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Abstract

Cross-model retrieval has emerged as one of the most
important upgrades for text-only search engines (SE). Re-
cently, with powerful representation for pairwise text-
image inputs via early interaction, the accuracy of vision-
language (VL) transformers has outperformed existing
methods for text-image retrieval. However, when the same
paradigm is used for inference, the efficiency of the VL
transformers is still too low to be applied in a real cross-
modal SE. Inspired by the mechanism of human learning
and using cross-modal knowledge, this paper presents a
novel Vision-Language Decomposed Transformer (VLDe-
former), which greatly increases the efficiency of VL trans-
formers while maintaining their outstanding accuracy. By
the proposed method, the cross-model retrieval is separated
into two stages: the VL transformer learning stage, and the
VL decomposition stage. The latter stage plays the role
of single modal indexing, which is to some extent like the
term indexing of a text SE. The model learns cross-modal
knowledge from early-interaction pre-training and is then
decomposed into an individual encoder. The decomposi-
tion requires only small target datasets for supervision and
achieves both 1000+ times acceleration and less than 0.6%
average recall drop. VLDeformer also outperforms state-
of-the-art visual-semantic embedding methods on COCO
and Flickr30k.

1. Introduction

Cross-modal retrieval is important for modern applica-
tions such as search engines, social media, and e-commerce,
which involves searching for instances semantically similar
to the query from another modal. Just like text search en-
gines, cross-model retrieval requires not only high accuracy
but also fast retrieval speed.

'Our code will be publicly available upon acceptance.
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Figure 1. Illustration of the pre-training and retrieval paradigm for
VLDeformer.

Vision-language transformers (VL transformers) [12,

, 16, 19] have been known for their superior accuracy
in cross-modal retrieval. These models learn cross-modal
matching relationships with a BERT network [3] where the
features are fused with early interaction dataflow. Similar to
the process of human learning cross-modal alignment, most
VL transformers compare a pair of text-images each time
and produce one joint representation during pre-training.
These models significantly outperform conventional visual-
semantic embedding methods and prove the effectiveness of
pre-training and early interaction.

However, the VL transformers still keep the paradigm
for inference, whose computing costs are too high to be ap-
plied in real applications. Because of the early-interaction
dataflow, VL transformers have to compute a joint represen-
tation for every text-image combination for matching. The
paradigm results in O(n?) inference times on text-image
data. In practice, finding the most similar pairs from 1k
text-image records requires 500k inferences, which costs
about 30 minutes on a modern V100 machine.

Visual-semantic embeddings models [5, 6, 10,20,26,27]
are another kind of mainstream cross-model retrieval meth-
ods. They use two-branch encoders for single image and
text input. In these models, late-interaction dataflow is used
to learn the cross-modal alignment, which contributes to
much faster retrieval efficiency than VL transformers. Dur-



ing retrieval, the embeddings could be cached and reused
for other comparisons, which results in O(n) inference
times. The main weakness of these models is their rela-
tively low accuracy. Recent works [8,23] attempt to address
the trade-off between accuracy and speed by pre-training.
However, as shown in Table 1, these models are still not
as effective as VL transformers while using similar or even
larger pre-training data. Until now, two-branch encoders
are reported [8] to outperform VL transformers only using
hundreds of times larger pre-training data. Therefore, VL
transformers are still the most effective method for cross-
modal retrieval but have shortcomings in retrieval speed.

The early-interaction pre-training of VL transformers is
similar to humans learning the cross-modal alignment by
observing pairwise language and vision inputs. However,
humans are able to handle individual text and image in-
formation separately after learning, as in Fig. 1, which is
a faster paradigm for retrieval. From this point of view,
existing VL transformers only achieve the learning stage.
To inspect the feasibility of converting a VL transformer
into an individual encoder for text and image, we ana-
lyze the dataflow of VinVL [28] in a pilot experiment
(Sec. 3). Surprisingly, we find an interesting phenomenon:
most cross-modal interactions do not happen point-to-point,
but through some “routing nodes”, as illustrated in Fig. 2.
Moreover, the special tokens [CLS] and [SEP] are routing
nodes most of the time. Since these special tokens do not
belong to any specific modalities, it is possible to divide
the dataflow by modality from them without breaking the
learned dataflow. Following these findings, we prove that
the pre-trained VL transformer could be decomposed into
an individual encoder while maintaining most of the accu-
racy with only a small target dataset as supervision. We
also verify in the experiment that the “routing nodes” are
successfully kept after decomposition.

Combined with the pre-training stage, the proposed
Vision-Language Decomposed Transformer (VLDeformer)
presents a new paradigm that pre-trains a VL transformer
with early-interaction dataflow and then decomposes it
into an individual encoder. Using this paradigm, we can
build a VL transformer of not only high accuracy but also
fast speed. On the public COCO and Flickr30k bench-
marks, VLDeformer achieves both 1000+ times accel-
eration and less than 0.6% average recall drop for VL
transformer. VLDeformer also outperforms state-of-the-art
visual-semantic embedding methods while using similar or
even smaller pre-training data.

2. Related Work

VL Transformers Pre-trained VL transformers have
shown impressive performance for many multimodal tasks.
These models learn the cross-modal interaction with an
early-interaction dataflow, where the text and image fea-

Type Model T2I 12T Pre-train data Time (s)
(a) VinVL [28] 74.6 58.1 8.8M 32537.5
(b) LightningDOT [23] 70.0 54.0 9.5M 7.4

(b) ALIGN-small [8] 52.0 39.2 180M -

Table 1. R@1 retrieval score, pre-training data scale, and infer-
ence time of the state-of-the-art VL Transformer (a) and Visual-
Semantic Embedding (b) models on COCO 5k test.

tures in each layer are fused with the attention mechanism.
For example, VilBERT [16] achieves early-interaction
with two-branch transformer networks connected by co-
attention. In the model, the outputs of the image and text
of each layer are fused by a third transformer. The follow-
ing models [2, 12—14,19,22] use single-stream architecture
where the features are fused with fully-connected attention
mechanisms. These models achieve improvement on cross-
modal retrieval tasks with different self-supervised tasks. In
common practice, the pre-trained VL transformers still keep
the early-interaction dataflow while inferencing on down-
stream tasks, which has high computation costs in large-
scale cross-modal retrieval tasks.

Visual-Semantic Embedding Models Text-image re-
trieval methods [7, 1 7,30] usually learn embeddings for the
image and text with a two-branch network. Generally, the
network includes a convolutional neural network as the im-
age encoder and a sequence model as the text encoder. Re-
searchers have found that the fine-grained relations between
the visual objects and text tokens are essential for improv-
ing the embedding quality. For example, Lee et al., [10]
calculates attention between detected object features and
word embedding from both visual and text view, respec-
tively. The following work SCAN [11] explores early-
interaction structure by stacked cross-attention and gets
significant improvements. However, the early-interaction
dataflow decreases its retrieval speed. During inference, the
late-interaction dataflow enables extracting representations
offline to achieve fast online retrieval. Therefore, most of
the following visual-semantic embedding methods still use
late-interaction dataflow; e.g, Qu et al. [29] and Zhang et
al. [20] develop the interaction from global and local views.

Pre-trained Visual-Semantic Embedding Models Pre-
training transformers typically use several millions of text-
image pairs. Recently, some researchers have explored pre-
training visual-semantic embedding methods with larger
text-image pairs. For example, CLIP [2]] trains a two-
branch network with contrastive learning on 400 million
image text pairs and achieves competitive results on vari-
ous downstream tasks. ALIGN [&] expands the pre-training
data even further to a larger and noisier 1,800 million scale.
The model consists of an EfficientNet [24] with global pool-
ing as the image encoder and a BERT as the text encoder
and achieves higher performance than the pre-trained VL
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[SEP]
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Figure 2. Illustration of the “routing nodes” inside each layers of
the VL transformer VinVL [28] that receive most of the attention
(better viewed with zoom in). [CLS] and [SEP] are constantly rout-
ing nodes in different samples.

transformers after fine-tuning. Although these pre-trained
visual-semantic embedding models achieve advanced per-
formance, their corpora are hundreds of times larger than
VL transformers. Inspired by the pre-training of VL trans-
formers, LightingDOT [23] tries to train two-branch trans-
formers with a data scale closer to the data scale used by
the VL transformers. The network uses a late-interaction
dataflow to accelerate the inference time. However, there
is still a performance gap from the VL transformers, which
has to be made up by collecting top-M samples and using a
VL transformer to select the final top-K (M > K) results.

In contrast with the above methods, we regard the early-
interaction pre-training as the first stage to learning cross-
modal knowledge, and the model could be decomposed as
an individual encoder for fast inference. Following this pro-
cess, we build a transformer that achieves both state-of-the-
art accuracy and fast speed at the same time.

3. Pilot Analysis of VL Transformer

To study the dataflow inside a VL transformer, we first
conduct a visualization of the attention computation of pre-
trained VinVL-base [28]. The visualized samples are from
the COCO 1k test set and depicted by the VIG tool [25].
As the attention map case illustrates in Fig. 2, there are
four nodes that receive the most attention weights. Among
them, three nodes belongs to the special tokens, i.e., [CLS]
or [SEP], which do not have any modality properties. Mean-
while, the “routing nodes” are fixed in each layer. There-
fore, it would be possible to decompose the vision and lan-
guage inputs while keeping these paths unbroken.

We collected 1% samples and recorded the attention per-

2The phenomenon is also observed in Uniter [2], see appendix C for
more cases.
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Figure 3. The proportion of attention weights in VinVL according
to routing nodes (a) and modality (b) on COCO test set. Only 11%
weights are cross-modal attention.

Neutral (%)

Layers Single (%) Cross (%)
[CLS] [SEP] Total

Bottom (1-3)  39.1 9.6 48.7 38.7 12.6

Mid (4-9) 2.6 46.0 48.6 40.7 10.6

Top (10-12) 1.5 49.1 50.6 38.6 10.8

Table 2. The attention type proportions of each VinVL layers.
Only about 10% are immediate cross-modal attention.

centage according to modality and the paths to verify this
phenomenon. To distinguish, we define the following:

* Routing node: The top-k tokens® that significantly take
more proportion of the attention weights than others.

* Neutral attention: The attention that starts from or
points to the special tokens [CLS] and [SEP] that do not
belongs to any modalities.

* Single modal attention: The attention that points from
text embeddings to text embeddings or image embed-
ding to image embeddings.

* Cross-modal attention: The attention that points to text
embeddings from image embeddings or vice versa.

As is shown in Fig. 3 (a), 69% of attention weights are on
the routing nodes, and half of the attention weights are un-
dertaken by the neutral nodes. Other nodes take a total of
19% of the weights. If the routing nodes are kept after
decomposition, the pre-training knowledge is likely to be
maintained. From Fig. 3 (b) we can see only 11% of the
attention weights are immediate cross-modal interactions;
the remaining 89% are not for immediate cross-modal in-
teraction. If the rest of 89% attention dataflow is not broken
after decomposition, we will only need small data to recon-
struct the cross-modal attention and maintain most of the
pre-training knowledge.

3The value k varies from different VL Transformers, e.g. k = 4 for
VinVL and k£ = 2 for Uniter.



Table 2 shows the percentage of different attention types
in each layer. We can see that single modal attention con-
stantly takes more attention weights than cross-modal atten-
tion weights. [CLS| receives more attention in bottom lay-
ers, while on the mid and top layers, [SEP| becomes more
important. Therefore, using [SEP] or the average of the layer
outputs as the representation vector is likely to be more ef-
fective than the common practice to use [CLS].

4. Methodology

The paradigm of the VLDeformer is illustrated in Fig. 4.
It includes early-interaction pre-training, vision-language
decomposing, and retrieval stages. Since there are many
ways [2, 12, 19,28] to achieve the pre-training stage, in this
section, we mainly elaborate on the principles for vision-
language decomposing.

4.1. Early-interaction Pre-training

The early-interaction pre-training plays the role of learn-
ing the cross-modal alignment from large-scale datasets. To
exploit the fine-grained relationship between text and im-
age modality, the pairwise text and image input are con-
catenated and fed to the network simultaneously.

Pairwise Image and Text Input The pairwise text and
image input includes position embedding, segment embed-
ding, and token embedding. The input text 7" is tokenized
as a token sequence {wq,...wy,} where L is the length of
the WordPiece [9] tokenizer output. The input image I is
pre-processed by the object detection network [28] to ex-
tract region features and tags. As for the segment tokens,
we assign [T] segment token to mark the word tokens and
the object tags, and [V] to represent the region features. The
final embedding for both text and image input is obtained
by the summing up of position, segment, and token embed-
ding, followed by a layer normalization.

The text and image features interact through self-
attention in the network. The pre-training objectives are
self-supervision tasks, i.e., mask language modeling, and
contrastive learning for cross-modal alignment on the joint
representation. Since most of the existing VL transform-
ers are built in this pre-training procedure [2, 12, 19, 28],
VLDeformer can be applied to any of them. In this section
the model is trained as a VinVL-base [28] model.

4.2. Vision-language Decomposition

Individual Image and Text Input The concatenated
text and image input are divided for individual encoding.
Guided by the pilot analysis, there are two differences in
the format: the special tokens and the position embedding.
The special [CLS] token is added to the beginning of both
modalities, and [SEP] is added to the end of the text and
tag tokens. The position index for tokens, tags, and objects
are assigned separately to distinguish the modality. The text

position index ranges from 0 to L — 1, while for the image
input, the position index starts again from 0 to & — 1 where
K is the number of the objects or tags.

Decomposed VL Transformer The individual image
and text input isolates the cross-modal interaction of the
VL transformer. To keep the other interaction as much as
possible, the network shares weights for the text and image
modality. According to the analysis of the pilot experiment,
the [CLS| node receives small attention weights in the top
layers of VL transformer, which is in conflict with the com-
mon practice to use [CLS| as representation. Therefore we
experiment with three kinds of representations: [CLS], [SEP]
and average pooling of all the outputs. In practice, we find
the average pooling and [SEP] representation are more effec-
tive than the [CLS] vector for representation, while average
pooling representation is slightly better than [SEP] (see de-
tails in Sec. 5.4). Finally, the representations r; or r, are
obtained by the average pooling layer with tanh activation.

Decomposition Loss The objective of decomposition is
to reconstruct the broken cross-modal interactions and learn
cross-modal similarity through the late-interaction dataflow.
We experiment with BCE loss, Triplet loss, and infoNCE
loss, with infoNCE loss ultimately achieving the best per-
formance (see details in Sec. 5.4). The infoNCE loss min-
imizes the cosine distance between semantically aligned
samples and maximizes the distance between dissimilar
samples. In a mini-batch with N text-image pairs, we re-
gard the aligned pairs as the positive samples and other
combinations as the negatives. We use an objective as Eq. 1
to pull semantically close images representation r’, to the
text representation r’ and push non-close samples apart:

ecos(rﬁ,ri)/*r

L =—log—————
c g Z;_\/Zlecos(rft,rf,)/?’

)

where 7 is a temperature hyper-parameter, and cos is the co-
T
sine similarity m The L! term can also be regarded
as optimizing text-to-image retrieval in a mini-batch.
Symmetric to L, we use the loss term as in Eq. 2 to learn
the image-to-text condition.

ecos(ri,ri)/r

v —
CC B log E]Nzlecos(rf”ri)/T

2

The complete contrastive learning loss is the summing up
of these two terms:

L.=L+LY 3)

Since the main goal of this paper is to show the pre-
training and decomposition paradigm, we find that the sim-
ple infoNCE loss is enough to maintain comparable perfor-
mance to the VL transformer. Other self-supervision could
also be useful, which will be left for future work.
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Figure 4. Overall structure of the Vison-Language Transformer Decomposing (VLDeformer). The cross-modal attention inside the trans-
former module is decomposed during decomposition stage (illustrated by the red line with the scissors).

4.3. VLDeformer based Cross-modal Retrieval

VLDeformer is an individual encoder and therefore en-
ables encoding the retrieval contents offline. For example,
in text-to-image retrieval, the images are encoded to embed-
dings offline so that the online computation only includes
the query encoding and the cosine similarity, which is the
main reason to achieve the retrieval speed acceleration.

In this part, we take text-to-image retrieval as an example
to introduce the retrieval process. To formulate, the image
setis denoted as {I;} Y., where N is the image set size. The
query is denoted as 7.

In the offline encoding stage, the images are processed
following Sec. 4.2 to get the position, segment, and token
embeddings and then passed to the VLDeformer model to
get the image embedding {r{ }Y; . The image embeddings
could be reused to compare with each text query.

During online retrieval, the query text is first processed
to position, segment, and token embeddings then encoded
into query embedding r;. The index of top-1 related images
to the query text is calculated as Eq. 4:

n = arg max cos(r,, Iy)
1€[0,N]

“)

The top-1 retrieved images I,, could be obtained from the
image set.

4.4. Implementation Details

All the processed images are first resized to 256 x 256,
then 50 region-of-interests and the object tags are extracted.
The max sequence length of text tokens is set to 35. The
batch size for contrastive decomposing is set to 1750, while
the temperature is set to 0.005. The AdamW optimizer is
adopted with a learning rate of 5¢~> and weight decay of

le=*. The model is trained on an NVIDIA DGX with a
Ubuntu 18.04 system and 8 V100 GPU.

5. Experiments
5.1. Datasets and Evaluation Protocols

Datasets The pre-training stage uses 8.8M text-image
pairs form public datasets as VinVL [28]. The COCO [15]
and the Flickr30k [18] datasets are used for the decompo-
sition stage. The COCO dataset contains 123K images and
is divided into 114K training, 5K validation, and 5K test
images. We also use a common split of 1k tests for com-
prehensive evaluation.The Flickr30k dataset contains 31K
images which are divided into 29K/1K/1K for training, val-
idation, and test. Each image has 5 caption texts.

Evaluation The retrieval performance is measured by
the recall at topk samples (R@Fk). Three k values, R@1,
R@5, and R@10, are reported for text-to-image retrieval
and vice versa. We evaluate the retrieval speed for the text-
to-image retrieval using 1k, 5k, and 10k text-image pairs.

5.2. Retrieval Accuracy Analysis
5.2.1 Comparison with Visual-Semantic Embeddings

Table 3 shows the comparison results of VLDeformer and
visual-semantic embedding methods. Both VLDeformer
and other pre-trained models substantially outperform the
models without pre-training like CAAN and DIME. It is
worth noting that the performance of pre-trained visual-
semantic embeddings varies depending on the pre-training
data scale. For example, the *ALIGN trained on the largest
data outperforms the other models. However, the pre-
training dataset of *ALIGN is 204 times larger than our
pre-training dataset and 189 times larger than that of Light-
ningDOT, making it hard to judge these models fairly. If we



COCO Test (5k images) Flickr30k Test (1k images) Pre-train data Params

Methods Text Retrieval Image Retrieval Text Retrieval Image Retrieval x10° pairs %106
R@] R@5 R@10 R@]l R@5 R@10 R@] R@5 R@l10 R@l R@5 R@10
Visual-Semantic Embeddings
CAAN [29] 525 833 909 412 703 829 70.1 916 972 528 79.0 879 - 11
IMRAM [1] 537 832 91.0 39.7 69.1 79.8 74.1 930 96.6 539 794 872 - 18
SGRAF [4] 57.8 - 91.6 419 - 81.3 77.8 94.1 974 58.5 830 888 - 19
DIME [20] 593 854 919 43.1 73.0 83.1 81.0 959 984 63.6 88.1 93.0 - 116
Pre-trained Visual-Semantic Embeddings

*ALIGN 770 935 969 599 833 89.8 953 99.8 99.9 849 974 98.6 1800 900
ALIGN-small [8]  52.0 - - 392 - - - - - - - - 180 235
LightningDOT [23] 70.0 91.6 95.5 540 80.8 885 839 972 98.6 699 O91.1 952 9.5 220
VLDeformer 72.6 919 96.2 549 813 88.8 93.5 98.7 99.2 80.2 951 978 8.8 111

*ALIGN is achieved using 200+ times larger pre-train data than other pre-trained models, so we mainly compare with ALIGN-small.

Table 3. Comparison results with Visual-Semantic Embedding Methods on COCO and Flickr30k dataset. VLDeformer outperforms other
pre-trained models using similar or even smaller data.

Flickr30k Test (1k images) COCO Test (1k images)
Methods Text Retrieval Image Retrieval Text Retrieval Image Retrieval Time (s)
R@] R@5 R@10 R@l R@5 R@10 AR R@l R@5 R@10 R@l R@5 R@10 AR
LightningDOT 839 972 98.6 69.9 91.1 952 893 - - - - - - - 2.7
+Reranker [23]  87.2 983 99.0 756 940 965 91.7 - - - - - - - 37.6
UnicoderVL [12] 86.2 963  99.0 715 909 949 898 843 973 993 69.7 935 972 90.2 -
Uniter [2] 869 98.1 992 755 940 96.6 91.7 405.3

Oscar-base [14] - - - - - - 88.4 99.1 9938 7577 952 983 927 1300.5
VinVL-base [28] 93.6 99.1 99.9 82.0 957 977 946 89.8 988 99.7 782 956 98.0 933 13015

VLDeformer 935 987 992 80.2 95.1 97.8 940 892 989 999 759 954 98.0 929 1.2

Table 4. Cross-modal retrieval comparison results to VL transformers on COCO and Flickr30k dataset. VLDeformer achieves 1000+
acceleration with less than 0.6% average recall drop.

compare the models in similar pre-training data scales, the transformer, LightningDOT, VLDeformer achieves better
smaller ALIGN-small model trained on 180M text-image results in both accuracy and inference time and also out-
pairs has a dramatic performance drop as the data scale de- performs LightningDOT with an Oscar Reranker.
crease. Still, there is a performance gap between VLDeformer
It is worth noting that VLDeformer outperforms all state- and the backbone VinVL model, which is more obvious
of-the-art visual-semantic embedding models when com- on the R@1 image retrieval score, i.e., 2.3% on COCO
pared to similar or even smaller data sizes. Therefore we and 1.8% on Flickr. However, the difference on R@5 and
can conclude that VLDeformer is the most effective visual- R@10 is very small, which means that many ground truth
semantic embeddings method on a comparable data scale. images are not hit by the top1 result but recalled within top5
records.

5.2.2 Comparison with VL Transformers
P 5.2.3 Qualitative Case Analysis

Table 4 shows the retrieval score and time cost comparison
between the VLDeformer network and state-of-the-art VL
transformers on COCO and Flickr30k 1k test sets. Com-
pared with the backbone VinVL-base model, VLDeformer
achieves thousands of acceleration with less than 0.5% drop
in average recall and can even outperform it on R@5 and
R@10 levels at COCO 1k text retrieval set. VLDeformer
also outperforms other VL transformers like Unicoder-VL
and Uniter. Compared with the pre-trained two-branch 4See Appendix B for more detailed qualitative comparisons.

Since the R@1 metric only calculates the hit ratio of the one
aligned ground truth image, it may be inflected by other se-
mantically similar samples. Therefore, we inspect the cases
that are properly predicted by the backbone VinVL model at
top1 but flipped by the VLDeformer. Fig. 5 shows the top5
retrieved images for such cases®. Interestingly, many im-
ages share the same semantics with the query text although




A couple of
giraffe standing
next to a pole.

Alarge pizza
with cheese and
mushrooms on a
serving tray.

Table filled
with a bunch of
different types
of food.

Four way stop
sign at street
intersection
and two street
signs above.

A clock
mounted on an
outdoor post
with Roman
numerals.

Query Text Top@1

~7","-‘ =
Top@2

Figure 5. Retrieved top5 images where VLDeformer flips backbone VL Transformer from right to wrong in R@1.

they are not the ground truth, e.g, “two giraffes next to a
pole” or “four-way stop signs”. For such queries, the topl
metric is not applicable to judge the retrieval results. Some
queries like the third case have rough semantics that could
be aligned with a wide range of images, e.g, “table with dif-
ferent food, e.g, “table with different food”. These queries
also decrease the topl metrics because it is hard to recall
the ground truth at topd or even top10 records. The samples
also show some limitations of VLDeformer. For example,
the fourth case mainly focuses on the “clock mounted on
outdoor post” but fails to distinguish the “roman numeral”
on the dial, indicating that more detailed matching is neces-
sary for future works.

5.3. Retrieval Efficiency Analysis

The time costs to match all the text-image pairs® are
shown in Fig. 6. The models are compared on the same
machine using one V100 GPU using 400 batch size. Only
the inference time is recorded to exclude the data loading
time. VinVL uses a very long time® (about 0.5 hours on 1k
and even more on larger data), and the time response goes

SWe also report the single query response time in Appendix A.
6Since VinVL costs a very long time on 5k and 10k, the total time is
estimated through the average time cost of the first 1k batches.
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Figure 6. Text-to-image retrieval time on 1k and 5k and 10k image
corpus with 400 mini-batch size.

like a quadratic function with the data size. In quantita-
tive comparison, VLDeformer achieves more than 1k times
acceleration on 1k data and 9k times on 5k than VinVL.
Both VLDeformer and LightningDOT show linear time cost
curves as data size increases, but LightningDOT costs more
time than VLDeformer, likely because the model is built on
a larger BERT-large network. It is worth noting that when
LightningDOT uses an Oscar-large [14] reranker to achieve
compatible accuracy to VLDeformer, its retrieval time will



Text Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

VLDeformer 89.2 989 999 759 954 98.0
VLDeformer-[SEP] 88.5 99.1 998 749 948 98.1
VLDeformer-[CLS] 83.0 953 96.6 69.7 87.8 904
VLDeformer-BCE 725 958 99.0 60.7 90.2 96.2
VLDeformer-Triplet 48.9 75.5 85.0 30.6 623 764
w/o pre-training 81.5 973 9838 64.8 91.6 959
w/o decompositiont 0.3 1.0 2.0 0.1 02 1.6

Methods Image Retrieval

Table 5. Ablation study of VLDeformer on COCO 1k Test. (w/o
decomposition’ is tested directly using the pre-trained VinVL
transformer as an individual encoder.)

increase by order of magnitude.

5.4. Ablation study

To verify the designs for VLDeformer, we conduct an
ablation study over the COCO 1k test set. The compared
models are trained with the same hyper-parameters. The re-
sults are shown in Table 5.

Representation selection. The results of using [CLS] and
[SEP] as representation are shown in VLDeformer-[CLS] and
VLDeformer-[SEP]. Compared with average pooling repre-
sentation, VLDeformer-[SEP] is higher on R@5 and R@10
but lower on R@1, while VLDeformer-[CLS] decreases sig-
nificantly on all metrics. The results qualify the observation
in Table 2 that [CLS] is not as important as [SEP] at the top
layers.

Decomposition loss selection. To evaluate the effective-
ness of the infoNCE loss for decomposition, we compare
BCE for pairwise cosine similarity VLDeformer-BCE and
triplet loss VLDeformer-triplet. As a result, both of the two
objectives perform worse than infoNCE loss, and causes
dramatic performance drops, especially on R@1.

Has VLDeformer kept knowledge from the pre-training
stage? The (w/o pre-training) trains VLDeformer from the
vision-language decomposition stage using randomly ini-
tialized weights. The comparison between VLDeformer
and (w/o pre-training) is a black box test. Since the per-
formance drops significantly without the pre-training stage,
it can be inferred that some pre-training knowledge is kept
after decomposition.

Did the decomposition stage reconstruct the pre-trained
model? Since the cross-modal attention of the pre-trained
model is broken in VLDeformer, we wonder to what extent
the decomposition reconstructs the pre-trained model. (w/o
decompose’) shows the performance of directly using the
VinVL model as an individual embedding encoder. To our
surprise, the scores are very low, indicating that the decom-
posing stage is necessary to maintain the performance.

Neutral Route (%) Others

Model -
[CLS] [SEP] total (%)

Modal Layers

Bottom (1-3)  66.3 8.1 743 256

v Mid (4-9) 6.1 779 84.0 16.0
Top (10-12) 142 513 655 345
. Total 20.5 581 78.6 213
w/ pre-train
Bottom (1-3)  48.0 9.6 577 423
L Mid (4-9) 35 706 741 259
Top (10-12) 1.8 544 562 438
Total 142 513 656 344
. Total 4.1 6.6 10.7 89.2
w/o pre-train
L  Total 6.5 6.5 13.0 87.0

Table 6. The proportion of different attention weights in each layer
of VLDeformer with (w/) and without (w/o) pre-training stage.

5.5. Decomposition Analysis

We further analyze the attention of VLDeformer after
decomposition to verify the observation and hypothesis in
Sec. 3. In Table 6, we can find that the [CLS] and [SEP] are
still important routing nodes which have large proportions
of attention weights. In contrast, in the VLDeformer with-
out pre-training, these nodes are not routing nodes. In Fig. 7
we compare VLDeformer without pre-train from the same
sample’ as in Fig. 2. It can be clearly seen that VLDeformer
keeps the routing nodes [CLS| and [SEP], but there is no clear
routing node in the VLDeformer without pre-training.

6. Conclusion

VL transformers are effective in cross-modal retrieval
but slow in speed. We observed that most of the interac-
tions in VL transformers are not immediate cross-modal at-
tention, but highly rely on neutral nodes. Therefore we pro-
posed a novel Vision-language Decomposed Transformer
(VLDeformer) that pre-trains a VL transformer with early-
interaction dataflow and then decomposes it into an indi-
vidual encoder. The VLDeformer achieves both 1000+
times acceleration and less than 0.6% average recall drop
and also outperforms state-of-the-art visual-semantic em-
bedding models on COCO and Flickr30k datasets.
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