-wise update procedure
employed in Krishnapuram et al. (Krishnapuram et al., 2005) in order to achieve
computationally feasible whole brain classification. This approach could be applied to
LR12-, LR12-UST- and LR1-based methods. In comparison, existing methods that use the
IRWLS optimization on small ROI data (Yamashita et al., 2008) cannot be scaled for whole-
brain analysis. The reason IRWLS cannot be scaled is that it requires computation and
inversion of a Hessian matrix, whose size is the same as the number of voxels at each
iteration. This is computationally intractable. Our simulations show, for the first time, that
using bound optimization along with component-wise update procedure is highly suited for
fMRI data classification.

Our LR12 method incorporates both L1 and L2 norm regularizations. This combination of
L1 and L2 norm regularization helps in determining the spatially correlated regions in brain
which discriminate between conditions. The degrees of these regularizations (γ1 and γ2) that
need to be used for achieving this purpose is estimated directly from the data using a
combination of grid search and cross validation procedure. Therefore, unlike the other
methods, this approach does not require any arbitrary preset parameters for feature selection.

Another advantage of the LR12 algorithm is that it allows the user to select useful priors
during whole-brain analysis. For example, we can incorporate spatial priors to account for
neighborhood information and correlated activity around each voxel. By introducing such
priors, we can avoid isolated features and noise which are frequently encountered in
approaches that use the search-light algorithm or even the general linear model. Such spatial
constraints can easily be incorporated in our framework by modifying the cost function in
Equation 10.

Comparison with LR1 and LR12-UST
Performance comparison—LR1 and LR12-UST are special cases of LR12. In LR1 γ2 =
0 and in LR12-UST γ2 is set to 104 while in LR12, both the parameters (γ1 and γ2) are
optimized. LR12 resulted in higher overall accuracy in feature selection at most of the
prevalence rates, and for CNRs of 0.5 and above. For low CNRs (0.1 and 0.3), all three
sparse logistic regression methods and SVM-RFE resulted in CVAs at or below chance level
(0.5). In the case of LR1, the sensitivity of feature selection is not consistent, as shown in
Figure 3. On the other hand, LR12-UST resulted in high sensitivity in voxel selection
(Figure 3) but false positive rates were also higher (Figure 4). The performance of these
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methods can be attributed to inclusion or exclusion of L2-norm penalty. When the
discriminating voxels are spatially correlated, LR1, which did not include L2-norm, selected
only a subset of these voxels, resulting in decreased sensitivity. LR12-UST, which uses a
fixed L2-norm regularization, resulted in higher sensitivity as well as higher false positive
rates since the regularization parameter (γ2) was not optimized in this case. On the other
hand, LR12 resulted in higher accuracy in selecting relevant features compared to LR1 and
LR12-UST because it optimizes both L1 and L2-norm regularization parameters.

Our findings are consistent with evidence from previous linear regression literature (Zou and
Hastie, 2005), LR1 yielded sparse solutions with variable sensitivity. This can be explained
by the fact that L1 norm regularization facilitates sparse solutions and serves as a powerful
method for feature selection when features are uncorrelated. However, for datasets in which
features are correlated, such as fMRI data, methods based on L1 norm regularization select
only a subset of correlated features. This phenomenon was first observed in Lasso (least
absolute shrinkage and selection operator) (Tibshirani, 1996), which is an L1 regularized
method for linear regression methods. Zou et al (Zou and Hastie, 2005) developed a method
called Elastic-net, an extension of Lasso that introduces a combination of L1 and L2 norm
regularization. It was shown that the Elastic-net method is effective in selecting an entire
group of relevant and highly correlated features and that introducing L2 norm regularization
is crucial for the selection of relevant features. Carroll et al. (Carroll et al., 2009) used
Elastic-net for fMRI data analysis. Our method extends Elastic-net, which was designed for
regression analysis, to classification problems.

Comparison with SVM-RFE
Performance comparison—The cross validation accuracies obtained by SVM-RFE and
sparse logistic regression methods are comparable. For low CNRs of 0.1 and 0.3, all the
classification methods resulted in CVAs at or below chance levels. For CNRs of 0.5 and
above, both LR12 and SVM-RFE resulted in CVAs above chance level (Figure 1). The poor
CVAs achieved by the classification methods at low CNRs can be attributed to the small
differences between discriminating regions across the conditions. Under such conditions, the
data is difficult to classify because of which all the methods resulted in below chance level
CVAs. At CNRs of 0.5 and above, the discriminability of the spatial patterns between the
classes improved thereby facilitating the classification of the data better.

In terms of accuracy, sensitivity and false positive rates in feature selection, LR12
performed better than SVM-RFE methods as shown in Figures 2–4. The sensitivity of
feature selection by SVM-RFE1 and SVM-RFE2 ((Figure 3) are greater than that of LR12 at
low CNRs (0.1 and 0.3) but this is accompanied by more false positives (Figure 4). As a
result, the accuracy of feature selection is better in LR12 compared to SVM-RFE1 and
SVM-RFE2 (Figure 2). At CNRs of 0.5 and above, the overall accuracy of LR12 feature
selection is higher than that of SVM-RFE1 and SVM-RFE2. The sensitivity of SVM-RFE1
and SVM-RFE2 decrease with increase in prevalence rates as shown in Figure 3,
particularly at high CNRs; at the same time, false positive rates are greater in SVM-RFE1
and SVM-RFE2 compared to LR12 (Figure 4).

Among SVM-RFE methods, SVM-RFE1 resulted in better sensitivity than SVM-RFE2 but
the false positive rates obtained by SVM-RFE1 are higher than that of SVM-RFE2. This can
be attributed to the way the final discriminative weights are computed. In SVM-RFE1
method, the final discriminative weights were computed as the average of discriminative
weights obtained in each fold. In SVM-RFE2 method, the final discriminative weights were
computed using the entire dataset by applying RFE at level at which CVA is maximum. The
discriminating maps obtained at each fold may have false positives occurring at different
locations. Therefore, averaging across folds inflates the false positive rate and therefore the
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results obtained by this approach are difficult to interpret. We also observed this fact when
we applied this procedure of averaging of discriminative weights across folds on our sparse
logistic regression methods (data not shown). Moreover, it is a very common practice in the
machine learning literature, to obtain the discriminative weights on the entire dataset after
having estimated the unknown parameters with a cross validation procedure (Hastie et al.,
2001). Accordingly, the final discriminative weights in our method were computed using the
entire dataset.

Critically, however, false positive rates in SVM-RFE1 and SVM-RFE2 are higher compared
to LR12. This can be attributed to L1-norm regularization used in LR12 which drives the
small magnitude weights to exactly zero. However, SVM RFE method drives the weights
corresponding to non-discriminative voxels to small values but not exactly to zero.
Therefore, additional thresholding of weights is required to prune out these false positives.
In general, it is not straightforward to choose optimal thresholds without impairing the
performance of the classifier.

Issue of free parameters in SVM-RFE
In our simulations with SVM-RFE, we removed 10% of the smallest weights at each
recursive step. This is an arbitrary threshold but one that is necessary for any
implementation of SVM-RFE (De Martino et al., 2008). The choice of this threshold may
influence the performance of SVM-RFE and similar methods. Our analysis suggests that this
threshold may not be optimal for many CNRs and prevalence rates. For example, the
sensitivity of SVM-RFE1 and SVM-RFE2 decreased with the increase in prevalence rate
even at the higher CNRs (1.0 and 1.5). This performance may be improved if this threshold
is chosen appropriately for each prevalence rate. For these reasons, LR12 methods
developed here may be preferable to methods with free parameters.

Initial voxel reduction
Previous studies have suggested that the performance of SVM-RFE improves with initial
feature selection (De Martino et al., 2008). This is typically implemented by retaining voxels
having high-level activations. Specifically, top N′ (= 10 × discriminative voxels) voxels rank
ordered according to scoring function are retained in our analysis. We examined how the
performance of LR12 and SVM-RFE was affected by feature selection. Here we chose to
describe comparative results at 0.5% prevalence rate because at higher prevalence rates
(>0.5%) the number of voxels retained post voxel reduction are comparatively high; thereby
making the voxel reduction less effective (De Martino et al., 2008). We found that
classification accuracies (CVAs) and accuracy in feature selection improved with voxel
reduction in both LR12 and SVM-RFE, as shown in Table 1. This improvement maybe due
to the fact that the number of discriminative voxels, compared to the non-discriminative
voxels was low (prevalence rate = 0.5%) and voxel reduction step removes a large number
of non-discriminative voxels. Notably, the SVM-RFE accuracy values showed significant
improvement (Table 1B). However, the sensitivity in voxel selection achieved by LR12 after
voxel reduction is better than that of SVM-RFE1 and SVM-RFE2 after voxel reduction
(Table 1C) but at marginally higher false positives (Table 1D) for CNRs above 0.3.
Surprisingly, the sensitivity of both SVM-RFE1 and SVM-RFE2 decreased with voxel
reduction (Table 1C), although the false positive rates reduced with this step (Table 1D).
Among the SVM-RFE methods, the decrease in sensitivity of SVM-RFE1 is greater than
that of SVM-RFE2. This result is puzzling because one would expect SVM-RFE1 to achieve
higher sensitivity because of the way the discriminating weights were computed. The
reasons for this behavior of SVM-RFE1 with initial voxel reduction need to be investigated
further. In contrast, the sensitivity of LR12 improved marginally for CNRs of 0.1, 0.3 and
0.5 and remained almost the same for CNRs of 0.75, 1 and 1.5 (Table 1C) with the initial
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voxel reduction. Therefore, these results suggest that the SVM-RFE approach, unlike LR12,
is sensitive to the selection of initial voxels. Another critical limitation of this approach is
that the number of voxels to be used in the classification must be chosen on the basis of an
arbitrary threshold. However, the main objective of our study was to develop a fully
multivariate feature selection method without the need for ad hoc procedures for feature
selection. Moreover, in actual fMRI data, the number of voxels that can be discarded in such
an initial voxel reduction step is clearly not known a priori. Furthermore, the discriminating
features do not necessarily have to be the most highly strongly activated voxels.

Performance on experimental fMRI data
We applied LR12, LR12-UST, LR1 and SVM-RFE (SVM-RFE1 and SVM-RFE2) methods
to an fMRI data involving well-matched speech and music stimuli. We hypothesized that
music and speech stimuli would be distinguished by discrete but distributed structures
largely confined to the temporal and frontal lobes which have previously been implicated in
speech and music processing (Formisano et al., 2008; Friederici et al., 2003; Koelsch et al.,
2002; Levitin and Menon, 2003; Tervaniemi et al., 2006). LR12 revealed distributed clusters
in temporal and frontal lobe regions previously implicated in speech and music processing;
LR12-UST results were nearly identical to the LR12 results, with the addition of a small
number of voxels extending beyond those identified by LR12; LR1 showed a sparse pattern
with an extremely small number of discriminatory voxels; both SVM-RFE methods
exhibited very little specificity, and revealed a diffuse network of cortical and subcortical
structures underlying speech and music acoustics.

While the ground truth in this data set is not known, these classification results are
consistent with findings from our simulations. Results on both datasets demonstrate a
continuum of anatomical specificity across the four classification methods with LR1 being
the most anatomically specific and SVM-RFE methods being the most anatomically diffuse.
Furthermore, results from the LR12 and LR12-UST methods are consistent with our
knowledge of the auditory system and differential processing of speech and music stimuli as
they identified a number of key auditory structures thought to be sensitive to both acoustical
differences in the posterior temporal cortex (Formisano et al., 2008; Tervaniemi et al.,
2006), as well as areas within the anterior temporal (Humphries et al., 2005; Rogalsky and
Hickok, 2008) and prefrontal (Levitin and Menon, 2003; Tervaniemi et al., 2006) cortex
thought to be sensitive to phrase- and sentence-level processing of music and speech stimuli.
Our data suggest that methods based on LR12 and LR12-UST achieve a balance between
sparse and diffuse discriminatory classification of auditory stimuli. The LR12 algorithms
developed here are also highly computationally efficient compared to search-light
algorithms (Haynes et al., 2007; Kriegeskorte et al., 2006) that can take several days to
classify whole-brain data on a standard lab computer: analysis using the LR12 algorithm
typically takes only about 3–4 hours for a sample size of 20 subjects. The LR12-UST
algorithm is even faster and it typically takes less than an hour to classify whole-brain data.

Conclusions
We developed a new method for whole brain classification based on a combination of L1
and L2 norm regularization. Our method provides a completely data-driven and
computationally efficient approach for both accurate feature selection and classification of
whole brain fMRI data. Critically, it does not require user-specified thresholds for feature
selection as in recursive feature elimination method. In the case of fMRI data, where voxels
are spatially correlated, the combination of L1 and L2 norm regularization provides reliable
feature selection. The identification of correlated features that discriminate between the
experimental manipulations of interest is very important for the interpretability of the fMRI
classification results. More importantly, extensive simulations indicated that methods based
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on LR12 had significantly higher accuracy in feature selection than other methods for a wide
range of CNRs and feature prevalence rates. On experimental fMRI data, LR12 was more
effective in selectively isolating a distributed fronto-temporal network that distinguished
between brain regions known to be involved in speech and music processing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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MPR Multivariate Pattern Recognition Methods

CNR Contrast-to-Noise Ratio

IRWLS Iterated Readjusted Weighted Least Squares

LR1 Logistic Regression with L1 norm

LR12 Logistic Regression with L1 and L2 norm

LR12-UST LR12 with Universal Soft Thresholding

SVM-RFE Support Vector Machine with Recursive Feature Elimination
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Figure 1.
10-fold, 3-way, cross validation accuracy (CVA) obtained using LR12, LR12-UST, LR1,
SVM-RFE1 and SVM-RFE2 at different CNRs and feature prevalence rates. Chance level is
0.5. CVAs are above chance level for only CNRs of 0.5 and above. CVAs obtained by all
methods are comparable.

Ryali et al. Page 21

Neuroimage. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Accuracy of feature selection obtained using LR12, LR12-UST, LR1, SVM-RFE1 and
SVM-RFE2. LR12 has better accuracy compared to other methods for most CNRs and
feature prevalence rates.
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Figure 3.
Sensitivity of feature selection obtained using LR12, LR12-UST, LR1, SVM-RFE1, SVM-
RFE2 and univariate T-Test. LR12 has better sensitivity compared to other methods for
most CNRs (in particular for high CNRs) and feature prevalence rates. The sensitivity of
univariate T-Test (at p-value of 0.05, FDR corrected) is poor for CNRs below 0.75
compared to other methods.
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Figure 4.
False positive rates in feature selection obtained using LR12, LR12-UST, SVM-RFE1 and
SVM-RFE2. False positive rates of LR12 are lower compared to other methods for most
CNRs and prevalence rates.
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Figure 5.
Brain areas that discriminated between speech and music stimuli using LR12, LR12-UST,
LR1, SVM-RFE1 and SVM-RFE2 methods (rows A–E). Surface renderings (left and
rightmost columns) and sections are shown for each method. Note the increasing spatial
extent of brain voxels that discriminated across conditions. SVW-RFE1 was highly non-
selective in the sense that many voxels were chosen by the classifier.
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