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Abstract

Existing few-shot segmentation (FSS) only considers learning support-query
correlation and segmenting unseen categories under the precise pixel masks.
However, the cost of a large number of pixel masks during training is expen-
sive. This paper considers a more challenging scenario, weakly-supervised
few-shot segmentation (WS-FSS), which only provides category (i.e. image-
level) labels. It requires the model to learn robust support-query information
when the generated mask is inaccurate. In this work, we design a Cor-
relation Enhancement Network (CORENet) with foundation model, which
utilizes multi-information guidance to learn robust correlation. Specifically,
correlation-guided transformer (CGT) utilizes self-supervised ViT tokens to
learn robust correlation from both local and global perspectives. From the
perspective of semantic categories, the class-guided module (CGM) guides
the model to locate valuable correlations through the pre-trained CLIP.
Finally, the embedding-guided module (EGM) implicitly guides the model
to supplement the inevitable information loss during the correlation learn-
ing by the original appearance embedding and finally generates the query
mask. Extensive experiments on PASCAL-5i and COCO-20i have shown
that CORENet exhibits excellent performance compared to existing meth-
ods. Our code will be available soon after acceptance.
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(a) FSS (b) WS-FCS (c) WS-FSS

Fig. 1. Comparison between (a) few-shot segmentation (FSS) task [7], (b) weakly-
supervised few-shot classification and segmentation (WS-FCS) task [15], and (c) our
weakly-supervised few-shot segmentation (WS-FSS) task settings. (a) The FSS task re-
quires many support-query masks during training. (b) The classification and segmentation
tasks are decoupled in the WS-FCS task. It provides supervisory information on whether
images belong to the same category without providing specific category assistance for
segmentation. (c) The WS-FSS task assists the model in segmentation through specific
categories of supervised information in the presence of noise in the mask generated by the
model.

1. Introduction

Few-shot learning [1, 2, 3, 4, 5, 6] is a machine learning method that
uses very little labeled data to help the model quickly adapt to new tasks
or categories. It is crucial in applications where data collection is costly or
requires intensive annotation, such as image segmentation. Consequently,
few-shot segmentation (FSS) has been proposed and extensively studied [7,
8, 9, 10, 11, 12, 13, 14].

Existing FSS methods are typically trained based on the meta-learning
paradigm [16, 17, 18, 19, 20]. They often assume the presence of a large
amount of accurately annotated data for model training and learn the support-
query correlation by abundant support and query masks, as shown in Fig. 1a.
Likewise, during testing, several ground-truth (GT) support masks are re-
quired during the reference of the model. However, the cost of obtaining the
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segmentation masks required for these models is very expensive and cumber-
some.

Although related works [21, 22] have explored the setting of few-shot
segmentation in weakly-supervised scenarios, they are unable to generate su-
pervised masks for unseen categories during the testing phase or require ad-
ditional training in a mask generation module. CST [15] solved this problem
and proposed the weakly-supervised few-shot classification and segmentation
(WS-FCS), as shown in Fig. 1b. However, there are two issues when directly
applying it to WS-FSS tasks: firstly, it simply considers the correlation in-
formation of the support-query pair in the presence of the GT mask, which
may introduce a lot of matching noise in the case of inaccurate masks; sec-
ondly, the provided category information is whether the two images belong
to the same category, ignoring the benefits of semantic level information for
segmentation. [23] is closest to the problem setting of this paper, but it ig-
nores the exploration of robust correlation and the contribution and role of
the foundation model in the WS-FSS task. Similar to [23], this paper focuses
on a weakly-supervised few-shot segmentation (WS-FSS) scenario where the
model should learn robust support-query matching information and perform
segmentation on query images with only image-level category informa-
tion and no access to GT masks, as depicted in Fig. 1c.

To solve the WS-FSS, this paper introduces a Correlation Enhance-
ment Network (CORENet) with foundation model assistance that helps
the model learn robust correlation from multiple perspectives, even in the
presence of inaccurate masks generated by the model. Specifically, we first
design a Correlation-Guided Transformer (CGT), which takes high-quality
tokens obtained from a self-supervised Vision Transformer (ViT) [24] as in-
put. It fuses information from local and global perspectives to guide the
model in better utilizing correlation information. Therefore, CGT can be
relatively robust in the face of generated imprecise masks. Furthermore, a
well-designed self-distillation loss helps CGT generate higher-quality correla-
tion maps in the early stages. However, when the model generates inaccurate
masks, the effect of segmenting the query from the perspective of correlation
is limited. To address the above issues, the Class-Guided Module (CGM)
helps the model to roughly locate specific objects from inaccurate masks
using prior knowledge by using the provided class information. Although
existing works [25, 15] utilize category supervision information by classify-
ing support and query during FSS. They provide category information to
support and query whether the images belong to the same category (0/1 la-
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bel) without providing specific category semantic information assistance for
segmentation. By using pre-trained CLIP [26] to generate coarse attention,
CGM utilizes existing correlation features to filter out background features
unrelated to the query foreground, helping the model roughly locate valu-
able correlation information. Finally, to further reduce potential information
loss during correlation processing and implicitly guide the model in refining
matching information, we propose an Embedding-Guided Module (EGM).
EGM uses efficient tokens generated by ViT to supplement the information
of the original embeddings, resulting in the final masks.

To generate supervised masks, inspired by previous works [24, 15], the pa-
per utilizes attention maps generated by pre-trained self-supervised ViT to
create pseudo-masks. Furthermore, we leverage pixel relationships within the
image to generate more accurate pseudo-masks through the Pixel-Adaptive
Refinement (PAR) module [27], which helps the model learn robust correla-
tions from the perspective of mask enhancement. Even when encountering
unseen categories during testing, the model can provide relatively accurate
pseudo-masks. Our main contributions are summarized as follows:

• We propose a Correlation Enhancement Network (CORENet) with
foundation model assistance to guide models from multiple perspec-
tives to learn robust correlation in WS-FSS.

• We propose a Correlation-Guided Transformer (CGT) that learns to
support-query knowledge from a knowledge aggregation perspective
and apply the Pixel Adaptive Refinement (PAR) module in a few-shot
scenario for the first time.

• We propose a Class-Guided Module (CGM) and an Embedding-Guided
Module (EGM) to mine and supplement target information in correla-
tion features from category semantics and appearance embedding per-
spective.

• Our CORENet achieved state-of-the-art results compared to the latest
FSS and WS-FSS methods in two WS-FSS scenarios (i.e. PASCAL-5i

and COCO-20i).

The remainder of this paper is as follows: Section 2 reviews recent work
related to WS-FSS. Sections 3 and 4 elaborate on the entire process of our
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proposed CORENet. Then, comprehensive quantitative and qualitative re-
sults are reported in Section 5, followed by a series of ablation studies. Fi-
nally, Section 6 gives the conclusion of this work.

2. Related Work

Few-Shot Semantic Segmentation. Few-shot semantic segmenta-
tion (FSS) aims to segment new semantic objects in images, with only a
few densely labeled examples available. The current methods mainly focus
on the improvement of the meta-learning stage. They can be classified as
prototype-based methods and relational-based methods. The intuition be-
hind the prototype-based methods [28, 8, 9, 29, 30, 31, 14] is to extract repre-
sentative foreground or background prototypes from the supporting samples
using the method, and then use different strategies to interact between differ-
ent prototypes or between prototypes and query features. Relational-based
methods [10, 11, 12, 25, 15, 13] have also achieved great success in the few-
shot semantic segmentation. However, these methods only focus on learning
to support and query matching information between images under precise su-
pervision. This paper considers a more challenging weak supervision version
of FSS, which completes the segmentation of query images without providing
any mask information, only providing support images and category informa-
tion.

Weakly-Supervised Few-Shot Segmentation. Due to the severe
challenge of data scarcity, many works currently study few-shot segmentation
in a weakly-supervised environment. However, the definition of weakly su-
pervised few-shot segmentation (WS-FSS) in existing methods is still flawed
and inconsistent. WS Co-FCN [32] generated a pseudo-mask to support the
image by retaining pixels not classified as background. However, it cannot
handle supporting images that contain multiple new classes. Some methods
[21, 33] use supervision information such as bounding boxes. WRCAM [22]
requires pre-training of a mask generation module for all image categories
in advance, including test image categories that have not been seen during
the training phase, which does not follow the training paradigm of few-shot
learning during the training stage. The problem setting of CST [15] is sim-
ilar to that of this paper. However, the provided category information is
whether the two images belong to the same category and does not provide
specific category assistance for segmentation. [23] is closest to the problem
setting of this paper, but this paper focuses on exploring the contribution
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and role of the foundation model in the WS-FSS task. This paper focuses
on the few-shot segmentation in a weakly-supervised scenario, where no GT
mask information is provided at any stage. It provides category information
assistance to complete the segmentation of the query image.

3. Problem Definition

Similar to the few-shot segmentation [7, 8, 9, 10, 11, 12, 13], in order
to avoid overfitting risks caused by insufficient training data, we adopted a
widely used meta-learning method called episodic training [34]. In weakly-
supervised few-shot segmentation, we define two datasets, Dtrain and Dtest,
with category sets Ctrain and Ctest respectively, where Ctrain ∩ Ctest = ∅.
The model trained on Dtrain is directly transferred to Dtest for evaluation
and testing. We train the model in an episode manner [34]. Under the
weak-supervised setting, each episode only comprises support set S = {Is},
query set Q = {Iq}, and their corresponding category c. Unlike few-shot
segmentation, we do not provide mask information at any stage. Under the
K-shot setting, it includes the support set S = {I is}Ki=1, query set Q = {Iq}
and the corresponding category c. Training set Dtrain and test set Dtest

means Dtrain = {I is, I iq, c}
Ntrain
i=1 and Dtest = {I is, I iq, c}Ntest

i=1 , where Ntrain and
Ntest is a series of quantitative training and testing. During training, the
model iteratively samples an episode from Dtrain to generate a pseudo-mask
using limited information and to learn segmentation knowledge through the
generated pseudo-masks. During the testing, the model changed from Dtest

randomly samples {I is, I iq, c} to predict the query mask.

4. Methodology

4.1. Overview

As shown in Fig. 2, the Correlation Enhancement Network (CORENet)
is composed of three key modules, namely, correlation-guided transformer
(CGT), class-guided module (CGM), and embedded-guided module (EGM).
Precisely, we extract high-quality features through pretrained DINO ViT [24]
and calculate the correlation between the token of the supporting image pair
and the query image pair. Then, the robust cross-correlation information is
learned from the local and global perspectives through CGT. With the assis-
tance of CLIP [26], CGM uses category information to guide the generation
of a coarse attention map and filters out the irrelevant information in the
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Fig. 2. The overall architecture of our Correlation Enhancement Network (CORENet).
Firstly, the Correlation-Guided Transformer (CGT) is introduced to generate robust
correlation features using the local and global similarity calculations of ViT tokens. Then,
with the assistance of CLIP, theClass-Guided Module (CGM) transforms the category
information into coarse attention and further refines them to filter irrelevant information in
the relevant features. Meanwhile, the Embedding-Guided Module (EGM) combines
the support query appearance of each layer with the enhanced correlation features, further
reducing the potential information loss of the model in correlation-enhanced learning under
weakly-supervised settings and obtaining the final query mask.

query features through the generated cross-correlation features. To reduce
the potential information loss of the model in correlation reinforcement, we
propose EGM, which further aggregates the matching information by us-
ing the embedded information obtained from the feature graph to guide the
model to learn the matching information implicitly. Then, the model sends
the learned robust features into the segmentation header to predict the fi-
nal segmentation mask M̃q of the query image. Next, each module will be
described in detail in the following paragraphs.

4.2. Correlation-Guided Transformer

The correlation between support and query plays a crucial role in FSS.
The existing methods [12, 25, 15] help the model segment the query image on
the existing support foreground information by using the similarity between
the support and query image pixels. However, due to the lack of a GT mask,
it is not comprehensive to only consider the correlation information of this
local-to-local matching. In this paper, the correlation-guided transformer
(CGT) is proposed. From the perspective of local-to-local and local-to-global,
CGT uses the features extracted by self-supervised pretrained ViT to learn
the multi-view robust correlation information between support images and
query images.
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Fig. 3. Illustration of Multi-kernel information fusion in CGT.

Local-to-local correlation. Specifically, CGT uses DINO [24] as the
backbone of pretrained frozen ViT. It gets K-layers patch tokens fq, fs and
class tokens fq,cls, fs,cls by inputting support images and query images and
through multi-head attention. Then, we calculate the local-to-local (i.e.
pixel-to-pixel) correlation between the query and support patch tokens in
each layer and preserve the semantic diversity of the M heads of the ViT,
i.e., we calculate the M×K cosine similarities of the query to support tokens
and concatenate them along the new dimension:

Clocal =
(fq)

Tfs
||fq||||fs||

∈ RMK×hqwq×hsws , (1)

where hsws and hqwq represent the product of length and width of supports
and query images, || · || means l2 regularization.

Local-to-global correlation. From the global view, we use the support
mask to cut out the foreground and background regions from fs. Unlike the
foreground area, which is cut off as a whole area, the background area is di-
vided into N local areas because the background may not be uniform. To this
end, we use the Voronoi-based method [35, 36] to divide the background into
N different regions. Then, the global features of foreground and background
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are obtained by mask average pooling:

pf =
1

|Ms|

hsws∑
i=1

fs,iMs,i,

pb,n =
1

|Bn
s |

hsws∑
i=1

fs,iB
n
s,i,

(2)

where Ms is the pseudo-mask for support images, its generation will be in-
troduced in Section 4.5. Bn

s = 1 −Ms is the n-th background mask for the
support mask. Similar to Eq. 1, the local-to-global correlation between the
query and support token is calculated as follows:

Cf
global =

(fq)
Tpf

||fq||||pf ||
∈ RMK×hqwq×1,

Cb
global,n =

(fq)
Tpb,n

||fq||||pb,n||
∈ RMK×hqwq×N ,

(3)

where N = 5 is the number of the background. We further concatenate
the features to obtain the correlation token C0

i ∈ R(1+N+hsws)×ML, where
i ∈ [1, · · · , hqwq] is an index over the query token and L is the number of
the transformer layers. The correlation token refers to the token obtained
after feeding the correlation map into the transformer. Then following CST
[15], it takes C0

i and support mask Ms as input and returns three types of
token: foreground, background, and local correlation token through a two-
layer transformer [37]. Each transformer layer can be described as follows:

Cl′
i = LNl(MHSAl(C

l
i,Ms,i) + Cl

i),

Cl+1
i = LNl(MLPl(C

l′
l ) + Cl′

i ) ∈ RCl×hqwq×hlwl ,
(4)

where l means the transformer layer index, Cl means its dimension, and
LNl, MHSAl, MLPl correspond to a multi-head self-attention (MHSA) [37],
a group normalization [38], and a linear layer, respectively. Similar to related
works [39, 15], in each MHSA layer, the generated query is embedded into a
spatial pool, and the output size changes from hsws to 1. Then, we split the
tensor C into foreground, background, and local correlation token along the
second dimension, i.e. Cf

global,C
b
global,n,Clocal.

Fore-background fusion. After obtaining the global correlation tokens,
we propose an adaptive fusion method for different global foreground and
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background features. For different backgrounds, we select them with adaptive
weighting, which consists of a simple linear layer.

Cb
global = w1C

b
global,1 + ... + wnC

b
global,n + β, (5)

where wn means the n-th weight of the linear layer, and β means the bias.
Then, we fuse the merged background and foreground correlation features
by a convolutional layer:

Cglobal = Conv1(Cat(Cf
global,C

b
global)), (6)

where Cat(·, ·) is the concatenation operation. This method can help the
model integrate necessary support knowledge from different backgrounds and
foregrounds.

Multi-kernel information fusion. We use the multi-kernel informa-
tion fusion mechanism after obtaining the local and global features. Multi-
kernel information fusion uses different receptive field convolution kernels
to fuse the local and global correlation information, reducing the noise of
different matching information due to the lack of GT masks. We process
the features by concatenating two parts of the features, utilizing convolu-
tional kernels of different receptive fields, and helping the model learn robust
knowledge:

Ci = Convi(Cat(Clocal,Cglobal)), (7)

where Convi means the i × i convolutional operation and i ∈ {1, 3, 5, 7}.
Then, we will integrate the obtained feature knowledge of different receptive
fields:

C′ = Conv1(Cat(C1,C3,C5,C7)) + Clocal. (8)

Finally, the final correlation token is obtained through the residual con-
nection layer [40]:

Cfusion = Conv3(C
′) + C′ ∈ RC×hq×wq . (9)

Self-distillation loss. We propose a self-distillation loss for our CGT
to help the model generate higher-quality robust correlation diagrams in the
early stage. We average the feature dimensions for the correlation map of
each layer to get the correlation map Ĉ ∈ Rhq×wq , and use the high-level
correlation map to guide the low-level correlation feature map, as follows:

Ldistill =
1

L

L∑
l=1

hlwl∑
i=1

ζl(Ĉ
l+1
local,i) · log

ζl(Ĉ
l+1
local,i)

Ĉl
local,i

, (10)
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where ζl(·) is the resize function of the l-th layer, L is the number of the
layers and hlwl is the the product of length and width of the l-th layer. The
guidance of the high-level correlation graph to the low-level feature graph
helps the model retain the fine-grained segmentation quality, reduces the
impact of noise, and does not discard the context information [41], which
can help learn robust correlations.

4.3. Class-Guided Module

The knowledge learned by the model from the correlation between support
and query is limited, especially in the case of imprecise support masks in
the WS-FSS scenarios. To further assist the model in filtering potential
noise in correlation features, we use additional category information from
the perspective of category semantics to help the model locate more valuable
correlation information. Pre-trained CLIP [26] has been proven to generate
relatively coarse CAM based on category information by using Grad-CAM
[42, 43]. After large-scale pre-training, CLIP already has powerful zero-shot
learning capabilities. Even without seeing specific supervision labels during
training, CLIP is able to understand and generate output for tasks for which
it was not explicitly trained [44, 45]. This paper utilizes this to construct the
CGM that helps the model roughly locate the approximate positions of the
objects that need to be segmented.

To simplify our method, this paper will not discuss obtaining more ac-
curate masks for CLIP. Instead, we will choose a simple mask generation
method and discuss utilizing the generated coarse masks. CGM can also be
seen as a simple zero-shot method, and it does not rely on various complex
cue engineering and other zero-shot models but can still achieve satisfactory
performance.

We first input the query image and its category prompt “a photo of
[class]”, where class represents its corresponding category c, into the pre-
trained CLIP and then use Grad-CAM to obtain a coarse attention Ac. Next,
we multiply Ac by the obtained correlation token Cfusion and use FCGM to
refine the attention:

Ar = FCGM(Cfusion ⊗ ζ(Ac)) ∈ Rhq×wq , (11)

where FCGM consists of two convolutional layers and a sigmoid function, ⊗
is the Hadamard product and ζ(·) is the resize function. Finally, we combine
the features with the attention Ar to obtain filtered correlation features that
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discard irrelevant background information:

C̃ = (Cfusion ⊗Ar) ⊕Cfusion, (12)

where ⊕ stands for the element-wise sum. Combined with backpropagation,
the parameters of FCGM in CGM are updated. Therefore, the refined Ar

can focus more on the objects that need to be segmented based on the Ac

generated by CLIP. Through the coarse-to-fine training strategy, when the
model encounters unfamiliar categories, even without the precise support of
mask supervision, it can combine the powerful zero-shot capability of CLIP
to capture the approximate location of the segmented object.

4.4. Embedding-Guided Module

Towards the goal of reducing the potential information loss of the model
in correlation-enhanced learning under weakly-supervised segmentation set-
tings, we suggest embedding the original appearance of each layer obtained
from support and query feature maps into the decoder for further aggregation
to implicitly guide the model in utilizing the learned robust support-query
matching information.

First, add the features of each layer and project them:

Fs = FProj.(
K∑
k=1

fk
s ),

Fq = FProj.(
K∑
k=1

fk
q ),

(13)

where FProj. denotes 1×1 convolution and K means the layer number of the
backbone ViT. Then they are concatenated to the similarity feature C̃, and
the final prediction mask M̃q is obtained through the EGM composed of two
layers of transformers [46] and a segmentation header:

M̃q = EGM(Cat(C̃, Fs, Fq)). (14)

The original appearance information implicitly helps the model reduce
information loss in learning robust correlation. Meanwhile, the appearance
embedding information is an effective guide for filtering noise in matching
scores [47, 48, 49], while self-supervised pre-trained ViT can provide an effi-
cient multi-layer feature. It helps the model learn the relevant information
obtained in the presence of certain mismatches through embedding guidance
at each layer.
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4.5. Training Objective

Pseudo-mask. As demonstrated in previous studies [50, 24, 15], query
key attention maps can capture semantically significant foreground objects.
Inspired by this, we generate a pseudo-GT mask for dynamic queries and
image support by calculating the cross attention of the last ViT layer:

Mm
s,i =

(fm
s,i)

Tfm
q,cls

||fm
s,i||||fm

q,cls||
∈ Rhsws×1,

Mm
q,i =

(fm
q,i)

Tfm
s,cls

||fm
q,i||||fm

s,cls||
∈ Rhqwq×1,

(15)

where fm
q,cls, f

m
s,cls means m-th head query or support class token. Meanwhile,

we use the Pixel-Adaptive Refinement (PAR) module [27] to generate pseudo-
masks based on the relationship information between various pixels within
the image, generating more accurate supervision information:

Ms,i = 1(PAR(ζ(
1

M

M∑
m=1

Mm
s,i) > α)),

Mq,i = 1(PAR(ζ(
1

M

M∑
m=1

Mm
q,i) > α)),

(16)

where α = 0.4 is the prediction threshold and 1(·) is the indicator func-
tion. Unlike existing WS-FSS methods [22], our mask generation module
also applies to unseen categories without additional training stages.

Training loss. There are two parts of training loss: segmentation loss
and self-distillation loss. The segmentation loss Lseg is calculated by the final
prediction M̃q and Ms using the cross-entropy function. The self-distillation
loss is obtained from Eq. 10. The final loss is:

L = Lseg + λdistillLdistill, (17)

where λdistill is the balance parameter set to 0.5. The whole training process
for CORENet is summarized in Algorithm 1.

5. Experiments

In this section, we evaluate the proposed method, compare it with recent
state-of-the-art, and provide in-depth analyses of the results of the ablation
study.
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Algorithm 1: Training Process for CORENet.

Input: A training set Dtrain and a training category set Ctrain.
Output: The final trained model ϕ.
for each episode (S, Q) ∈ Dtrain and category c ∈ Ctrain do

Extract features by pretrained DINO ViT.
Generate the pseudo-mask using Eq.15 and 16.
# Correlation-Guided Transformer
Compute the local-to-local and local-to-global correlation using
Eq. 1, 2 and 3.

Obtain foreground, background, and local correlation tokens
using Eq. 4.

Obtain the final correlation token Cfusion using Eq. 5, 6, 7, 8
and 9.

Compute the self-distillation loss Ldistill as in Eq. 10.
# Class-Guided Module
Obtain filtered correlation feature C̃ using Eq. 11 and 12.
# Embedding-Guided Module
Predict the query mask M̃q using Eq. 13 and 14.
Compute the final loss L as in Eq. 17.
Compute gradients and optimize via SGD.

end
Return the final trained model ϕ.

5.1. Experimental Settings

Datasets. To evaluate our method, experiments are conducted on two
commonly used few-shot segmentation datasets, PASCAL-5i and COCO-20i.
PASCAL-5i is created according to PASCAL VOC 2012 [51] with additional
notes of SBD [52]. A total of 20 classes in the dataset are evenly divided into
four folds i ∈ {0, 1, 2, 3}, and each fold contains five classes. COCO-20i is
proposed by [53] and is based on MSCOCO [54]. Similar to PASCAL-5i, the
80 classes in COCO-20i are divided into four folds, and each fold contains 20
classes.

Evaluation metrics. We use union average intersection (mIoU) as our
evaluation indicators. The mood indicator averages the IoU values of all
classes in the fold: mIoU = 1

C

∑C
c=1 IoUc, where C is the number of classes in

the target fold and IoUc is the intersection on the union of class c. Because
mIoU better reflects the generalization ability and prediction quality of the
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Table 1
Performance of PASCAL-5i [51] in mIoU. The superscript ∗ indicates that the model is
trained on the pseudo-mask generated by CST [15]. Bold numbers indicate the best
performance, and underlined numbers indicate the second best.

1-shot 5-shot

Methods 50 51 52 53 mean 50 51 52 53 mean

HSNet∗ [12] 47.6 45.4 41.0 37.0 42.8 48.0 46.1 41.6 37.3 43.3

ASNet∗ [25] 49.0 44.6 43.8 35.2 43.2 50.1 45.6 45.0 35.8 44.1

MIANet∗ [13] 44.9 34.3 41.2 35.9 39.1 46.4 45.1 46.5 36.4 43.6

CST [15] 48.2 45.1 42.4 34.6 42.5 49.5 45.5 42.8 35.1 43.2

CORENet (Ours) 50.3 51.6 47.6 39.4 47.2 50.7 51.8 47.8 39.6 47.5

model, we mainly focus on mIoU in our experiments.
Implementation details. To compare with previous works based on

ResNet50 [12, 25, 13], we use the ViT-small backbone [55]. The feature
extraction backbone network conducts self-monitoring and pre-training on
ImageNet 1K [56] through DINO [24]. Following the CST [15], the reason
for choosing this ViT is that its training data size and the number of model
parameters are similar to ResNet50 [40]. It is also trained on ImageNet 1K
but uses class labels as supervision. The backbone of CLIP is ResNet101.
However, our framework based on DINO and CLIP can easily replace the
backbone network with a foundation model such as ViT-G/14 [57] with a
huge parameter amount (2.5B), which distinguishes our method from existing
methods. As in the previous works [12, 25, 15], the backbone is frozen during
training. The learning rate is initialized to 0.0005, the batch size is 16, and
the additional layer is trained using Adam [58]. The loss balance parameter
λdistill is set to 0.5, and the number of backgrounds N is set to 5. Consistent
with CST [15], our CORENet uses a 1-way 1-shot segment for training and
any N -way K-shot inference.

5.2. Comparison with State-of-the-Arts.

Due to the lack of supervision masks, the existing FSS model cannot be
directly migrated to the WS-FSS scenario. To better compare existing FSS
methods, we combine them with the mask generation method in CST [15] to
generate supervised information and guide the model in predicting the final
query mask. We label them with the superscript ∗.

PASCAL-5i. Table 1 compares mIoU performance between our method
and existing representative models. From this, it can be seen that: (i)
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Table 2
Performance of COCO-20i [53] in mIoU. The superscript ∗ indicates that the model is
trained on the pseudo-mask generated by CST [15]. Bold numbers indicate the best
performance, and underlined numbers indicate the second best.

1-shot 5-shot

Methods 200 201 202 203 mean 200 201 202 203 mean

HSNet∗ [12] 19.9 22.5 22.1 23.0 21.9 21.0 24.2 22.7 23.8 22.9

MIANet∗ [13] 20.5 22.8 21.6 22.3 21.8 21.5 23.2 21.8 22.5 22.3

CST [15] 21.0 21.9 22.4 22.5 22.0 21.3 22.1 22.7 22.6 22.1

CORENet (Ours) 22.1 22.8 22.3 23.4 22.7 22.3 24.7 22.6 24.0 23.4

Fig. 4. Qualitative results of our CORENet on PASCAL-5i and COCO-20i benchmarks.
Zoom in for details.

CORENet achieved state-of-the-art performance in both 1-shot and 5-shot
settings. Compared to the recent FSS model MIANet [13] and the weakly-
supervised classification & segmentation model CST [15], we have improved
by 8.1%, 4.7% (1-shot), and 3.9%, 4.3% (5-shot), respectively. (ii) MIANet
has performed poorly in certain situations, which holds the previous state-
of-the-art results of FSS. This is because in WS-FSS scenarios, the generated
mask contains noise, and excessive dependence on correlated features with
noise can lead to a decrease in model performance. This also confirms that
the method proposed in this paper can effectively handle scenarios with mask
noise in weakly-supervised few-shot segmentation.

COCO-20i. COCO-20i is a more challenging dataset containing mul-
tiple objects and more significant variance. Table 2 shows the performance
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Table 3
Ablation studies of main model components. Bold numbers indicate the best performance.

Baseline CGT CGM EGM PAR 1-shot 5-shot

✓ 42.5 43.2
✓ ✓ 43.1 43.9
✓ ✓ ✓ 44.0 44.7
✓ ✓ ✓ ✓ 45.1 45.8
✓ ✓ ✓ ✓ ✓ 47.2 47.5

comparison of mIoU. Overall, the mean mIoU of MIANet in the 1-shot and
5-shot settings surpasses all previous methods. Under the 1-shot setting, our
CORENet exceeded MIANet and CST by 0.9% and 0.7%. This proves the
superiority of our method despite the challenging scenarios.

Qualitative results. Fig. 4 reports quantitative results from CORENet
and baseline models based on PASCAL-5i and COCO-20i benchmark tests.
We can see that CORENet performs well in capturing object details. For
example, more subtle details are retained in segmenting dogs and cars.

5.3. Ablation Study

We conducted extensive ablation studies of PASCAL-5i to verify the ef-
fectiveness of the critical modules (CGT, CGM, and EGM) we proposed. In
addition, we provide experimental details and additional experiments in the
supplementary materials.

Components analysis. Our CORENet consists of four key components:
Correlation-Guided Transformer (CGT), Class-Guided Module (CGM), Emb-
edding-Guided Module (EGM), and Pixel-Adaptive Refinement (PAR). Ta-
ble 3 shows our validation of the effectiveness of each component. PAR
can further reduce imprecise noise in masks and achieve a performance im-
provement of 2.1% in 1-shot by fully utilizing the information of surrounding
pixels. EGM is an essential component of our model, which increases mIoU
by 1.1% in 1-shot. CGT and CGM are also indispensable. By combining all
three modules, CORENet achieves state-of-the-art performance.

Main components in CGT. CGT constructs local-to-global correla-
tions to help the model fully understand matching information. Table 4 shows
the impact of each element in CGT on model performance. “FBC” means the
fore-background concatenation, “FBF” means the fore-background fusion,
“SIF” denotes the single-kernel information fusion, and “MIF” denotes the
multi-kernel information fusion. We can see that the fusion using adaptive
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Table 4
Ablation studies of main components in CGT.
Bold numbers indicate the best performance.

FBC FBF SIF MIF 1-shot 5-shot

✓ ✓ 46.6 46.9

✓ ✓ 46.9 47.1

✓ ✓ 46.7 47.2

✓ ✓ 47.2 47.5

Table 5
Analysis of background regions in
CGT.

Background regions 1-shot

N = 4 47.0

N = 5 47.2

N = 6 47.1

N = 7 47.2

Table 6
Ablation studies of CGM.

CLIP Refinement 1-shot

46.5

✓ 46.8

✓ ✓ 47.2

Table 7
Analysis of projection dimen-
sion in EGM.

Dimension 1-shot

32 46.8

64 47.2

128 46.9

384 47.1

weights is 0.3% better than the method of directly concatenating background
features along the channel. In addition, by establishing path information be-
tween different receptive fields, the proposed multi-kernel information fusion
method is compared to the single-kernel fusion method (using only 3 × 3
convolutions), which can further reduce the impact of mismatches on the
model and achieve better performance. Through the proposed fusion mech-
anism, CGT can help the model learn more robust correlation with more
information while support mask inaccuracies.

Number of background regions for CGT. In Section 4.2, we men-
tioned that the Voronoi-based method [35, 36] helps the model learn complex
background correlation knowledge by dividing different background regions.
We further discuss the impact of this region on the final results of the model,
as shown in Table 5. It can be seen from the results in the table that the
model results are relatively robust for different numbers of regions. This
shows that our CGT can perform robust correlation modeling for different
complex background knowledge, which can help the model still learn valuable
correlation knowledge when facing the generated imprecise masks.

18



Table 8
Analysis of differences in pro-
jection operations of EGM.

Dimension 1-shot

Concatenation 46.9

Sum 47.2

Table 9
Performance differences with related methods [23]
in PASCAL-5i.

Method 1-shot 5-shot

Pixel-level meta-learner [23] 42.4 45.5

CORENet (Ours) 47.2 47.5

Refinement of CGM. In Section 4.3, we mentioned using pre-trained
CLIP [26] assisted models for segmentation by constructing CGM. We further
discuss the necessity of pre-trained CLIP and the proposed enhancement
module, as shown in Table 6. When no additional components are added, the
model directly feeds the correlation features obtained through CGT into the
EGM module. For the different approaches to fusing attention map of CLIP,
we compare the approach of simply fusing it into the original correlation
features (denoted as “CLIP”) with the approach of fusing it by designing
additional learnable refinement modules (denoted as “Refinement”). Due
to the zero-shot capability of CLIP, the performance of the model can be
improved to a certain extent when only CLIP is used to weight features. The
experimental results show that after the refinement module, the model can
better combine the knowledge provided by CLIP to help the model filter out
irrelevant background areas and achieve the best results.

Differenct backbone of CLIP in CGM. We use the GradCAM of the
pre-trained CLIP in the CGM module to generate initialization attention
maps. As shown in Fig. 5, we visualized the thermal maps obtained by
CLIP for different backbones. When using a deeper network as the backbone
of CLIP, the initial attention map obtained is visually better. A better
initial attention map can help the model focus on more critical correlation
information. Therefore, we chose ResNet101 [40] as the backbone of our
CGM module.

Projection dimension of EGM. In Section 4.4, we mentioned pro-
jecting the original feature representation onto a particular dimension and
concatenating it into the enhanced correlation features to reduce potential
information loss during enhancement. We conducted experiments on differ-
ent projection dimensions, and the results are shown in Table 7. Different
projection dimensions have little impact on the experimental results, and the
best effect is achieved when the dimension is 64.
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(a) Original image (b) ResNet50 (c) ResNet101

Fig. 5. Visualization of GradCAM obtained from different backbones of CLIP in CGM.

Differences in projection operations of EGM. In Eq. 13, we men-
tioned the operation of adding all features during the feature projection pro-
cess. A feasible alternative is to concatenate all features and feed them into
a dimensionally reduced convolutional layer. The features obtained in this
way are of the same size as those obtained by direct addition, where we note
this scheme as ”concatenation”. The comparison results of the two schemes
are shown in Table 8. It can be seen that directly adding features can obtain
better results than concatenation without the need for additional convolution
operations.

Comparison with existing similar work. It is worth noting that the
recent related work [23] also considers a similar problem setting. Different
from [23], our method focuses more on exploring the performance capabilities
of the foundation model in WS-FSS. To further demonstrate the difference
between the two methods, we compare the differences between the two meth-
ods on PASCAL-5i, and the results are shown in Table 9. It can be seen from
the results that our method can help the model perform better in the WS-
FSS scenario due to its strong generalization ability based on the foundation
model and the robustness of the proposed method.

Parameter sensitivity. For our CGT, we have designed a self-distillation
loss aid model to generate higher-quality correlation maps. We conducted
sensitivity experiments on different loss balance parameters λdistill, as shown
in Fig. 6. Under different λdistill, the mIoU variation of the model is rela-
tively robust and reaches its optimal value at 0.5. However, without using
self-distillation loss, i.e. λdistill = 0, the model performance decreases by
1.1%, further proving the advantage of our proposed loss.
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Fig. 6. Results with loss balance parameter λdistill on the 1-shot setting.

Table 10
The difference between related work and weakly-supervised few-shot segmentation.

Related task settings Difference

Few-shot semantic segmentation [7] Dependence on accurate ground-truth mask.

Weakly-supervised semantic segmentation [60] The model can only segment seen categories.

Weakly-supervised few-shot classification & segmentation [15]
The provided category information is whether the two
images belong to the same category (0/1 label) and does
not provide specific category assistance for segmentation.

5.4. Discussions

Discussions about related settings. We demonstrate the differences
between WS-FSS and related work settings in Table 10. Compared to WS-
FSS, few-shot segmentation methods [49, 13, 8, 12, 29, 28, 10] rely more
on precise ground-truth masks and learn to support and query the corre-
lation of images based on this. Due to differences in application scenar-
ios, weakly-supervised segmentation methods [59, 60, 27] cannot segment
new classes that have not been seen before. Most relevant to WS-FSS, the
weakly-supervised few-shot classification & segmentation method [15] not
only performs weakly-supervised segmentation on query images containing
unseen categories but also allows the model to output whether they belong to
the same category as the support images. However, the category supervision
information it provides is whether the query image is in the same category
as the support image. It does not provide specific category information to
assist the model in FSS.

Feature work. Compared to state-of-the-art methods on relatively sim-
ple datasets, our method has succeeded considerably. However, model perfor-
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mance can continue to improve when faced with more complex datasets (such
as COCO-20i). We will explore in the future how to better learn correlations
between more complex images. On the other hand, our random division of
background region in CGT also considers this problem. More complex corre-
lations are learned by setting a more significant background number N , and
the problem becomes part of parameter selection. In the future, we will have
a more in-depth discussion on this issue to help the model learn more robust
correlation knowledge without GT masks.

6. Conclusion

This paper proposes a framework to address the issue of requiring precise
masks for existing FSS tasks, which address weakly-supervised few-shot seg-
mentation tasks with only category information. To better mine the robust
correlation between support queries, this paper proposes that CGT calcu-
late similarity information from global and local perspectives. Then, from
the perspective of category semantics, we designed CGM to help the model
roughly locate targets using the pre-trained CLIP. In addition, the EGM
module was designed to implicitly guide the model in filtering noise in corre-
lation from the perspective of appearance embedding. Extensive experiments
have shown that our CORENet has achieved state-of-the-art results in our
weakly-supervised few-shot segmentation tasks.
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