
Highlights
An Objective Metric for Explainable AI:
How and Why to Estimate the Degree of Explainability
Francesco Sovrano,Fabio Vitali

• Presentation of a model-agnostic and deterministic metric for explainability: DoX.
• DoX is the first explainability metric based on Ordinary Language Philosophy.
• DoX can quantify Carnap’s central criteria of explication adequacy.
• Presentation of an open-source software implementation of DoX called DoXpy.
• Evaluation of DoX with two user studies and more than 190 participants.
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ABSTRACT
Explainable AI was born as a pathway to allow humans to explore and understand the inner
working of complex systems. However, establishing what is an explanation and objectively evaluating
explainability are not trivial tasks. This paper presents a new model-agnostic metric to measure the
Degree of Explainability of information in an objective way. We exploit a specific theoretical model
from Ordinary Language Philosophy called the Achinstein’s Theory of Explanations, implemented
with an algorithm relying on deep language models for knowledge graph extraction and information
retrieval. To understand whether this metric can measure explainability, we devised a few experiments
and user studies involving more than 190 participants, evaluating two realistic systems for healthcare
and finance using famous AI technology, including Artificial Neural Networks and TreeSHAP. The
results we obtained are statistically significant (with P values lower than .01), suggesting that our
proposed metric for measuring the Degree of Explainability is robust in several scenarios, and it aligns
with concrete expectations.

1. Introduction
Recent advances in Artificial Intelligence (AI) enable

computer science and engineering to create machines that
can learn from rough data, automating tasks previously
thought to be accessible only by biological intelligence.
However, these advances and results seem to come at a cost
in terms of explainability, so the most effective machine
learning techniques are, so far, not easily interpretable in
symbolic terms [17, 59].

The paradigms that address this explainability problem
fall into the so-called Explainable AI (XAI) field, which
is broadly recognized as a crucial feature for the practical
implementation of artificial intelligence models [4]. Re-
cently we are seeing a growing demand for explainability
in AI applications, motivated by the growing realization that
transparency is critical for fairness and legality.

More precisely, in the European Union (EU), we now
have several laws in force which establish obligations of
explainability based on who uses AI (e.g., public authorities,
private companies) and the degree of automation of the
decision-making process (e.g., fully or partially automated)
[10]. As a result, the EU is indirectly posing an exciting chal-
lenge to the Explainable AI (XAI) community by calling for
more transparent, user-centered, and accountable automated
decision-making systems to ensure the explainability of their
workings.

In a recent attempt to capture the “legal requirements
on explainability in machine learning”, Bibal et al. [10]
have identified four primary explainability requisites for
Business-to-Consumer and Business-to-Business. In partic-
ular, Bibal et al. assert that, for Business-to-Consumer and

∗Corresponding author
francesco.sovrano2@unibo.it (F. Sovrano); fabio.vitali@unibo.it

(F. Vitali)
ORCID(s): 0000-0002-6285-1041 (F. Sovrano); 0000-0002-7562-5203 (F.

Vitali)

Business-to-Business, explanations about a solely-automated
decision-making system should at least provide information
about:

• the main features used in a decision taken by the AI;
• all features processed by the AI;
• the specific decision taken by the AI;
• the underlying logical model followed by the AI.

Therefore, with the present paper, we want to expand further
the work of Bibal et al., trying to understand whether it is
possible to objectively quantify howmuch of the information
required by the law is explained by an AI.

In this paper, we propose a newmodel-agnostic approach
and metric to objectively evaluate explainability in a manner
mainly inspired by Ordinary Language Philosophy instead
of Cognitive Science. Our approach is based on a specific
theoretical model of explanation, called the Achinstein’s
theory of explanations, where explanations are the result of
an illocutionary (i.e., broad yet pertinent and deliberate) act
of pragmatically answering to a question. Accordingly, ex-
planations are answers to many basic questions (archetypes),
each of which sheds a different light on the concepts being
explained. As a consequence, the more (archetypal) answers
an automated decision-making system can give about the
important aspects of its explanandum1, the more it is ex-
plainable.

Therefore, we assert that it is possible to quantify the
degree of explainability of a set of texts by applying the
Achinstein-based definition of explanation proposed in [66].
Thus, drawing also from Carnap’s criteria of adequacy of
an explication [50], we frame the Degree of Explainability
(DoX) as the average explanatory illocution of information

1The word explanandum means “what is to be explained”, in Latin.
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on a set of explanandum aspects2. More precisely, we hereby
present an algorithm for measuring explainability through
pre-trained deep language models for general-purpose an-
swer retrieval (e.g., [36, 12]) applied to a particular graph
of triplets automatically extracted from text to facilitate this
type of information retrieval.

Hence, we made the following hypothesis.
Hypothesis 1. DoX scores measure explainability: a DoX
score can describe explainability, so that, given the same
explanandum, a higher DoX implies greater explainability
and a lower DoX implies smaller explainability.

To verify this hypothesis, we devised and implemented
a pipeline of algorithms called DoXpy to compute DoX
scores. We also performed a few experiments to show that
explainability changes in accordance with varying DoX
scores. Notably, the results of all our experiments clearly and
undoubtedly showed that Hypothesis 1 holds.

This paper is structured as follows. In Section 2 we
give the necessary background information to introduce
the theoretical models properly discussed subsequently (i.e.,
Achinstein’s theory), while in Section 3, we discuss existing
literature, comparing it to our proposed solution. In Section
4, we show how a metric for quantifying the degree of
explainability is possible by defining explaining as an illocu-
tionary act of question-answering and by verifying Carnap’s
criteria employing deep language models. In Section 5, we
describe our experiments, discussing the results and some
possible limitations of DoX in Section 6. Finally, we point
to future work and conclusions in Section 7.

To guarantee the reproducibility of the experiments, we
publish the source code3 of the algorithm for computing
DoX scores, as well as the code of the systems used for
the experiment, the full details of our user studies and the
complete set of data mentioned in this paper.

2. Background
This section provides some background to justify and

support the rest of the paper. Hereby we briefly summarise
several recent and less recent approaches to the theories of
explanation, with a particular focus on Achinstein’s. After
that, we discuss how Achinstein’s theory of explaining as
a question-answering process is compatible with existing
XAI literature, highlighting how profound the connection
between answering questions and explaining is in this field.
2.1. Adequacy of Explainability: Carnap’s

Criteria
In philosophy, the most important work about the cri-

teria of adequacy of explainable information is likely to be
Carnap’s [16]. Even though Carnap studies the concept of
explication rather than that of explainable information, we

2Carnap uses the term explicandum where we employ explanandum,
but, by and large, we assume the two words can be used interchangeably.
They both mean “what needs to be explained” in Latin.

3https://github.com/Francesco-Sovrano/DoXpy

assert that they share a common ground making his criteria
fitting in both cases. Explication in Carnap’s sense is the
replacement of a somewhat unclear and inexact concept, the
explicandum, by a new, clearer, and more exact concept,
the explicatum4, and this is precisely what information does
when made explainable.

Carnap’s main criteria of explication adequacy[16] are
similarity, exactness and fruitfulness5. Similaritymeans that
the explicatum should be detailed about the explicandum,
in the sense that at least many of the intended uses of
the explicandum, brought out in the clarification step, are
preserved in the explicatum. On the other hand, exactness
means that the explication should be embedded in some
sufficiently clear and exact linguistic framework, while fruit-
fulness implies that the explicatum should be useful and
usable in a variety of other good explanations (the more, the
better).

Carnap’s adequacy criteria are transversal to all the iden-
tified definitions of explainability, possessing preliminary
characteristics for any information to be adequately consid-
ered explainable. Interestingly, the property of truthfulness
(being different from exactness) is not explicitly mentioned
in Carnap’s desiderata. That is to say that explainability
and truthfulness are complementary but different, as also
discussed by [29]. An explanation is such regardless of its
truth (high-quality but ultimately false explanations exist,
especially in science). Vice versa, highly correct information
can be inferior at explaining.
2.2. Definitions of Explainability

Considering the definition of “explainability” as “the po-
tential of information to be used for explaining”, we envisage
that a proper understanding of how tomeasure explainability
must pass through a thorough definition of what constitutes
an explanation and of the act of explaining.

In 1948 Hempel and Oppenheim published their “Stud-
ies in the Logic of Explanation” [28], giving birth to what is
considered the first theory of explanations: the deductive-
nomological model. After that work, many amended, ex-
tended, or replaced this model, which came to be considered
fatally flawed [13, 60]. Several more modern and competing
theories of explanations resulted from this criticism.

Summarising our full analysis [63], the five most im-
portant theories of explanation in contemporary philosophy
are: Causal Realism, Constructive Empiricism, Ordinary
Language Philosophy, Cognitive Science, Naturalism and
Scientific Realism. Consequently, there are at least five
definitions of “explanation”, one per theory. A summary of
these definitions is shown in Table 1, highlighting that there
is no complete agreement between them on the nature of
explanations.

In particular, Hempel’s, Salmon’s (Causal Realism), and
Van Fraassen’s (Constructive Empiricism) theories frame
the act of explaining more as a locutionary act [5], whereby

4i.e., “what has been explained”, in Latin.
5Carnap also discussed another desideratum, simplicity. However, this

criterion is presented as subordinate to the others (especially exactness).
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Table 1
Philosophical definitions of explanation and explainable information. In this table, we summarise the definitions of explanation
and explainable information for each one of the identified theories of explanations.

Theory Explanations Explainable Information
Causal Realism [60] Descriptions of causality, expressed as chains of causes and

effects.
What can fully describe causality.

Constructive Empiricism
[24]

Contrastive information that answers why questions, allowing one
to calculate the probability of a particular event relative to a set
of (possibly subjective) background assumptions.

What provides answers to contrastive
why questions.

Ordinary Language
Philosophy [1]

Answers to questions (not just why ones) given with the explicit
intent of producing understanding in someone, i.e., the result of
an illocutionary act.

What can be used to pertinently an-
swer questions about relevant aspects
with illocutionary force.

Cognitive Science [31] Mental representations resulting from a cognitive activity. They
are information which fixes failures in someone’s mental model.

What can have a perlocutionary ef-
fect, fixing failures in someone’s mental
model.

Naturalism and Scientific
Realism [61]

Information which increases the coherence of someone’s belief
system, resulting from an iterative process of confirmation of
truths aimed at improving understanding.

What can have a perlocutionary effect,
increasing coherence of someone’s be-
lief system.

an explanation is such because it utters something. Differ-
ently, Achinstein’s theory (from Ordinary Language Philos-
ophy) explicitly frames explaining as an illocutionary act
[5] so that an explanation is such because of the intention
to explain. The theories of Holland (Cognitive Science) and
Sellars (Naturalism/Scientific Realism), on the other hand,
frame explaining more as a perlocutionary act [5], thus with
an explanation being such because of the effects it produces
in the interlocutor.

Notably, we notice that whenever explaining is consid-
ered to be an act that has to satisfy someone’s needs, then
explainability differs from explaining. In fact, in this context,
pragmatically satisfying someone (i.e., user-centrality) is
achieved when explanations are tailored to a specific person
so that the same explainable information can be presented
and re-elaborated differently across different individuals. It
follows that in each philosophical tradition except Salmon’s
Causal Realism [60], we have a definition of “explainable
information” that slightly differs from that of “explanation”,
as described in [63]. For example, in Ordinary Language
Philosophy explainable information can be understood as
“what can be used to pertinently answer questions about
relevant aspects, in an illocutionary way”.
2.3. Explainability According to Ordinary

Language Philosophy
According to Achinstein’s theory, explanations result

from an illocutionary act of pragmatically answering a ques-
tion. In particular, it means that there is a subtle and essential
difference between simply “answering to questions” and
“explaining”, and this difference is illocution.

It appears that an illocutionary act results from a clear
intent of achieving the goal of such act, as a promise being
“what it is” just because of the intent of maintaining it. So
that illocution in explaining makes an explanation as such
just because it is the result of an underlying and proper intent
of explaining.

Despite this definition, illocution seems too abstract to
implement inside an actual software application. Nonethe-
less, recent efforts towards the automated generation of
explanations [64, 66], have shown that it may be possible to
define illocution in a more “computer-friendly” way. Indeed,
as stated in [66], illocution in explaining involves informed
and pertinent answers not just to the main question but also
to other questions of various kinds, even unrelated to causal-
ity that are relevant to the explanations. These questions can
be understood as instances of archetypes such as why, why not,
how, what for, what if, what, who, when, where, how much, etc.
Definition 1 (Archetypal Question). An archetypal ques-
tion is an archetype applied to a specific aspect of the
explanandum. Examples of archetypes are the interrogative
particles (e.g., why, how, what, who, when, where), or their
derivatives (e.g., why not, what for, what if, how much), or
also more complex interrogative formulas (e.g., what reason,
what cause, what effect). Accordingly, the same archetypal
question may be rewritten in several different ways, as
“why” can be rewritten in “what is the reason” or “what
is the cause”.

Thus, archetypal questions provide generic explanations
on a specific aspect of the explanandum in a given in-
formative context, which can precisely link the content to
the informative goal of the person asking the question. For
example, if the explanandum were “heart diseases”, there
would bemany aspects involved, including “heart”, “stroke”,
“vessels”, “diseases”, “angina”, “symptoms”. Some archety-
pal questions, in this case, are “What is angina?” or “Why a
stroke?”.
2.4. Explainable AI and Question Answering

Suppose we assume that the interpretation of Achin-
stein’s theory of explanations given by [66] is correct. In
that case, data or processes are said to be explainable when
their informative content can adequately answer archetypal
questions.

F. Sovrano et al.: Preprint submitted to Elsevier Page 3 of 23
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The idea of answering questions as explaining is not new
to the field of XAI [41], and it is also compatible with our
intuition of what constitutes an explanation. It is common to
many works in the field [57, 42, 46, 25, 21, 73, 55, 34, 44]
the use of generic (e.g., why, who, how, when) or more punctual
questions to clearly define and describe the characteristics of
explainability [41].

For example, Lundberg et al. [43] assert that the local
explanations produced by their TreeSHAP (an additive fea-
ture attribution method for feature importance) may “help
human experts understand why the model made a specific
recommendation for high-risk decisions”. On the other hand,
Dhurandhar et al. [21] clearly state that they designed CEM
(a method for the generation of counterfactuals and other
contrastive explanations) to answer the question “why is
input x classified in class y?”. Furthermore, Rebanal et al.
[55] propose and studies an interactive approach where
explaining is defined in terms of answering why, what and how

questions. These are just some examples, among many, of
how Achinstein’s theory of explanations is already implicit
in existing XAI literature. They highlight how deep the
connection between answering questions and explaining is
in this field.

Nonetheless, despite the compatibility, practically none
of the works in XAI explicitly mentions any theory from Or-
dinary Language Philosophy, preferring to refer to Cognitive
Science [46, 30] instead. This is probably because Achin-
stein’s illocutionary theory of explanations is challenging to
implement into software by being utterly pragmatic. User-
orientedness is challenging and sometimes not connected
to the primary goal of XAI: “opening the black box” (e.g.,
understanding how and why an opaque AI model works).

3. Related Work
Measuring the quality of explanations and XAI tools

is pivotal for claiming technological advancements, under-
standing existing limitations, developing better solutions,
and delivering XAI that can go into production. Not sur-
prisingly, every good paper proposing a new XAI algo-
rithm comes with evidence and experiments backing up
their claims and none other, usually relying on ad hoc or
subjective mechanisms for measuring the quality of their ex-
plainability. This makes it very hard to perform meaningful
comparisons.

In other words, as also suggested by literature reviews
(e.g., [71], and especially [63], which reports in Table 2 its
main results), it is common to encounter explainability met-
rics that work only with a specific XAI model or prove their
usefulness by collecting human-generated opinions/results
after interacting with the studied system and no other.

For example, the metrics proposed in [3, 58, 72, 49, 39,
37] can only be used with specific types of XAI approaches
(e.g., prototype selection or feature attribution). Instead, the
metrics proposed in [30, 32, 22] rely on user studies, as

6This table extends a similar one in [63].

many other works [64, 48, 74, 70, 15, 52], based on classical
usability metrics (i.e., effectiveness, efficiency, satisfaction).

Only one work among those examined, [30], claims its
proposed metric is model-agnostic and thus generic enough
to be compatible with any XAI. In particular, this is possible
because the work measures explainability indirectly by esti-
mating the effects of explanations on human subjects. More
precisely, [30] is mainly inspired by the interpretation of ex-
planations given by Cognitive Science, requiring measuring:
i) the subjective goodness of explanations; ii) whether users
are satisfied by explanations; iii) how well users understand
the AI systems; iv) how curiosity motivates the search for
explanations; v) whether the user’s trust and reliance on the
AI are appropriate; vi) how the human-XAI work system
performs.

Indeed, the metric presented in [30] is non-deterministic
and heavily relies on subjective measurements, despite being
model-agnostic. The metric we propose here, DoX, is ob-
jective, deterministic, and model-agnostic7. It can be used
to evaluate the explainability of any textual information
and to understand whether the amount of explainability is
objectively poor, even if the explanations are perceived as
satisfactory and sound by the explainees.

Furthermore, only DoX and [39] appear to measure all
threemainCarnap’s desiderata.More specifically, Lakkaraju
et al. [39] evaluate Carnap’s criteria separately, while with
DoX, we propose a single metric that combines all of them.

Finally, as suggested in [63], all existing explainabil-
ity metrics can be aligned to different interpretations of
explainability coming from complementary theories of ex-
planations. As shown in Table 2, most of these metrics
seem aligned with Causal Realism and Cognitive Science. In
contrast, DoX is the first metric based onOrdinary Language
Philosophy.

4. Degrees of Explanation (DoX)
In Section 3, we discussed how existing metrics for

measuring (properties of) explainability are frequently either
model-specific or subjective, raising the question of whether
it is possible to measure the degree of explainability with
fully automated software objectively. With this paper, we
try to answer this question by leveraging on an extension of
Achinstein’s theory of explanations as proposed in [66] and
summarized in Section 2.3. We do it by asserting that any
algorithm for measuring the degree of explainability must
pass through a thorough definition of what constitutes ex-
plainability and explanation. Considering that explainability
is fundamentally the ability to explain, it is clear that a proper
definition of it requires a precise understanding of what is
explaining.

In this section, we discuss the theory behind DoX and a
concrete implementation to measure DoX in practice.

7DoX is model-agnostic only under the assumption that any explana-
tion or bit of explainable information can be represented or described in
natural language, e.g., English.
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Table 2
Comparison of Different Explainability Metrics6: The column “Sources” points to referenced papers, while column “Metrics”
points to the names of the metrics. Elements in bold are column-by-column better than the rest.

Source Model & Infor-
mation Format

Closest Supporting The-
ory

Subject
- based

Measured Car-
nap’s Criteria

Metrics

[58] Rule-based Causal Realism No Exactness,
Fruitfulness

Performance Difference,
Number of Rules,
Number of Features, Stability

[72] Rule-based Causal Realism No Similarity,
Fruitfulness

Fidelity,
Completeness

[49] Feature Attribu-
tion

Causal Realism No Exactness,
Fruitfulness

Monotonicity, Non-sensitivity,
Effective Complexity

[39] Rule-based Causal Realism No
Similarity,
Exactness,
Fruitfulness

Fidelity, Unambiguity,
Interpretability, Interactivity

[32] Any
Causal Realism,
Cognitive Science,
Naturalism & Co.

Yes
Exactness,
Fruitfulness System Causability Scale

[30] Any Cognitive Science,
Naturalism & Co. Yes

Exactness,
Fruitfulness

Satisfaction, Trust,
Mental Models,
Curiosity, Performance

[22, 64, 48,
74, 70, 15, 52]

Any Cognitive Science,
Naturalism & Co. Yes

Exactness,
Fruitfulness

Usability: Effectiveness,
Efficiency, Satisfaction

[3] Heatmap Constructive Empiricism No Similarity,
Exactness

Relevance Mass Accuracy,
Relevance Rank Accuracy

[37] Prototype-based Constructive Empiricism No Exactness
Proximity, Sparsity,
Adequacy (Coverage)

[49] Prototype-based Constructive Empiricism No Similarity,
Fruitfulness

Non-Representativeness,
Diversity

This Paper Any (Natural
Language Text)

Ordinary Language
Philosophy No

Similarity,
Exactness,
Fruitfulness

Degree of Explainability

4.1. Quantifying the Degree of Explainability
As discussed in Section 2.4, the informative contents of

state-of-the-art XAI are clearly polarised towards answering
why, what if or how questions. Considering that why, what if,
and how are different questions pointing to different types of
information, which type is the best one? We assert that the
correct answer to this question is: “none”. Depending on the
needs of the explainees, their background knowledge, the
context, and potentially many other factors, each archetype
may be equally important.

In other words, depending on the characteristics of the
explainee (e.g., background knowledge, objectives, context),
a combination of different XAI mechanisms may be nec-
essary to obtain a minimum understanding of the internal
logic of a black-box AI. Therefore, knowing the types of
explainability covered by a system using XAI can be of the
utmost importance in understanding how explainable it is.
Hence, following this intuition, we started to study how to
measure explainability in terms of (generic) questions.

Among the different approaches mentioned in Section
2.2, the closest one to our intuition of explainability is prob-
ably Achinstein’s theory, coming from Ordinary Language
Philosophy. Achinstein defines the act of explaining as an

act of illocutionary question-answering, stating that explain-
ing is more than answering a question because it requires
some form of illocution. Nonetheless, without a precise and
computer-friendly definition of illocution, it is hard to go
further than a philosophical and abstract understanding of
such a concept. For this reason, as discussed in Section
2.3, [64] suggested that illocution (or, better, explanatory
illocution) is, in fact, the process of answering multiple
generic and primitive questions (e.g., why, how, what) called
archetypal questions.

For example, if someone is asking “How are you do-
ing?”, an answer like “I am good” would not be considered
an explanation. Differently, the answer “I am happy because
I just got a paper accepted at this important venue, and
[...]” would instead be normally considered an explanation
because it answers other archetypal questions together with
the main question.

We are convinced that, under these premises, we can
concretely measure the degree of explainability of infor-
mation quantitatively. More precisely, we propose that the
degree of explainability of the information depends on the
number of archetypal questions to which it can adequately

F. Sovrano et al.: Preprint submitted to Elsevier Page 5 of 23
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answer. In other words, we estimate the degree of explain-
ability of a piece of information by measuring its relevance
to answering a (pre-defined) set of archetypal questions.

Therefore, our theoretical contribution, set out in the
following subsections, consists of the precise and formal
definition of: cumulative pertinence, explanatory illocution,
Degree of Explainability (DoX), and average DoX.We will
first provide formal definitions and then explain them further
with some examples.
4.1.1. Cumulative Pertinence, Explanatory Illocution

and DoX
Assuming the correctness of a given piece of informa-

tion, explainability is a property of that information. Ex-
plainability can be measured in terms of explanatory illo-
cution. In order to understand what explanatory illocution
is, we have to define the concept of cumulative pertinence
first.
Definition 2 (Cumulative Pertinence). The cumulative per-
tinence is an estimate of how pertinently and how in detail
a given piece of information Φ can answer a question about
an aspect a of an explanandumΔ. LetA be the set of relevant
aspects to be explained about Δ. Let Da be the subset
of all the details (e.g., sentences, grammatical clauses8,
paragraphs) in Φ that are about an aspect a ∈ A. Let qa
be a question about an aspect a ∈ A. Let p

(

d, qa
)

∈ [0, 1]
be the pertinence of a detail d ∈ Da to qa. Let also t be a
pertinence threshold in the [0, 1] range. Then, the cumulative
pertinence of Da to qa is PDa,qa =

∑

d∈Da,p(d,qa)≥t p
(

d, qa
)

.

Definition 3 (Explanatory Illocution - Formal Definition).
The explanatory illocution is a set of cumulative pertinences
for a pre-defined set of archetypal questions. Let Q be a set
of archetypes q and qa be the question obtained by applying
the archetype q to an aspect a ∈ A. Then the explanatory
illocution of Φ to an aspect a ∈ A is the set of tuples
{∀q ∈ Q| < q, PDa,qa >}

9.

Consequently, we define DoX as follows.
Definition 4 (Degree of Explainability). DoX is the aver-
age explanatory illocution per archetype, on the whole set
A of relevant aspects to be explained. In other terms, let
RD,q,A =

∑

a∈A PDa,qa
|A| be the average cumulative pertinence

ofD to q and A, whereD = {∀a ∈ A,∀d ∈ Da|d}, then the
DoX is the set {∀q ∈ Q| < q,RD,q,A >}.

However, DoX alone cannot help in judging whether
some collections of information have higher degrees of
explainability than others. This is because DoX is a set, and
sets are not sortable. Thus we combine the set of pertinence
scores composing DoX into a single score representing
explainability, called average DoX. So, the resulting average

8A typical clause consists of a subject and a syntactic predicate, the
latter typically a verb phrase composed of a verb with any objects and other
modifiers.

9The operator < x, y > is used here to represent tuples.

DoX can act as a metric to judge whether the explainability
of a system is greater than, equal to, or lower than another.
Definition 5 (Average Degree of Explainability). The Av-
erage DoX is the average of the pertinence of each archetype
composing the DoX. In other terms, the Average DoX is
∑

q∈Q RD,q,A
|Q| .

The average DoX represents a naive approach to quantify
explainability with a single score, as it implies that all
the archetypal questions and aspects have the same weight.
However, this may not necessarily be true. As suggested by
Liao et al. [41], it seems that there is a shared understand-
ing that why explanations are the most important in XAI,
sometimes followed by how, what for, what if and, possibly,
what. In other words, the relevance of an explanation can
be estimated by the ability to effectively answer the most
relevant (archetypal) questions for the stakeholders’ objec-
tives. Nonetheless, defining which (archetypal) question is
the most relevant is challenging and somewhat subjective.
Therefore we believe that average DoX is probably the only
objective solution to this dispute.

We will now discuss some examples of applying the
formulas mentioned earlier. We will also demonstrate how
these formulas can measure Carnap’s adequacy criteria.
4.1.2. Interpreting DoX in Terms of Carnap’s Criteria

Suppose the sentence “I am happy that my article has
been accepted in this prestigious journal” is given as Φ and
the set of relevant aspects {heart, stroke, vessel, disease,
angina, symptom} as A. In this case, the set of details D
contains the following details:

• “I am happy”;
• “my article has been accepted in this prestigious jour-

nal”;
• “I am happy that my article has been accepted”.

However, none of the details above is about the explanan-
dum. Thus Da = ∅,∀a ∈ A, because nothing in Φ is related
to A. Hence, the average cumulative pertinence would be
equal to 0 for every archetype q ∈ Q, forcing the DoX
score to be equal to 0, as expected. In other words, no
detail of Φ would explain anything about A. Therefore the
explainability of Φ for A would be zero.

On the contrary, we would not have a null DoX for A
when using the sentence “angina happens when some part of
your heart does not get enough oxygen” asΦ. That is because
the newΦ contains details about at least two relevant aspects
in A: “angina”, “heart”. Such details would score a higher
average cumulative pertinence RD,q,A for q equal to why

because they are about causality.
Eventually, when computing the DoX of the new Φ for

this set of explanandum aspectsAwith the DoXpy algorithm
presented in Section 4.210, the average DoX is 0.29. In

10When using the MiniLM pertinence estimator introduced in Section
4.2.2.
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particular, as expected, the archetypes with the best score
are the ones related to causality (i.e., what effect has a score
of 0.59; in what case, why and how have a score of 0.57). In
contrast, most of the other archetypes have a null score (i.e.,
who, when).

Given Definition 4, we can say that DoX is an estimate
of the fruitfulness ofD that combines in one single score the
similarity of D to A and the exactness of D for Q. For these
reasons, DoX is akin to Carnap’s central criteria of adequacy
of explanation (introduced in Section 2.1). Although, dif-
ferently from Carnap, our understanding of exactness is not
that of adherence to standards of formal concept formation11
[14], but rather that of being precise or pertinent enough as
an answer to a given question.

The number of relevant explanandum aspects covered
by a given piece of information, and the number of details
that are pertinent about it (i.e., |{∀a ∈ A,∀d ∈ Da|d}|),roughly say how much similar that information is to the
explanandum. More precisely, the formula used for comput-
ing the cumulative pertinence PDa,qa sums the contribution
of every single detail according to its pertinence to the
aspects a ∈ A, telling us how much Da is similar to a.
Thus, if pertinence p

(

d, qa
) would close to zero for all

archetypes q ∈ Q, then a detail d would have nothing to
do with an aspect a. Furthermore, the average cumulative
pertinence RD,q,A contains information about the exactness
of multiple answers, aggregating pertinence scores. As a
result, by measuring RD,q,A for all the q ∈ Q, we also
obtain an estimate of howD is fruitful for the formulation of
many other different explanations intended as the result of
an illocutionary act of pragmatically answering questions.

This construction of DoX in terms of Carnap’s main cri-
teria (cf. Section 2.1) of adequacy is crucial because it allows
implementing an actual algorithm to quantify explainability
as shown by the experimental results presented in Section 5.
4.2. The DoXpy Algorithm

Throughout this section, we will explain why and how to
use existing algorithms for answer retrieval and information
extraction to implement DoXpy, an algorithm for computing
DoX.We publish the DoXpy source code at https://github.
com/Francesco-Sovrano/DoXpy for reproducibility purposes.

Given Definition 4, we argue that it is possible to write
an algorithm that can approximately quantify the Degree
of Explainability of information representable with natural
language (e.g., English) by adapting existing technology for
question-answering. In particular, according to Definition 3,
in order to implement an algorithm capable of computing the
(average) DoX of Φ, we need to:

• define a set A of explanandum aspects;
• identify the set of all possible archetypes Q;
• define a mechanism to identify the set D of details

contained in Φ and the subset Da for every a ∈ A;
11Actually, Carnap did not specify what he means by “exactness”.

Regardless, in this context, “exactness” is often viewed as either lack of
vagueness or adherence to standards of formal concept formation.

• define the question-answering process: the function p
to compute the pertinence of an individual detail d to
an archetypal question qa.

Interestingly, the set of aspectsA is task-dependent and must
be defined for each explanandum (e.g., manually listing all
aspects or automatically extracting the list of aspects from
a textual description of the explanation with a tokenizer).
Instead, the set of archetypes Q, the pertinence function p,
and the mechanism for extracting D and Da from Φ may
always be the same for all explananda. Specifically, the set
A of explanandum aspects is a collection of (lemmatized)
words, and it can be different from the set I of aspects
explained by Φ. What is of utmost importance for a Φ to
be a good explanandum support material is that A ⊆ I .
4.2.1. Details Extraction and Pertinence Estimation

Definition 4 requires a mechanism to identify the set D
of details contained in the explanandum support materialΦ,
as well as a mechanism to identify the sub-sets Da ⊆ D for
every a ∈ A.

A detail d is a snippet of text with some specific charac-
teristics, also called information unit. It is a relatively small
sequence of words about one or more aspects (i.e., a sub-
set of I) that is usually extracted from a more complex
information bundle (i.e., a paragraph, a sentence). In other
terms, these details should carry enough information to
describe different parts of an aspect (possibly connected to
many other aspects). So we can use them to answer some
(archetypal) questions about an a ∈ A and to correctly
estimate a level of detail, as required by Definition 4.

Considering the characteristics of D and I mentioned
above, their most natural representation is a (knowledge)
graph. A graph is a set of nodes (i.e., I) connected by a set
of edges (i.e., D). Therefore, we believe that the simplest
way to identify the set of detailsD may be to extract a graph
of information units from Φ on which efficient question-
answering could be performed.

The task of answering questions using an extensive
collection of documents about diverse topics or from dif-
ferent domains is called open-domain question-answering
[18, 33]. There are at least three main software architectures
for open-domain question-answering: the retriever-reader
architecture, the retriever-generator, and the generator-only
architecture. The first two architectures combine informa-
tion retrieval techniques and neural reading comprehension
or text generation models. In particular, the latter does
not involve classical information retrieval, thus being com-
pletely end-to-end. A famous example of generator-only
architecture could be OpenAI’s ChatGPT, an adaptive and
intelligent dialogue system. This type of question-answering
algorithm usually relies on huge (i.e., with hundreds of
billions of parameters) deep neural networks trained in an
unsupervised manner to memorize facts and in a supervised
manner to answer questions in a meaningful and coherent
way. Even though generator-only architectures are capable
of impressive results, they tend to write plausible-sounding
but incorrect or nonsensical answers. One of the reasons for
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this problem is that this type of architecture is fully end-to-
end and needs to perform fact-checking.

On the other hand, the retriever-generator and retriever-
reader architectures circumvent the latter problem by re-
lying on a system capable of retrieving plausible answers
from a knowledge base (or graph) of verified contents. The
retriever-reader and retriever-generator models usually have
an asymptotic time complexity that grows linearly with the
number of answers considered for retrieval. That number
does not necessarily has to be equal to the number of all
the retrievable texts. In other words, the time complexity of
the answer retrieval system can be intelligently controlled
by making it fit the memory and time constraints of a
personal computer, e.g., by filtering out all texts unrelated to
a question. In particular, the retriever-generator rewrites and
reprocesses the retrieved information, while the retriever-
reader limits itself to extracting it (as it is) and reclassifying
it properly. While the retriever-generator may still slightly
suffer from the problem of generating hallucinated answers,
the retriever-reader does not, at the cost of producing less
cohesive answers.

For example, a retriever-reader like the one used in [64,
62] for (archetypal) question-answering could be suitable for
DoXpy, allowing the identification of meaningful informa-
tion units and also suggesting a mechanism for estimating
pertinence by extracting fromΦ a graph ofD and I designed
for answer retrieval. Indeed, the aforementioned answer
retrieval algorithm consists of a pipeline of AI tools for the
extraction fromΦ of a graph ofD and I specifically designed
to measure the pertinence of D to a set of (archetypal)
questions Q on A.

More specifically, this graph is extracted by detecting,
with a dependency parser, all the clauses within the ex-
planandum support material that stand as an edge of the
graph. In practice, these clauses are represented as special
triplets of subjects, templates, and objects called template-
triplets. Specifically, the templates are composed of the
ordered sequence of tokens connecting a subject and an
object. On the other hand, the subject and the object are
represented in these templates by the placeholders “{subj}”
and “{obj}”. An example of template-triple is:

• Subject: “angina pectoris”

• Template: “In particular, {subj} happens when some
part of your heart does not get enough {obj}.”

• Object: “oxygen”
Hence, the resulting template-triplets are a sort of func-

tion where the predicate is the body, and the object and
subject are the parameters. Obtaining a natural language
representation (i.e., a detail d ∈ D) of these template-triplets
is straightforward by design by replacing the instances of
the parameters in the body. This natural representation is
then used as a possible answer for retrieval by measuring the
(cosine) similarity (or pertinence p) between its embedding
(obtained through deep language models such as [26, 36])
and the embedding of a question q.

Notably, as information units, Sovrano and Vitali [64,
62] use grammatical clauses (meaningful decompositions
of grammatical dependency trees) to ensure that the units
represent the smallest granularity of information.

As a consequence, using this type of information units
for DoX guarantees:

• a disentanglement of complex information bundles
into the most simple units, to correctly estimate the
level of detail covered by the information pieces, as
per Definition 4;

• a better identification of duplicated units scattered
throughout the information pieces, to avoid an over-
estimation of the level of detail.

All these properties satisfy the requirements that a good
detail d ∈ D should possess for generating a DoX score.
This motivates our decision to use the answer retrieval
algorithm of [64, 62] as the main component of the DoXpy
pipeline.

Figure 1: Flow Diagram of the Answer Retriever used in the
pipeline of DoXpy. This figure summarises the answer retrieval
algorithm used by DoXpy. A question qa is given as input to the
retriever together with a set of details Da. Then, the details in
Da and qa are embedded, and their cosine similarity (�) is used
to rank details according to their pertinence to the question.

As shown in Figure 1, the retriever-reader used by
DoXpy relies on mechanisms for embedding questions and
answers in dense numerical representations so that the
cosine similarity between the embedding of a question and
an answer is a measure of the latter’s relevance to the former.

In particular, these embeddings can be obtained (for
example) through deep neural networks (i.e., the pertinence
function p) specialized in answer retrieval and pre-trained
on ordinary English to associate similar vectorial represen-
tations to a question and its correct answers. Examples of
these pre-trained deep language models are discussed in the
following subsection.

More specifically, let a be the explanandum aspect of
a question qa, and m =< s, t, o > be a template-triplet,
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Figure 2: DoXpy Pipeline. The pipeline starts with extracting a graph from the explanandum support material Φ that is then
converted into a set of details D. The set of details is then used in combination with the explanandum A and the set of archetypes
Q to compute the DoX. To do this, we use some deep language models for answer retrieval.

and d = t(s, o) be the natural language representation of
m also called information unit, and z the context (i.e., a
paragraph, a sentence) from which m was extracted. DoXpy
performs answer retrieval by retrieving the set Da of all thetemplate-triplets about a and selecting amongst the natural
language representations d of the retrieved template-triplets
that are likely to be an answer to qa. The probability that
d pertinently answers qa can be estimated as the similarity
between the embedding of d+z (i.e., d concatenated with z)
and the embedding of qa. So that if d + z is similar enough
to qa, then z is said to be an answer to qa for information
unit d. Therefore, in practice, the algorithm can retrieve an
unbounded number of details (i.e., answers).

In particular, a detail is said to be redundant (i.e., du-
plicated) whenever it contains information that answers an
archetypal question qa ∈ Q in a manner too similar to that
of other (more pertinent) details. For example, the detail “P
is the probability of having a heart disease” is different but
similar to “the score P is the probability of having a disease”.
However, the former detail is more precise (it speaks of heart
disease instead of generic diseases) and relevant than the
latter in answering the archetypal question “What is prob-
ability P?”. Therefore, the second detail must be discarded
as redundant to prevent DoXpy from considering two details
that express the same information differently. To do this,
DoXpy uses the same deep neural networks used for retrieval
to compute the similarity between two answers, discarding
those with the lowest relevance scores that share a similarity
greater than a threshold r.

Consequently, as shown in Figure 2, the pipeline of
DoXpy consists of the following four steps. First, a knowl-
edge graph is extracted from the explanandum support ma-
terial Φ using the algorithm described in [62], thus defining
the set of detailsD and the set of known aspects I . Secondly,
a given set of explanandum aspects A and archetypes Q is
used to generate a set of questions qa for each a ∈ A and
q ∈ Q and to identify allDa ⊆ D. Third, the answer retriever
of [64, 62] is used to associate a pertinence score with each
d ∈ Da for each qa and (importantly) to identify and filter
out duplicate answers. Fourth, the formulas in Section 4.1
are used to aggregate the relevance scores and estimate the
(average) DoX without considering duplicate details.
4.2.2. Pertinence Functions and Thresholds

According to Definition 4, we need to define a pertinence
function p and pick a threshold t to compute the DoX. As
previously discussed, we will use as pertinence function
p a deep neural network for answer retrieval. The point
is that many different deep neural networks exist for this
task, i.e., [26, 62, 36], and each one of them has different
characteristics producing different pertinence scores. So,
which model is the right one for computing the DoX? Can
we use any model?

To answer these questions, we decided to study the be-
havior of more than one deep language model as pertinence
function p. Assuming that these models get good results on
state-of-the-art benchmarks for pertinence estimation, we
believe that the results of the computation of DoX should
be consistent across them. Hence the models we considered
are:
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• MiniLM: published by [36, 56] and trained on Natural
Questions [38], TriviaQA [35], WebQuestions [8],
and CuratedTREC [7].

• Multilingual Universal Sentence Encoder: published
by [76] and trained on the Stanford Natural Language
Inference corpus [12].

We experimentally found on the two systems presented
in Section 5.1 that for both the aforementioned language
models, a good pertinence threshold can be t = 0.15.
4.2.3. Archetypal Questions

According to Definition 4, we need to define a set of
archetypal questions Q to compute the explanatory illocu-
tion of a snippet of text correctly. According to Definition
1, an archetypal question is a generic question characterized
by one or more interrogative formulas. Casting the seman-
tic annotations of individual propositions as narrating an
archetypal question-answer pair recently gained increasing
attention in computational linguistics [27, 23, 45, 54], es-
pecially in discourse theory and the theory of sentential
meaning representations.

On the one hand, discourse theory is a branch of lin-
guistics that studies how coherence and cohesion make up
a text to form a discourse. So that discourse is said to be
coherent if all of its pieces belong together, while it is said
to be cohesive if its elements have some common thread.
In recent years, many different discourse models have been
spelled out, each with different pros and cons. Amongst
them, we cite the model of the Penn Discourse TreeBank
(PDTB for short) [47, 53, 75] because it is considered one
of the most generic models of discourse. In fact, with little
or no change in the model, PDTB appears to be usable for
representing discourses of natural languages belonging to
different families [77], e.g., Chinese, Arabic, Hindi.

The central assumption behind PDTB is that “the mean-
ing and coherence of a discourse result partly from how its
constituents relate to each other”. Specifically, these rela-
tions between constituents, called discourse relations, are
defined as semantic relations between abstract objects, called
elementary discourse units, connected by implicit or explicit
connectives, e.g., “but”, “then”, “for example”, “although”.
In PDTB, elementary discourse units are spans of text de-
noting a single event serving as a complete and distinct unit
of information that the surrounding discourse may connect
to [69]. What is of interest to us is that according to Pyatkin
et al. [54], all discourse connectives can be represented as
questions: in what manner, what is the reason, what is the

result, after what,what is an example, while what, in what

case,since when, what is contrasted with, before what,

despite what, what is an alternative,unless what,instead

of what, what is similar, except when, until when.

On the other hand, the theories of sentential meaning
representation are grammatical theories that study the rela-
tionships between predicates and arguments in a sentence. In
particular, predicate-argument relationships support answer-
ing basic questions such as who did what to whom, and they

can be captured with models to separate a sentence’s mean-
ing from its syntactic representation. Amongst these models,
we mention the theory of abstract meaning representations
[6, 40], which can be used to represent whole sentences as
(directed and acyclic) graphs of predicates and arguments
that can be exploited for tasks such as machine translation
(e.g., the conversion of sentences into symbolic knowledge
representations, for example, a piece of software written
in Prolog that can be used for inference by an automated
reasoner), natural language generation and understanding. In
particular, according to Michael et al., [45], all the abstract
meaning representations can be encoded as pairs of ques-
tions and answers involving the following archetypes: what,
who, how, where, when, which, whose, why.

Interestingly, it is possible to identify a hierarchy or
taxonomy of these archetypes, ordered by their intrinsic
level of generality or specificity. For example, the simplest
interrogative formulas, such as those used by the theory of
abstract meaning representations, can be seen as the most
generic archetypes since they consist of only one interrog-
ative particle: what, why, when, who, etc. We will refer to
these archetypes as the primary ones. On the other hand,
the archetypes used by the PDTB model (e.g., what is the

reason, what is the result) are more complex and specific,
building over the primary archetypes. For this reason, we
will refer to them as secondary archetypes.

Even though many more archetypes could be devised
(e.g., where to or who by), we believe that the list of questions
we provided earlier is already rich enough to be generally
representative of any other question, whereas more specific
questions can always be framed by using the interrogative
particles we considered (e.g., why, what). Primary archetypes
can be used to represent any fact and abstract meaning
[11]. In contrast, the secondary archetypes can cover all the
discourse relations between them (at least according to the
PDTB theory).

5. Evaluation of DoXpy: Experiments and
Results
In Section 4.1 we argued that the degree of explainability

of any collection of text (e.g., the output of an XAI) could be
measured in terms of DoX on a set of chosen explanandum
aspects. In order to verify this assertion and Hypothesis 1,
we have to show that there is a strong correlation between our
DoX and the perceived amount of explainability. To this end,
we devised two experiments using some systems making
use of XAI (also called XAI-based systems). In particular,
with the first experiment, wemeasure explainability directly,
while with the second, we perform indirect measurements
obtained through user studies with human subjects.

Measuring explainability directly is not possible without
a metric like the one we propose (DoX), except for a few
naive cases. One of these cases is undoubtedlywhen a simple
XAI-based system is considered. In fact, in a standard XAI-
based system, the amount of explainability is (by design)
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clearly and explicitly dependent on the output of the un-
derlying XAI, for the black-box not being explainable by
nature. Thus, by masking the output of the XAI, the overall
system can be forced to be not explainable enough. This
characteristic can be used to partially verify Hypothesis 1,
but not in a generic way because this type of verification is
based on a comparison with a total lack of explainability and
not with different degrees of it.

This is why we decided to measure explainability also
indirectly with a second experiment, to understand whether
DoX correlates with the expected effects of explainability on
human subjects. In other terms, we have to compare DoX
to existing metrics for explainability based on Cognitive
Science (e.g., usability, effectiveness) as shown in Table 2.

If Hypothesis 1 is correct, the lower the DoX score, the
fewer explanations can be extracted, and the less effective (as
per ISO 9241-210) an explainee is likely to be in achieving
explanatory goals that are not covered by the explanations.
More specifically, effectiveness here is defined as “accuracy
and completeness with which users achieve specified goals”.
In our case, it is measured through multiple-choice domain-
specific quizzes.

We expect an increment in DoX always corresponds to
an increment in effectiveness, at least on those tasks covered
by the information provided by the increment of DoX. To
show this, we borrowed the results of two independent user
studies [64, 65], observing how DoX correlates with the
effectiveness scores measured by these studies.
5.1. XAI Systems Considered for the Experiments

The two systems making use of XAI that we considered
as case studies are:

• a heart disease predictor based on XGBoost [19] and
TreeSHAP [43], concerning healthcare;

• a credit approval system based on a simple Artificial
Neural Network and CEM [21], concerning finance.

Both these systems are an example of normal XAI-based ex-
plainer, a one-size-fits-all explanatorymechanism providing
the bare output of the XAI as a fixed explanation for all
users, together with the output of the wrapped AI, a few
extra details to ensure the readability of the results, and a
minimum of context.
5.1.1. Finance: the Credit Approval System

The credit approval system is the same also used by [64,
66], and it has been designed by IBM to showcaseAIX36012.
In particular, this credit approval system uses an artificial
neural network to predict a customer’s credit risk (and thus
decide whether to approve a loan) together with an XAI
(called CEM [21]) to provide post-hoc (static) explanations
of the neural network’s predictions. These explanations aim
at helping customers understand whether they have been
treated fairly, providing insights into ways to improve their
qualifications so as the likelihood of future acceptance can
be increased.

12https://aix360.mybluemix.net/explanation_cust

A typical use case of this system is the following. A
customer (e.g., John) applies for a loan from the bank. The
bank collects sufficient information about the customer. It
transmits it to the artificial neural network, which uses it
to work out how likely the customer is to repay the loan.
If the customer’s credit risk is low, the loan application is
approved, but if the credit risk is too high, the system uses
the CEM to explain why.

The artificial neural network behind this credit approval
system is trained on the “FICO HELOC” dataset13, con-
taining anonymized information about loan applications
made by real homeowners, to answer the following question:
“What is the decision on the loan request of applicant X?”.

Given the specific characteristics of this credit approval
system, we assume that its users’ main goal is to understand
the causes behind a loan rejection and what to do to get a
loan accepted. This is why CEM is deployed to answer the
following questions:

• What are the factors to consider to change the result
of the application of applicant X?

• How should factor F be modified to change the result
of the application of applicant X?

• What is the relative importance of factor F in changing
the result of the application of applicant X?

Nonetheless, many other relevant questions might be an-
swered before the user is satisfied and reaches his/her ob-
jective. These questions may be: “How to perform those
minimal actions?”, “Why are these actions so important?”,
etc.

Indeed, interpreting the internal parameters and complex
calculations of an AI model such as this credit approval
system is complicated. For example, a layperson trying to
obtain a loan might undoubtedly be interested to know that
her/his application was rejected (by the AI) mainly due to
a high number of credit inquiries on his/her accounts (as
CEM can tell). However, this information alone might not
be sufficient to achieve her/his goals. These objectives may
be beyond the reach of the AI, such as understanding how
to effectively reduce the number of inquiries to obtain the
loan, what type of credit inquiries may affect his status and
the difference between a hard and a soft inquiry.

To summarise, the output of the credit approval system
is composed by:

• Context: a titled heading section kindly introducing
the user to the system.

• AI Output: the decision taken by the artificial neural
network for the loan application (i.e., “denied” or
“accepted”).

• XAIOutput: a section showing the output of the CEM.
This output consists of a minimally ordered list of
factors deemed to be the most important to change

13https://fico.force.com/FICOCommunity/s/
explainable-machine-learning-challenge?tabset-3158a=a4c37
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Figure 3: Screenshot of the credit approval system.

for the outcome of the artificial neural network to be
different.

A screenshot of a web application implementing this credit
approval system is shown in Figure 3.
5.1.2. Healthcare: the Heart Disease Predictor

Similarly to the credit approval system, the heart disease
predictor comes from [66]. In particular, the explanandum
of the heart disease predictor is about health, and the system
is used by a first-level responder of a help desk for heart
disease prevention. More specifically, a first-level responder
is responsible for handling the requests for assistance of
a patient, forwarding them to the correct physician in the
eventuality of a reasonable risk of heart disease.

First-level responders get basic questions from callers,
they are not doctors, but they have to decide on the fly
whether the caller should speak to a real doctor. So, they
quickly use the heart disease predictor to determine what to
answer the callers and the subsequent actions to suggest. In
other words, this system is used directly by the responder

and indirectly by the caller through the responder. These
two types of users have different but overlapping goals and
objectives. It is reasonable to assume that the responders’
goal is to answer the questions of a caller in the most efficient
and effective way.

The considered heart disease predictor uses an AI called
XGBoost [19] to predict the likelihood of a patient having
a heart disease given its demographics (gender and age),
health (diastolic blood pressure, maximum heart rate, serum
cholesterol, presence of chest-pain, etc.) and the electrocar-
diographic (ECG) results. This likelihood is classified into
three different risk areas: low (probability p of heart disease
below 0.25), medium (0.25 < p < 0.75), or high. Therefore,
XGBoost is used to answer the following questions:

• How likely is it that patient X has heart disease?
• What is the risk of heart disease for patient X?
• What is the recommended action for patient X to treat

or prevent heart disease?
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In particular, the dataset used to train XGBoost is the “UCI
Heart Disease Data” [20, 2].

On top of XGBoost, the heart disease predictor uses
TreeSHAP [43], a famous XAI algorithm specialized in tree
ensemble models (e.g., XGBoost) for post-hoc explanations.
In particular, TreeSHAP is used to understand the contribu-
tion of each input feature to the output of XGBoost. There-
fore, TreeSHAP is used to answer the following questions:

• What would happen if patient X had factor Y (e.g.,
chest pain) equal to A instead of B?

• What are the most important factors contributing to
the predicted likelihood of heart disease for patient X?

• How factor Y contributes to the predicted likelihood
of heart disease for patient X?

However, many other important questions should be an-
swered. These include “What is the easiest thing the patient
could do to change his heart disease risk from medium
to low?”, “How could the patient avoid raising one of the
factors, preventing his heart disease risk from raise?”.

Finally, to summarise, the output of the heart disease
predictor is composed by:

• Context: a titled heading section kindly introducing
the responder (the user) to the system.

• AI Inputs: a panel for entering the patient’s biological
parameters.

• AI Outputs: a section displaying the likelihood of
heart disease estimated by XGBoost and a few generic
suggestions about the next actions to take.

• XAI Outputs: a section showing each biological pa-
rameter’s contribution (positive or negative) to the
likelihood of heart disease generated by TreeSHAP.

A screenshot of a web application implementing this heart
disease predictor is presented in Figure 4.
5.2. 1st Experiment: Direct Evaluation on Normal

XAI-generated Explanations
In order to verify Hypothesis 1, we have to show that

there is a strong correlation between DoX and the perceived
amount of explainability. To this end, we devised two exper-
iments.

The 1st experiment is meant to shed more light on how a
few changes to the explainability of a system affect the esti-
mated DoX. Specifically, XAI-based systems are considered
for this experiment because their amount of explainability
is, by design, clearly and explicitly dependent on the output
of the underlying XAI. So, by masking the output of the
XAI, the overall system can be forced to be less explainable.
Hence, this characteristic can be exploited to verify the
hypothesis in a straightforward but effective way.

In other words, a XAI-based system is composed of
a black-box AI system wrapped by a XAI. So, with this
experiment, we compare the DoX of a normal XAI-based

explainer with that of the same system without the XAI, also
called normal AI-based explainer. As a result, we expect the
(average) DoX of the XAI-based explainer to be higher than
its wrapped AI.

For this experiment, we used the XAI-based systems
defined in Section 5.1. Therefore, by simply removing the
output of the XAI (respectively CEM and TreeSHAP) from
these systems, it is possible to obtain the normal AI-based
explainers we need.

In order to compute the (average) DoX of these systems,
we take as a set of explanandum aspects those targeted by
the credit approval system and the heart disease predictor.
More precisely, the main explanandum aspects A targeted
by XGBoost [19] and TreeSHAP [43] in the heart disease
predictor are five:

• the recommended action for patient X;
• the most important factors Y that contribute to pre-

dicting the likelihood of heart disease;
• the likelihood of heart disease;
• the risk R of having a heart disease;
• the contribution of Y to predict the likelihood of heart

disease for patient X.
While the main explanandum aspects A targeted by the Ar-
tificial Neural Network and CEM [21] in the credit approval
system are four:

• the factors F to consider for changing the result;
• the relative importance of factors F in changing the

result;
• the risk performance of applicant X;
• the result of the application of applicant X.

Eventually, after properly converting the images produced
by the XAI-based explainers to textual explanations, the
resulting explanandum aspects coverage (i.e., the ratio of
|A ∩ I| to |A|) of both the heart disease predictor and the
credit approval system is 100%. In contrast, that of their AI-
based explainers is 48% and 43% respectively.

By calculating the DoX through DoXpy, we obtained the
results shown in Table 3. As expected, for both the heart
disease predictor and the credit approval system, the exper-
iment results indicate that the (average) DoX of all XAI-
based explainers is significantly higher than that of AI-based
explainers, regardless of the deep language model adopted.
Although, we can see that MiniLM and the Universal Sen-
tence Encoder (the two adopted language models) produce
comparable but slightly different DoX scores, suggesting
that the choice of the pertinence function p could sensibly
impact the value of DoX.

14The numerical values in this table are different from those reported
in [67] because we used DoXpy v3.0 instead, which includes several
improvements in the information retrieval algorithm that prevent details
duplication, as described in Section 4.2.
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Figure 4: Screenshot of the heart disease predictor.

Considering that in this first experiment, we arbitrarily
chose a simple set of explanandum aspects, what would
happen if we considered different and more complex ex-
plananda and explanatory contents? Furthermore, the result
of this experiment is based on comparing the DoX of an
unexplained system (i.e., the normal AI-based explainers)
with that of a more explainable system, and this is an
exceptional and naive case to consider. Therefore, to thor-
oughly test Hypothesis 1, we must understand whether DoX
behaves as expected even when explainability is present in
different and non-zero quantities. To this end, explainability
can be measured indirectly by studying the effectiveness of
the resulting explanations on human subjects, as shown in
Section 5.3.

5.3. 2nd Experiment: A Study of the Effects of
Explainability on Human Subjects

The second experiment aims to show whether there is
a correlation between DoX and the effects of explainability
on human subjects. We have that a higher explainability
implies a greater capacity to explain, hence a greater number
of explanations. In short, the lower the DoX, the fewer
explanations can be produced, and the less effective the
explainer is in explanandum-related tasks.

So, if Hypothesis 1 were true, an increase in the DoX
of the (explanatory) system would always correspond to a
proportional increase of its effectiveness, at least on those
tasks covered by the information provided by the increment
of DoX. Therefore, to verify this point, we borrowed two
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Table 3
Results of the 1st Experiment on DoXpy14. In this table, DoX
and average (Avg) DoX are shown for the credit approval
system (CA) and the heart disease predictor (HD). As columns,
we have the normal AI-based explainers (AI, for short) and the
normal XAI-based explainers (XAI, for short). As rows, we have
different explainability estimates using MiniLM (ML) and the
Universal Sentence Encoder (TF). For simplicity, for DoX, we
show only the primary archetypes.

CA HD
AI XAI AI XAI

ML 0.46 1.52 0.53 1.49
Avg DoX TF 0.23 0.86 0.27 0.84

ML

"what": 0.49
"how": 0.48
"which": 0.47
"who": 0.47
"why": 0.46
"whose": 0.45
"when": 0.45
"where": 0.44

"which": 1.61
"how": 1.60
"what": 1.59
"why": 1.53
"when": 1.51
"where": 1.46
"who": 1.45
"whose": 1.41

"why": 0.60
"which": 0.55
"what": 0.54
"how": 0.54
"whose": 0.49
"when": 0.47
"where": 0.47
"who": 0.46

"why": 1.63
"which": 1.60
"what": 1.52
"how": 1.52
"whose": 1.51
"who": 1.40
"when": 1.38
"where": 1.38

DoX TF

"what": 0.26
"when": 0.24
"which": 0.22
"how": 0.19
"where": 0.18
"who": 0.18
"why": 0.16
"whose": 0.15

"what": 0.94
"when": 0.87
"which": 0.77
"where": 0.73
"how": 0.73
"who": 0.68
"why": 0.64
"whose": 0.55

"what": 0.30
"when": 0.25
"which": 0.23
"who": 0.22
"how": 0.22
"where": 0.22
"why": 0.22
"whose": 0.18

"what": 0.97
"when": 0.78
"how": 0.74
"which": 0.72
"who": 0.68
"where": 0.68
"why": 0.66
"whose": 0.56

user studies published by [64] and [65], involving more than
190 human subjects.

Notably, these user studies considered the same ex-
planandum support materials and AI systems used during
the first experiment and described throughout Section 5.1,
analyzing the effectiveness of explanations given by other
explainers when changing the explanandum support mate-
rial and the way explanations are presented to the explainee.

The effectiveness of explanations was measured by giv-
ing the explanations to the participants of the user studies
and asking them questions to see whether the given ex-
planations helped them to understand the explananda. In
particular, two domain-specificmultiple-choice quizzes (one
per explanandum) were used to measure effectiveness, each
consisting of questions representing plausible information
goals for the system’s users. Being impossible and unfeasible
to identify all the possible questions a real user would ask
to reach its goals, only a few representative questions were
considered for the sake of the study. It appears from prelim-
inary studies, such as the one by Liao et al. [41], that users
are interested in asking a variety of different questions about
an AI-based system, pointing to complex and heterogeneous
needs for explainability that go beyond the output of a single
XAI.
5.3.1. 1st User Study

On the one hand, the first user study comes from [64],
where a novel mechanism, called overview-based explainer,
is used to explain extensive collections of heterogeneous
documents (i.e., more than 50 web pages) about the credit
approval system, in a user-centered and interactive way. This
is done by organizing knowledge as a graph of explanandum
aspects whose related explanations are ordered by relevance
and simplicity according to a set of pre-defined archetypal

Table 4
Quiz of the Credit Approval System. This table contains the
quiz used for evaluating the effectiveness of tools explaining
the credit approval system. In this table, XAI is the normal
XAI-based explainer (i.e., the webpage shown in Figure 3) and
“OBE” is the overview-based explainer. Column Steps indicates
the minimum number of steps (in terms of links to click,
overviews to open, or questions to pose) required by each
explanatory tool to provide the correct answer. Negative steps
means that the correct answer cannot be found. In contrast,
0 steps means that the answer is immediately available in the
initial explanans (i.e., the content of the webpage shown in
Figure 3). Column “Archetype” indicates which interrogative
particles represent the question. Many questions are polyvalent
in that they can be rewritten using different archetypes.

Steps
Question Archetype XAI OBE
What did the credit approval system
decide for Mary’s application?

what, how 0 0

What is an inquiry (in this context)? what -1 1
What type of inquiries can affect
Mary’s score, the hard or the soft
ones?

what, how -1 1

What is an example of hard inquiry? what -1 1
How can an account become delin-
quent?

how, why -1 1

Which specific process was used by
the Bank to automatically decide
whether to assign the loan?

what, how 0 0

What are the known issues of the
specific technology used by the Bank
(to automatically predict Mary’s risk
performance and to suggest avenues
for improvement)?

what, why -1 1

questions (e.g., what, how, when, why). In particular, a user can
carry out overviewing from the initial explanation shown in
Figure 3 by clicking on the annotated words for which an
explanation is needed. An example of overview is shown in
Figure 5.

The external resources used by the overview-based
explainer for the credit approval system consist of 58 web-
pages, 50 of which come from the website of MyFICO15,
while the remaining come fromForbes16,Wikipedia, AIX36017,
and BankRate18.

This first user study compares the effectiveness scores
of the credit approval system with and without the pos-
sibility for users to perform overviewing to demonstrate
that the overview-based explainer generates more effective
explanations than the baseline. Specifically, effectiveness
scores are generated by users interacting with the system
and answering a multiple-choice quiz (shown in Table 4)
on the credit approval system. In particular, each question
of the multiple choice quiz has 4 to 8 plausible answers,
of which only one is (the most) correct. At the end of the
quiz, answers are automatically scored as correct (score 1) or
not (score 0), and the resulting scores are added together to

15https://www.myfico.com
16https://www.forbes.com
17http://aix360.mybluemix.net
18https://www.bankrate.com
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Figure 5: Example of Overview: this figure shows an example of interactive overview displaying relevant information about
important concepts for the heart disease predictor. Clicking on any underlined word would open a new overview in a new tab, as
shown. Furthermore, every given answer is linked to its source document.

form the effectiveness score. For example, for the question
“What did the Credit Approval System decide for Mary’s
application?”, the correct answer is “It was rejected”, and
the wrong answers are “Nothing” or “I do not know”.

For this user study, 103 participants were recruited (57
males, 44 females, and two unknowns, ages 18-55) on the
online platform Prolific [51]. All the participants were re-
cruited among those who: 1. are resident in UK, US, or
Ireland; 2. have a Prolific acceptance rate greater or equal to
75%19. Participants were randomly assigned to use the credit
approval system with or without overview-based explainer
in a between-subjects test. The credit approval system with-
out overview-based explainer is also called normal XAI-
based explainer because it only explains through the output
of an XAI.

In the end, 51 participants evaluated the normal XAI-
based explainer, and 52 evaluated the overview-based ex-
plainer. For more details about this user study, read [64].
5.3.2. 2nd User Study

The second user study comes instead from [65] and
concerns the heart disease predictor. Similar to the first,
this study compares the effectiveness of an overview-based
explainer called YAI4Hu and that of a normal XAI-based
explainer. In addition, this second study also investigates the
effectiveness of two other explainers: a two-level explainer
and a how-why explainer.

The two-level explainer is static, as the normal XAI-
based explainer. It is made of the output of the XAI (shown
in Figure 4) directly connected to a second (non-expandable)
layer of information consisting of an exhaustive and verbose
set of autonomous static explanatory resources. The two-
level explainer is organized, therefore, as a very long text
document (more than 50 pages per system, when printed),

19Mainly because they are unlikely to answer poorly/randomly to ques-
tions.

structured in titled Sections and prefixed with a table of
content with hypertext links.

On the other hand, the how-why explainer is like the
overview-based explainer, but it uses only the archetypes
why and how for generating explanations. Furthermore, also
YAI4Hu is an extension of the overview-based explainer
that instead adds a mechanism (called open-ended question-
ing) for users to ask their questions to the system. More
specifically, open-ended questioning can be performed by
asking questions in English through a search box that uses
the graph-based answer retrieval mechanism described in
Section 4.2. Importantly, YAI4Hu, the how-why explainer
and the two-level explainer share the same explanandum
support material.

Such explanandum support material is composed by the
contents shown in Figure 4 and a set of external resources
carefully selected to cover the topics of the heart disease
predictor that consists of 103 webpages, 75 of which come
from the website of the U.S. Centers for Disease Control and
Prevention20, while the remaining from the American Heart
Association21, Wikipedia, MedlinePlus22, MedicalNewsTo-
day23 and other minor sources.

For this second user study, 89 different participants were
recruited amongst the university students of the following
courses of study24: bachelor’s degree in computer science;
bachelor’s degree in management for informatics; master’s
degree in digital humanities; master’s degree in artificial
intelligence. The 89 participants were randomly allocated
for testing only one of the three types of explainers. In other
words, similarly to the first user study, also this second study

20https://www.cdc.gov
21https://www.heart.org
22https://medlineplus.gov
23https://www.medicalnewstoday.com
24All the courses of study were of an Italian university, and only

the master’s degrees were international, i.e., with English teachings and
students from countries other than Italy.
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Table 5
Quiz of the Heart Disease Predictor. This table contains the
quiz used for evaluating the effectiveness of tools explaining the
heart disease predictor. XAI is the normal XAI-based explainer
(i.e., the webpage shown in Figure 4), HWN is the how-why
explainer, and 2EC is the two-level explainer. Column Steps
indicates the minimum number of steps (in terms of links to
click, overviews to open, or questions to pose) required by each
explanatory tool to provide the correct answer. Negative steps
means that the correct answer cannot be found. In contrast,
0 steps means that the answer is immediately available in the
initial explanans (i.e., the content of the webpage shown in
Figure 4). Column “Archetype” indicates which interrogative
particles represent the question.

Steps
Question Archetype XAI 2EC HWN YAI4Hu
What are the most important factors
leading that patient to medium risk
of heart disease?

what, why 0 0 0 0 (no OQ)

What is the easiest thing the patient
could do to change his heart disease
risk from medium to low?

what, how 0 0 0 0 (no OQ)

According to the predictor, what
serum cholesterol level is needed to
shift the heart disease risk from
medium to high?

what, how 0 0 0 0 (no OQ)

How could the patient avoid rais-
ing bad cholesterol, preventing his
heart disease risk from shifting from
medium to high?

how -1 1 2 2

What tests can be done to measure
bad cholesterol levels in the blood?

what, how -1 1 -1 1

What are the risks of high choles-
terol?

what, why not -1 1 2 1

What is LDL? what -1 1 2 1
What is Serum Cholesterol? what -1 1 1 1
What types of chest pain are typical
of heart disease?

what, how -1 1 1 1

What is the most common type of
heart disease in the USA?

what -1 1 1 1

What are the causes of angina? what, why -1 1 2 1
What kind of chest pain do you feel
with angina?

what, how -1 1 1 1

What are the effects of high blood
pressure?

what, why not -1 1 1 1

What are the symptoms of high blood
pressure?

what, why, how -1 1 1 1

What are the effects of smoking on
the cardiovascular system?

what, why not -1 1 3 1

How can the patient increase his heart
rate?

how -1 1 3 1

How can the patient try to prevent a
stroke?

how -1 1 3 2

What is a Thallium stress test? what, why -1 1 3 1

followed a between-subjects design. In the end, there were
approximately 20 participants per explainer.

Each participant evaluated the effectiveness of the four
explainers by taking the multiple-choice quiz shown in Ta-
ble 5. At the end of the effectiveness quiz, answers were
automatically scored as correct (score 1) or not (score 0),
and the resulting scores were added together to form the
effectiveness score. For further details about this user study,
read [66].
5.3.3. Results of 2nd Experiment

Both the results of the (first) user study involving 89
participants and the (second) user study involving 103 par-
ticipants indicate that a better (i.e., more explainable) ex-
planandum support material implies an explainer capable
of producing more effective explanations. As also shown in
Figure 6, according to a one-sided Mann-Whitney U-Test,
there is enough statistical evidence to claim that the instance

Figure 6: 1st User Study: Effectiveness Scores on Questions
that cannot be answered with the information provided by
the XAI-based explainer. This figure shows a comparison of
the median effectiveness scores obtained on the credit approval
system (CA) with the normal XAI-based explainer (XAI; the
blue one) and YAI4Hu without open-ended question-answering
(called overview-based explainer or OBE for short; the orange
one) on those questions whose answer is not provided by the
XAI-based explainer. Results are shown as box plots (25th,
50th, 75th percentile, and whiskers covering all data and
outliers). The numerical value of the medians is shown inside
pink boxes. Differently from [64], here effectiveness scores are
normalised in [0, 100].

Figure 7: 2nd User Study: Effectiveness Scores on Questions
that cannot be answered with the information provided by
the XAI-based explainer. Comparison of the results achieved
on the heart disease predictor (HD) with the normal XAI-based
explainer and the other explainers, only on those questions
whose aspects are not covered by the information presented
by the XAI. In particular, the other explainers are the two-
layered explainer (2EC), the how-why explainer (HWN), and
YAI4Hu. For more details about interpreting this figure, read
the caption of Figure 6. Effectiveness scores are normalized in
[0, 100].

of YAI4Hu considered for the second user study is more
effective in credit approval system (U=849.5, p=.007) than
the XAI-based explainer on those questions that cannot be
answered by the XAI (i.e., questions number 2, 3, 4, 5 and 7
in Table 4).

Moreover, as shown in Figure 7, the same can be said
for the heart disease predictor in the first user study. As
expected, also in this case, we see the median effectiveness
score of the normal XAI-based explainer being significantly
lower than the other explainers on the questions that the
XAI cannot answer (i.e., the questions with negative steps
in Table 5). More precisely, according to some one-sided
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Mann-Whitney U-tests, there is enough statistical evidence
to claim that YAI4Hu is better than the XAI-based explainer
(U=40, p=.0002) on those questions. The same can be said
about the two-level explainer (U=48, p=.003) and the how-
why explainer (U=65.5, p=.02).

Indeed, the difference between a normal XAI-based ex-
plainer and the other explainers is twofold. First of all,
the explanations produced by YAI4Hu and the how-why
explainer are interactive andmore user-centered, while those
of the normal XAI-based system are not. Secondly, the
normal XAI-based explainer considers a smaller amount of
explainable information. YAI4Hu, the how-why explainer,
and the two-level explainer produce their explanations using
more than 50 extra web pages that the XAI-based explainer
does not see. This last difference allows us to exploit these
user studies to test Hypothesis 1 further. The amount of
information the normal XAI-based explainer handles is 1

100of all the other explainers.
In order to show that an increment in DoX causes a

consequent increment in the effectiveness of explanations,
we have to compute the DoX scores of the normal XAI-
based explainer and the DoX scores of the other explainers
involved in the user study. To do so, we identified the set of
explanandum aspects A from the quizzes used to generate
the effectiveness scores (see Table 4 and Table 5). These
quizzes define what the users should know to be effective,
indirectly definingwhat is essential for the system to explain:
the explanandum aspects.

Eventually, if Hypothesis 1 were true, we would expect
that the greater DoX is, the greater the effectiveness of an
explainer. Notably, the opposite is not necessarily correct.
Two explainers (with different presentation logics; e.g., the
two-layered explainer and YAI4Hu) might have different
effectiveness scores despite having the same DoX.

Computing the DoX scores for this second experiment,
we got the results shown in Table 6. Importantly, these re-
sults confirmed our expectations for them. They indicate that
the two-level explainer, the overview-based explainer, the
how-why explainer, and YAI4Hu have higher DoX scores
than the normal XAI-based explainer regardless their pre-
sentation logic.

6. Discussion and Analysis of Empirical
Results: How to Use DoX for Assessing Law
Compliance
The results of all experiments and user studies showed

that Hypothesis 1 is valid. We see that DoX increases when-
ever a black-box AI is enclosed in a XAI and that an increase
in DoX corresponds to a statistically significant increase in
the effectiveness of the explanatory system. Therefore, we
believe that our technology for estimating the DoX might be
used for an objective and lawful algorithmic explainability
assessment, as soon as what is needed to be explained can
be identified under the requirements of the law in the form
of a set of precise explanandum aspects. To guarantee the
reproducibility of the experiments, we published the source

Table 6
Results of the 2nd Experiment on DoXpy. The scores in this
table are different from those of the first experiment (Table 3)
because a different explanandum is considered for the second
experiment. In this table, DoX and average (Avg) DoX are
shown for the credit approval system (CA) and the heart
disease predictor (HD). As columns, we have the normal XAI-
based explainers (XAI, for short) and the other explainers, i.e.,
YAI4Hu, the two-level explainer, and the how-why narrator.
For more details about interpreting this table, read the caption
of Table 3.

CA HD
XAI Others XAI Others

ML 1.19 18.75 0.21 21.59
Avg DoX TF 0.72 12.86 0.16 17.55

ML

"which": 1.26
"how": 1.26
"when": 1.25
"what": 1.24
"who": 1.18
"why": 1.16
"where": 1.13
"whose": 1.12

"how": 20.32
"what": 19.78
"when": 19.59
"which": 19.04
"why": 19.00
"whose": 17.34
"where": 17.19
"who": 17.09

"which": 0.23
"how": 0.21
"why": 0.21
"whose": 0.21
"what": 0.21
"when": 0.20
"where": 0.20
"who": 0.20

"why": 24.01
"which": 22.90
"how": 22.90
"what": 21.76
"whose": 21.37
"when": 21.01
"where": 19.91
"who": 19.61

DoX TF

"what": 0.88
"when": 0.75
"how": 0.69
"which": 0.67
"who": 0.66
"where": 0.64
"why": 0.57
"whose": 0.55

"what": 15.97
"when": 13.70
"how": 12.15
"who": 11.89
"where": 11.33
"which": 11.06
"why": 9.68
"whose": 9.32

"what": 0.19
"how": 0.16
"when": 0.15
"who": 0.15
"which": 0.14
"where": 0.14
"why": 0.14
"whose": 0.12

"what": 20.67
"when": 17.42
"how": 16.45
"who": 15.95
"which": 15.90
"why": 15.30
"where": 15.25
"whose": 13.35

code of DoXpy25, as well as the code of the XAI-based
systems, the user study questionnaires, and the remaining
data mentioned within this paper.

In particular, the results of the first experiment tell us
that whenever new information about different aspects to
be explained is added to the explanandum support mate-
rial, the DoX scores increase, and this is also true when
changing the set of explanandum aspects, as we did with the
second experiment. Furthermore, the results of the second
experiment tell us that whenever the DoX scores increase,
the overall effectiveness of the explanations generated from
the explanandum support material increases as well. This is
true even for the two-level explainer, even though it is not
interactive and does not re-organize information to make it
simpler and easier to access, dumping on the user dozens of
pages of content.

Our user studies involved more than 190 participants and
were consistent across two somewhat different and broad
user pools, producing statistically significant results (with
p-values lower than 0.05). Therefore, considering that ex-
plainability is fundamentally the ability to explain, the two
experiments combined tell us that our (average) DoX can
quantitatively approximate the degree of explainability of
information. In other words, we conclude from our exper-
iments that DoX can be used as a proxy for measuring the
explainability of an explanatory system, as long as a set of
explanandum aspects can be defined. DoX is deterministic
and entirely objective, and it could be used as a cheaper
alternative to expensive non-deterministic user studies.

We are convinced that DoX may have a role in all
applications where it is crucial to evaluate explainability

25https://github.com/Francesco-Sovrano/DoXpy
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objectively. Indeed, the main benefit of DoX is that it works
with any set of explanandum aspects A. Therefore it can be
used to quantify how the explanations given by an AI are
aligned with any of the Business-to-Business, and Business-
to-Consumer requirements identified by Bibal et al. [10].

In particular, for eachBusiness-to-Business andBusiness-
to-Consumer requirement we may have the following set of
explanandum aspects A:

• Providing the main features used in a decision by the
AI: A can be the set of main feature labels used for a
decision. This list can be generated with a XAI like
CEM, TreeSHAP, or others.

• Providing all features processed by the AI: in this case,
A is the set of all the feature labels considered by the
AI.

• Providing a comprehensive explanation of a specific
decision taken by the AI: A can be the set of aspects
deemed relevant to the decision of the AI, i.e., what is
the AI, what are the known issues of the AI, or all the
other aspects discussed in [68].

• Providing the underlying logical model followed by
the AI: in this case, A can be the set of all the nouns
or noun/verbal phrases used in the textual description
of the logical model of the AI.

Hence, the benefits of using DoX over a normal user study
are manifold, in fact:

• DoX reduces testing costs normally sustained during
subject-based evaluations.

• DoX allows the direct measurement of the degree of
explainability of any piece of information for which
a meaningful textual representation is written in a
natural language (i.e., English).

• DoX disentangles the evaluation of the explanandum
support material from that of the explainer (or presen-
tation logic) and the interface.

In other words, DoX is a fully objective metric that could
be used to understand whether a piece of information is
sufficient to explain something regardless of whether the
resulting explanations have been perceived as satisfactory
and good by the explainees. We deem this characteristic of
DoX to be very important: a poor degree of explainability
objectively implies poor explanations, no matter how good
the adopted explanatory process is (or how it is perceived):
“Users also do not necessarily perform better with systems
that they prefer and trust more. To draw correct conclusions
from empirical studies, explainable AI researchers should
be wary of evaluation pitfalls, such as proxy tasks and
subjective measures” [15].

Despite all the good properties supported by both theory
and empirical results, we found that DoX may have limita-
tions that we plan to address in future works.

First of all, the results of the second experiment show
that explanatory systems with the same DoX could be usable
and effective in different ways. Indeed, this points to the fact
that DoX should not be considered as a total replacement to
user studies but rather as a cheaper alternative to consider
while developing complex explanatory systems. In other
words, DoX cannot fully replace subjective metrics (i.e.,
usability) if one wants to evaluate the user-centrality of an
explanatory system or interface. On the other hand, DoX
is probably better than subjective metrics if one wants to
objectively evaluate the contents of an explanatory system
to understand how many questions can be adequately an-
swered: the higher DoX, the greater the chances to ade-
quately explain to a variety of users.

Secondly, the numerical differences between the DoX
scores shown in table 3 and 6 suggest that our algorithm
for computing DoX scores may be sensitive to the choice
of a deep language model for pertinence estimation. In
fact, on the one hand, we see that the difference in terms
of DoX between the normal XAI-based explainers and the
other explainer tend to differ from MiniLM to the Universal
Sentence Encoder slightly. Nonetheless, we also see that in
all the considered experiments, the DoX scores increase as
expected, with bothMiniLM and the Universal Sentence En-
coder, suggesting that the alignment of DoX to explainability
is independent of the chosen deep languagemodel. This intu-
ition is supported by the fact that the deep language models,
on average, perform reasonably well on existing benchmarks
for evaluating answer retrieval algorithms. In other words, if
the average DoX aggregates enough archetypes, aspects, and
details, then different pertinence functions performing sim-
ilarly on standard benchmarks may produce proportionally
similar scores. This does not exclude the fact that some deep
language models might be better than others for computing
DoX scores or that multiple standardized deep language
models should be adopted for a thorough estimate of the
DoX. We leave this analysis for future work.

Another possible limitation of DoX is that its scores
cannot be easily normalized in a [0, 1] range. In fact, ac-
cording to Definition 4, DoX is computed by performing a
sum (called cumulative pertinence) over the set of details
D extracted from an explanandum support material, so that
DoX can measure the similarity of the explanandum support
material to the explanandum. Unfortunately, it is impos-
sible to know the total number of details of any possible
explanandum support material. Therefore, it is impossible
to normalize the score by dividing the cumulative pertinence
by such number. It is worth noting that such a sum is
necessary. Indeed, suppose the cumulative pertinence were
a mean instead of a sum. In that case, the resulting score for
an explanandum support material could not be compared
to that of any larger (in terms of the number of details)
explanandum support material, making pointless the use of
DoX in the first place.

Furthermore, it is essential to mention that DoX, alone,
is not sufficient for a thorough quantification of how much
of the information is explained by an AI. Our definition of
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DoX does not consider the correctness of information of
the explanandum support material, assuming that truth is
given and that it is different from explainability. In other
words, DoX should always be used with other metrics that
can evaluate the correctness of available information.

Finally, although DoX can be used to verify many of
the requirements defined by [10], it is still unclear how to
apply DoX to verify also Government-to-Citizen legal re-
quirements. Selecting a reasonable threshold of DoX scores
for law compliance is undoubtedly one of the challenges we
envisage for a proper standardization of explainability in the
industrial context. We also leave these analyses for future
work.

7. Conclusions
In this paper, we proposed a newmetric for explainability

called DoX that could objectively quantify how much of the
information is explained by an AI. For instance, DoX can
be used to verify the satisfaction of Business-to-Business,
and Business-to-Consumer requirements as defined by Bibal
et al. [10].

DoX is based on the intuition coming from Achinstein’s
theory of explanations that explaining is an act of illocu-
tionary question-answering. Specifically, DoX frames expla-
nations as answers to many simple questions (archetypes),
shedding light on the concepts being explained so that the
more (archetypal) answers a corpus can give about essential
aspects of an explanandum, the more that corpus is ex-
plainable. Thus DoX is the first explainability metric based
on Ordinary Language Philosophy. It is a model-agnostic
and deterministic approach that can work with any corpus
of explainable information represented in natural language
(i.e., English).

In particular, DoX quantifies the three main criteria
of explainability adequacy defined by Carnap: similarity,
exactness, and fruitfulness. In this sense, our contribution
is a mechanism for quantifying Carnap’s criteria and ag-
gregating them together in one single score called average
DoX, used to compare the degree of explainability of dif-
ferent explanatory systems. DoX can quantify the degree
of explainability of a corpus of information by estimating
how adequately that corpus could answer an arbitrary set of
archetypal questions about the concepts of an explanandum.

Throughout the paper, we also presented a concrete
implementation of DoX called DoXpy.

In order to understand whether the DoX is behaving as
expected, we designed a few experiments on two realistic
systems for heart disease prediction and credit approval,
involving state-of-the-art AI technologies such as Artificial
Neural Networks, TreeSHAP [43], XGBoost [19], and CEM
[21]. The results show that the DoX is aligned with our
expectations and can be used to quantify explainability in
natural language information corpora.

Although DoX cannot be used directly on a black-box
model to understand how much of it can be explained, it can
be used on the output of an ensemble of XAI algorithms or

any other explainable information (e.g., documentation, pa-
pers, books) to understand how that information can be used
to explain. In this sense, DoX is the most useful when used
to evaluate extensive collections of explainable information
(e.g., the output of an ensemble of XAI algorithms).

Another context for applying DoX could be education.
Not surprisingly, many would argue that explanations are
one of the primary artifacts through which humans under-
stand reality and learn to solve complex problems [9]. There-
fore, explaining is central to XAI and education, and these
are two contexts where our technology and understanding of
explanations could be of utmost importance.
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