

1

A complete state-space solution model for inviscid flow

around airfoils based on physics-informed neural networks

Wenbo Cao a,b, Jiahao Song a,b, Weiwei Zhang a,b,*

a School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China.
b International Joint Institute of Artificial Intelligence on Fluid Mechanics, Northwestern

Polytechnical University, Xi’an, 710072, China

Abstract. Engineering problems often involve solving partial differential

equations (PDEs) over a range of similar problem setups with various state parameters.

In traditional numerical methods, each problem is solved independently, resulting in

many repetitive tasks and expensive computational costs. Data-driven modeling has

alleviated these issues, enabling fast solution prediction. Nevertheless, it still requires

expensive labeled data and faces limitations in modeling accuracy, generalization, and

uncertainty. The recently developed methods for solving PDEs through neural network

optimization, such as physics-informed neural networks (PINN), enable the

simultaneous solution of a series of similar problems. However, these methods still face

challenges in achieving stable training and obtaining correct results in many

engineering problems. In prior research, we combined PINN with mesh transformation,

using neural network to learn the solution of PDEs in the computational space instead

of physical space. This approach proved successful in solving inviscid flow around

airfoils. In this study, we expand the input dimensions of the model to include shape

parameters and flow conditions, forming an input encompassing the complete state-

space (i.e., all parameters determining the solution are included in the input). Our results

show that the model has significant advantages in solving high-dimensional parametric

problems, achieving continuous solutions in a broad state-space in only about 18.8

hours. This is a task that traditional numerical methods struggle to accomplish. Once

established, the model can efficiently complete airfoil flow simulation and shape

inverse design tasks in approximately 1 second. Furthermore, we introduce a

pretraining-finetuning method, enabling the fine-tuning of the model for the task of

interest and quickly achieving accuracy comparable to the finite volume method.

Keywords. Physics-informed neural networks; Euler equation; Airfoil; Parametric

problems; High-dimensional.

1 Introduction

In engineering problems, the solution of partial differential equations (PDEs) is

often determined by multiple state parameters. It is often of interest to find the solution

2

over a range of problem setups. Taking the example of inviscid flow around airfoils,

Mach number, angle of attack and shape are all factors we care about, constituting a

complete state-space, which together determine the flow. In traditional numerical

methods, the flow must be solved for each specific set of state parameters independently.

For instance, when assessing the performance of an airfoil, it is essential to analyze its

aerodynamic characteristics under varying Mach numbers and angles of attack. To

achieve an optimal airfoil for a key physical parameter, it is often necessary to simulate

the flow for hundreds of different airfoil configurations. These tasks result in many

repetitive tasks and expensive computational costs. The significant computational

expense severely restricts the practical application of models involving PDEs in real-

time predictions and many-query analysis. This limitation is particularly relevant to

numerous scientific problems and real-life applications.

With the rapid development of deep learning and computing facilities, data-driven

modeling methods have been used to address these challenges, enabling fast solution

prediction. These methods involve various network architectures [1-5] and span a wide

range of application fields [6], yielding many valuable research outcomes and

demonstrating extensive application prospects. Nevertheless, data-driven modeling

methods still face some limitations. The first limitation is the model training dependent

on large amounts of labeled data, often computed using expensive traditional numerical

methods. Since these labeled data originate from traditional numerical methods, they

merely represent limited slices of data regarding the state parameters, meaning they are

unevenly distributed in the joint space of spatial and state parameters. Due to this

inherent flaw, the model’s generalization and uncertainty must be carefully considered,

constituting the second limitation. The third limitation is that once the model is

established, it is difficult to fine-tune it for improving accuracy on specific tasks without

the incorporation of new data.

Recently emerged methods for solving PDEs through neural network optimization,

such as physics-informed neural networks (PINNs) [7], deep Ritz method [8], and deep

Galerkin method [9] have been widely used to solve forward and inverse problems

involving PDEs. By minimizing the loss of PDE residuals, boundary conditions and

initial conditions simultaneously, the solution can be straightforwardly obtained

without mesh, spatial discretization, and complicated program. With the significant

progress in deep learning and computation capability, a variety of PINN-like methods

have been proposed in the past few years, and have achieved remarkable results across

3

a range of problems in computational science and engineering [10-13]. As a

representative optimization-based PDE solver, PINN-like methods offer a natural

method for solving PDE-constrained optimization problems, yielding a lot of valuable

research outcomes, including flow visualization technology [14-17], optimal control

[18-20] and inverse design for topology optimization [21]. In addition, PINN-like

methods have also achieved remarkable results in solving parametric problems [9,22].

Particularly, a surrogate model has been developed for airfoil design optimization [23].

However, this surrogate model is applicable only under certain flow conditions and is

limited to address flows with a Reynolds number as low as 20, thereby limiting the

practical application of this expensive parametric model. Furthermore, they have no

further approaches to improve the performance of the model on specific tasks.

In this paper, we focus on a typical engineering problem in aeronautics, the

inviscid flow around airfoils. In our previous work [24], we presented NNfoil, a PINN

method combined with mesh transformation, which successfully solved the inviscid

flow around airfoils and achieved comparable accuracy to finite volume methods. In

this study, we extend the input dimension of NNfoil to include all state parameters,

yielding a high-dimensional parametric problem. This problem serves to highlights the

advantages of PINN-like methods in solving high-dimensional parametric engineering

problems. It also serves as a surrogate modeling approach, contrasting with the

limitations of data-driven modeling methods previously mentioned.

The main contributions of our work can be summarized as follows:

1. We propose a complete state-space solution model designed to yield solutions

for subsonic inviscid flow around airfoils across a broad spectrum of flow conditions

and shapes.

2. We introduce a pretraining-finetuning method that enables the refinement of the

established model on specific tasks, achieving rapid improvements in accuracy.

3. We apply this model to two engineering tasks: airfoil flow simulation and airfoil

inverse design, showcasing its potential in engineering applications.

The remainder of the paper is organized as follows. In Section 2, we begin by

delineating the problem setting and introducing PINNs and NNfoil. Subsequently, we

present the complete state-space model and its pretraining-finetuning method. Section

3 is devoted to constructing the model and providing a detailed analysis of the results

for both the pre-trained and fine-tuned models across various flows. In Section 4, the

model is applied to two tasks: airfoil flow simulation and airfoil inverse design. Section

4

5 presents concluding remarks and directions for future research.

2 Methodology

2.1 Problem setting

We examine the two-dimensional Euler equation for inviscid flow, commonly

employed the swift assessment of aerodynamic force. A nonconservative,

dimensionless form of Euler equation is

 ()
Q Q Q

A B
t x y

  
= − +

  
 (1)

where []TQ u v p= is the vector of primitive variables;  is the density;

,u v are the x -wise and y -wise components of the velocity vector V , respectively;

p is the pressure; and ,A B are the flux Jacobian, which have the following form

2 2

0 0 0 0

0 0 1/ 0 0 0
,

0 0 0 0 0 1/

0 0 0 0

u v

u v
A B

u v

a u a v

 





 

   
   
   = =
   
   
   

 (2)

where
2 /a p = is the square of the sound speed; 1.4 = is the specific heat ratio.

We consider the flow around airfoils. As depicted in Figure 1, the flow approaches the

uniform freestream at a significant distance from the wall. Hence, the far-field boundary

conditions are as follows

 21 cos(), s)in(), / (, 1u v p Ma      = = = = (3)

where  is the angle of attack and Ma is the Mach number. As the flow cannot

penetrate the wall, the velocity vector must be tangential to the surface, ensuring that

the component of velocity normal to the surface is zero. Let n be a unit vector normal

to the surface, as depicted in Figure 1. The wall boundary condition can be written as

 0=V n . (4)

5

Figure 1. Boundary conditions at infinity and on the wall.

2.2 A PINN method combined with mesh transformation

In this section, we briefly introduce PINNs and NNfoil. A typical PINN employs

a fully connected deep neural network (DNN) architecture to represent the solution q

of the dynamical system. The network takes the spatial x and temporal [0,]t T

as the input and outputs the approximate solution)ˆ(, ;q x t  . The spatial domain

typically has 1-, 2- or 3-dimensions in most physical problems, and the temporal

domain may nonexistent for time-independent (steady) problems. The result of PINNs

is determined by the network parameters  , which are optimized with respect to

PINNs loss function during the training process. To formulate the loss function for

PINNs, we consider q to be mathematically described by partial differential equations

in the general form:

[(,)] 0, , (0,]

[(,0)] 0,

[(,)] 0, , (0,]

q x t x t T

q x x

q x t x t T

=  

= 

=  

 (5)

where [] , [] and [] are the PDE operator, the initial condition operator, and

the boundary condition operator, respectively. Then PINNs loss function is defined as

2

(0,]

(0,]

2

2

[ˆ(;

ˆ(,0;

(

)]

[)]

)];[ˆ

PDE BC BC ICE IC

IC

BC

PD

PDE T

T

q

q

q

  







+ +

=

=



= 

= 







 (6)

The relative weights, PDE , BC , and IC in Equation (6), control the trade-off

between different components in the loss function. The PDE loss is computed over a

finite set of m collocation points
1{ , }i

m

iiD x t == during training, along with boundary

6

condition loss and initial condition loss. The gradients in the loss function are computed

via automatic differentiation [25].

In our previous work, to capture the local sharp transitions in the flow around

airfoils, we presented NNfoil, a PINN method combined with mesh transformation. In

NNfoil, neural network is used to learn the flow in computational space instead of

physical space, taking ,  as the input instead of ,x y . To calculate the equation loss,

we first use automatic differentiation to obtain the derivative in the computational space,

then calculate the derivative in the physical space through Equation (7), and finally

calculate the total loss function through Equation (6). Please refer to [24] for more

details.

x x x

y y y

 

 

 

 

    
= +

    

    
= +

    

 (7)

2.3 A complete state-space solution model for the inviscid flow around airfoils

To simultaneously obtain the steady solution of the airfoil flow in the complete

state-space, we expand the input dimension of NNfoil to include all state parameters,

including the coordinate in computational space, Mach number, angle of attack and

shape parameters. The upper and lower surfaces of the shape are parameterized by 6

Class-Shape Transform (CST) [26] parameters respectively, as elaborated in the

Appendix.

We refer to the established complete state-space model as NNfoil-C. As shown in

the Figure 2, the input of the model includes all state parameters. The output of the

model is the velocity components ,u v , the density  , and the pressure coefficient

2() / (0.5)pC p p V  = − . The model outputs pressure coefficient instead of pressure

because the value of pressure changes significantly with varying Mach number, which

hampers the network’s optimization. The pressure coefficient serves as a physics-based

normalization of pressure. Since NNfoil is based on mesh transformation, to calculate

the loss function, the unit normal vector of the wall and the terms

/ , / , /x y x        and /y   need to be evaluated using the CST parameters in

the input. To obtain these terms efficiently, the structured mesh of NACA0012

(800 400N N  = ) is used as the base mesh, and the meshes of all inputs are

generated by mesh deformation based on the Radial Basis Function (RBF) interpolation.

Since each input actually corresponds to one shape and only one grid point in

7

computational space, we only calculate the deformed coordinates ,x y of the grid

point and its neighbor girds, and then calculate those terms by finite difference.

Figure 2. NNfoil-C, a complete state-space solution model for the inviscid flow around airfoils

based on NNfoil.

Pre-training: We consider an expansive joint parameter space, denoted as 0

encompassing nearly all subsonic flow conditions and shapes encountered in

engineering, as detailed in the next section. In the joint parameter space, we randomly

sample 20,000 residual points and 2000 boundary points, and then combine them with

random flow conditions and shapes as inputs. Subsequently, we employ the limited-

memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm to perform 1000

iterations of gradient descent. Following this, the optimizer is restarted, new inputs are

sampled, and the optimization process is repeated. This iterative procedure continues

until convergence is achieved. Once the model is established, it exhibits the capability

to predict the flow for diverse flow conditions and airfoils.

Fine-tuning: While the model can effectively derive solutions for the joint

parameter space, its accuracy remains slightly inferior to NNfoil, which solves each

flow individually. This discrepancy is attributed to the representation capabilities and

optimization difficulties of the neural network. In many practical applications, our focus

is on a specific subset of the space 0 . Inspired by the pretraining-finetuning

method used in large language models, we can reset the sampling space to and fine-

tune the pre-trained model to achieve better performance on specific tasks. For example,

to obtain a flow with specified flow condition and shape, we set the flow condition and

CST parameters in the input of the pretrained model to the desired values and then

8

continue training the model for several iterations.

3 Results

In this section, we present and discuss the efficiency and accuracy comparison

between pre-trained and fine-tuned NNfoil-C and the classical second-order finite

volume method (FVM). The FVM is one of the most widely used numerical methods

in computational fluid dynamics (CFD), and it has extensive theoretical foundation for

convergence. Thus, we use FVM on a very fine mesh (800 400N N  = ) to compute

a very accurate reference solution as the ground truth. In all results, the FVM reduces

the residuals of continuous equations by 10 orders of magnitude. All our FVM

calculations are performed on 4 Inter i9-13900KS CPU cores, while NNfoil training

are performed on an NVIDIA GeForce RTX 4090 GPU.

Throughout all benchmarks, NNfoil-C will employ the fully connected DNN

architecture with 10 hidden layers and 128 neurons per hidden layer, equipped with

hyperbolic tangent activation functions (tanh) and be trained using the LBFGS

optimizer. We choice 42 10 , 1BCPDE =  = just like NNfoil.

3.1 Pre-trained model

In this subsection, we first specific the joint adoption space 0 and build the pre-

trained model, and then compare the results of the pre-trained model and FVM on a

wide range of flows. Because NNfoil is based on mesh transformation, the sampling

space of coordinates ,  is the grid points of the computational space. The sampling

space of Mach number is [0.2,0.6]Ma , which includes the range of subsonic flow.

The sampling space of angle of attack is [5 ,5]   − , which contains the typical angle

of attack of the flow around airfoils in engineering. The sampling space of CST

parameters is not a continuous interval. This is because a large interval may result in

non-physical airfoils, while a small interval may lead to minor shape changes. Instead,

we consider the UIUC database, a rich and professional database containing

approximately 1600 airfoils. We calculate the CST parameters for these airfoils. Then

the sampling space of CST parameters is set to the union of 30% random perturbation

space for the CST parameters of each airfoil. These practices ensure that the sampling

space of CST is large enough to include almost all airfoils that may be encountered.

The sampling spaces of all state parameters together form the joint parameter space 0 ,

and the input of the neural network is randomly sampled in this space. We perform

gradient descent using the LBFGS optimizer for 1.2×106 total iterations. The training

9

takes a total of 18.8 hours, which is only 225 times that of NNfoil solving a flow (about

5min). As shown in the Figure 3, the training achieved stable convergence.

Figure 3. Training history of NNfoil-C.

We consider several classic airfoils, as shown in the Figure 4, to compare the errors

of FVM and NNfoil-C. The FVM is performed on the mesh 200 100N N  =  . We

evaluate the accuracy of different methods by relative 1L errors of pressure coefficient

distribution 2() / (0.5)pC p p V  = − on the wall, which is the most concerned in

the inviscid flow around airfoils. The relative 1L error between the predicted value q̂

and the reference value
refq is defined as

11
ˆ /ref ref−q q q .

Figure 4. Airfoils used to compare the results of FVM and NNfoil-C.

The setups and results of different cases are presented in Table 1 and Figure 5. We

observe that the results of the pre-trained model remain generally consistent with the

reference solution over a wide range of flow conditions and airfoils. However, there are

significant differences in errors between different cases, and the error in Case 5 is

almost unacceptable, compromising the credibility of the model. This discrepancy can

be attributed to the limited representation capacity of the fully connected neural

network. Utilizing a neural network with enhanced representation capabilities and

10

extending the training duration may potentially improve the accuracy of the results.

However, the representational capacity of neural networks is always limited, and

directly predicted results often lack credibility. For NNfoil-C, another alternative

approach to enhancing accuracy involves rapidly fine-tuning the pre-trained model for

specific tasks. This is a distinct advantage of PINN-like methods over data-driven

modeling methods.

Table 1. The setups and the relative L1 errors of pressure coefficient distribution for different

cases.

 Ma  Airfoil FVM error Pre-trained error

Case1 0.2 -5 NACA0012 0.034 0.031

Case2 0.3 -3 NACA4412 0.031 0.037

Case3 0.4 -1 RAE2822 0.036 0.018

Case4 0.5 1 RAE5214 0.037 0.034

Case5 0.6 3 S2050 0.023 0.143

Case6 0.4 5 S9000 0.024 0.060

Figure 5. The pressure coefficient distributions obtained by FVM and pre-trained NNfoil-C for

different cases.

3.2 Fine-tuned model

In this section, we fine-tune the pre-trained model for each case in the previous

section to achieve higher accuracy. A popular fine-tuning method is to fine-tune a few

inherent parameters while leaving the majority of parameters unchanged in model

11

adaption. This approach does not seek to change the internal structure of a model but

to optimize a small number of internal parameters to solve particular tasks, thereby

obtaining good results with a small computational cost and avoiding overfitting.

We freeze the parameters of the first n hidden layers of the pre-trained model

separately (0,2, ,8n =) and perform 500 iterations of gradient descent using the

LBFGS optimizer, where 0n = indicates all parameters are trainable. Figure 6

illustrates the variation of errors over training time for the fine-tuned models with

different frozen layers of the neural network. The error is the mean of 30 results, derived

from the six cases in Section 3.1, with each case undergoing five random training.

Unlike fine-tuning in supervised learning, fine-tuning applied to NNfoil-C does not

encounter overfitting because NNfoil-C is a solution model. Therefore, maintaining all

parameters trainable yields the highest accuracy, as illustrated in Figure 6.

Figure 6. Average errors against wall time for different frozen layers.

As shown in Figure 7, after fine-tuning the pre-trained model, the accuracy of all

results has been significantly improved, achieving an accuracy comparable to FVM.

Table 2 lists detailed information about the time and accuracy of FVM and fine-tuned

model. In addition, the time and accuracy of solving each flow separately using NNfoil

are also listed. The fine-tuned model takes only about one-twentieth of NNfoil and one-

third of FVM, but achieves comparable accuracy to them. Furthermore, NNfoil-C will

demonstrate more significant advantages in a series of similar repetitive tasks, as will

be shown in the next section.

12

Figure 7. The pressure coefficient distributions obtained by FVM and fine-tuned NNfoil-C for

different cases.

Table 2. Errors and wall time for results obtained by FVM, fine-tuned NNfoil-C, and NNfoil. This

table is not meant as a rigorous comparison of the computational efficiency of the two frameworks

due to many different factors involved.

FVM Fine-tuned NNfoil-C NNfoil

pC error wall time
pC error wall time

pC error wall time

Case1 0.034 56.0s 0.036 20.3s 0.038 434s

Case2 0.031 57.3s 0.020 19.9s 0.037 612s

Case3 0.036 57.7s 0.019 15.0s 0.015 338s

Case4 0.037 74.4s 0.027 20.0s 0.022 265s

Case5 0.023 90.0s 0.023 18.7s 0.018 366s

Case6 0.024 53.6s 0.025 19.9s 0.015 488s

4 Applications

4.1 Airfoil flow simulation

In aerodynamics, when assessing the performance of an airfoil, it is imperative to

analyze its aerodynamic characteristics and forces under varying Mach numbers and

angles of attack. In this application, instead of fine-tuning the model for each specific

flow, we fine-tune the model in a new sampling space where the shape remains constant

but the Mach number and the angle of attack varies. We consider the NACA2412 airfoil

with [0.4,0.6]Ma and [5 ,5]  − .

13

We fine-tune the pre-trained model by performing 5000 iterations of gradient

descent, taking a total of 122 seconds. The time is equivalent to the computational cost

of solving the flow using FVM only twice. Figure 8 shows the results of the pre-trained

model and the fine-tuned model under different Mach numbers and angles of attack.

We observe that the results of the model are consistent with the reference solution in

the first four examples. However, both the pre-trained and the fine-tuned models exhibit

significant errors at 6 50. ,Ma = = . This discrepancy is attributed to the presence of

a shock wave in the flow, which the current version of NNfoil is still unable to capture.

This difficulty may be solved in the future by using recent advances in the field such as

[27,28]. Figure 9 shows the lift line at 0.4Ma = , and we observe a significant

improvement through fine-tuning the pre-trained model.

Figure 8. The pressure coefficient distributions for the NACA2412 airfoil at various Mach

numbers and angles of attack.

Figure 9. The lift line of the NACA2414 airfoil at Ma = 0.4.

14

4.2 Airfoil inverse design

Aerodynamic shape design has persistently posed a challenging issue in aerospace

engineering. It endeavors to optimize airfoil shape to attain optimal performance in key

physical parameters, such as maximizing lift-to-drag ratio or minimizing drag. Inverse

design is a branch of aerodynamic shape design whose goal is to determine the target

shape for a set of desired flow parameters. In traditional numerical methods, such

optimization problems are invariably solved using some variant of gradient descent

algorithm, often involving hundreds of repeated ‘full solves’ of the forward problem.

Therefore, such tasks are often prohibitively expensive and require complex formulas

and code.

Since the complete state-space solution model has been established and the model

is end-to-end differentiable, we can quickly obtain the gradient of the optimization

objective to the design variables (the CST parameters), thereby achieving efficient

shape design optimization. We consider an inverse design task with the flow conditions

0.4Ma = and 3 = . We aim to optimize the initial NACA0012 airfoil to align its

wall pressure distribution with that of the RAE2822 airfoil, quantifying the objective

through mean squared error in surface pressure distributions. Thus, the optimal shape

for this task is the RAE2822 airfoil, and the optimization error is defined as the relative

L1 error between the current airfoil shape and the RAE2822 airfoil.

Considering the rapid evaluation capability of the pre-trained model, the first stage

of optimization is to use the BFGS algorithm to obtain the optimal shape based on the

pre-trained model. For any airfoil, the flow variables output from the pre-trained model

are used to calculate the optimization objective, and then automatic differentiation is

used to calculate the gradients of the optimization objective with respect to the design

variables. In the second stage of optimization, we initialize with the design airfoil from

the first stage. For any airfoil, to obtain more accurate flow and gradients of the design

variables, we fine-tune the model. Instead of fine-tuning the pre-training model for each

specific shape, we are constantly fine-tuning the model with the change of shape.

The history of optimization objective and optimization error as shown in Figure

10. We observe that, following the shape optimization in the first stage, the second stage

converges within 5 iterations, achieving lower objective and error. As shown in Table

3, the wall time for the first stage is only 0.045 seconds, thanks to the fast predictive

and end-to-end differentiable capabilities of the pre-trained model. Through fine-tuning

the model, the optimization error is reduced by about 42%. Despite the significantly

15

longer wall time of the second stage compared to the first stage, the overall cost of the

inverse design is about 2.2 min, which remains much lower than traditional methods.

Figure 10. (a) Optimization objective and (b) optimization error with respect to iterative steps of

design optimization. The grey region is the first stage, and the light region is the second stage.

Table 3. The optimization objective, optimization error, and wall time of the first stage and the

second stage.

 objective error wall time

First stage 1.2e-4 0.031 0.05s

Second stage 9.5e-5 0.018 152s

Figure 11 shows the designed airfoil along with its pressure distribution. We

observed that the pressure distribution of the designed airfoil is closely aligns with the

target pressure distribution, but there are still slight discrepancies between the designed

airfoil and the target airfoil. This is because the pressure distribution of the RAE2822

airfoil is obtained by FVM, which is not completely consistent with the pressure

distribution of the fine-tuned model. Nevertheless, the precision of the designed shape

remains acceptable.

16

Figure 11. (a) Pressure distribution and (b) Airfoil before and after optimization.

5 Conclusions

In this article, we employ the parametric PINN method to construct a complete

state-space solution model designed to yield solutions for subsonic inviscid flow around

airfoils across a broad spectrum of flow conditions and shapes. Unlike traditional

numerical methods that must solve each flow individually, the model can

simultaneously obtain continuous solutions in a broad state-space, requiring only 18.8

hours of training (comparable to about 225 times the computational cost of solving a

single flow). Moreover, the model allows to be fine-tuned on specific tasks, thereby

quickly achieving accuracy comparable to the finite volume method. With its fast

prediction capability and end-to-end differentiability, the model can complete airfoil

flow simulation and shape reverse design tasks in about 1 second. As an option, we can

fine-tune the model to achieve higher accuracy on both tasks, requiring only about 2

minutes. In contrast, traditional methods often require solving the flow field about

hundreds of times in these tasks.

In comparison to data-driven modeling methods, the characteristics of parametric

PINN method, including the utilization of unlabeled data and the ability to fine-tune the

model, make it an appealing proxy modeling approach. On the one hand, it eliminates

the need for extensive and costly labeled data. On the other hand, the rapid fine-tuning

of the model contributes to a swift enhancement of accuracy, increasing result reliability,

and reducing the reliance on the network’s representational capacity. In current research,

the accuracy improvement from fine-tuning is still constrained by the accuracy of the

PINN method. As the accuracy and efficiency of the PINN method increase, its

advantages will become more pronounced.

17

Despite this, we argue that parametric PINN method should not be regarded as a

complete replacement for data-driven methods or traditional numerical methods. On

the one hand, this method relies on accurate governing equations, which may not exist

in many complex systems. On the other hand, the current generation of PINN still has

limited accuracy and faces challenges in solving many complex problems. However, as

knowledge about training PINN improves and hardware dedicated to neural networks

becomes faster, parametric PINN methods will demonstrate superiority in addressing a

broader range of problems.

Data Availability Statement

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

Conflict of Interest Statement

The authors have no conflicts to disclose.

Acknowledgments

We would like to acknowledge the support of the National Natural Science

Foundation of China (No. 92152301).

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with

deep convolutional neural networks, Advances in neural information processing

systems 25 (2012).

[2] T. N. Kipf and M. Welling, Semi-supervised classification with graph

convolutional networks, arXiv preprint arXiv:1609.02907 (2016).

[3] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with

neural networks, Advances in neural information processing systems 27 (2014).

[4] M. Jaderberg, K. Simonyan, and A. Zisserman, Spatial transformer networks,

Advances in neural information processing systems 28 (2015).

[5] J.-W. Hu and W.-W. Zhang, Mesh-conv: Convolution operator with mesh

resolution independence for flow field modeling, Journal of Computational Physics 452

(2022).

[6] M. I. Jordan and T. M. Mitchell, Machine learning: Trends, perspectives, and

prospects, Science 349, 255 (2015).

18

[7] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, Journal of Computational Physics

378, 686 (2019).

[8] E. Weinan and B. Yu, The deep ritz method: A deep learning-based numerical

algorithm for solving variational problems, Communications in Mathematics and

Statistics 6, 1 (2018).

[9] J. Sirignano and K. Spiliopoulos, Dgm: A deep learning algorithm for solving

partial differential equations, Journal of Computational Physics 375, 1339 (2018).

[10] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L.

Yang, Physics-informed machine learning, Nature Reviews Physics 3, 422 (2021).

[11] L. Lu, X. H. Meng, Z. P. Mao, and G. E. Karniadakis, Deepxde: A deep

learning library for solving differential equations, Siam Review 63, 208 (2021).

[12] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, Physics-informed

neural networks (pinns) for fluid mechanics: A review, Acta Mechanica Sinica 37, 1727

(2022).

[13] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F.

Piccialli, Scientific machine learning through physics–informed neural networks:

Where we are and what’s next, Journal of Scientific Computing 92, 88 (2022).

[14] S. Cai, Z. Wang, F. Fuest, Y. J. Jeon, C. Gray, and G. E. Karniadakis, Flow

over an espresso cup: Inferring 3-d velocity and pressure fields from tomographic

background oriented schlieren via physics-informed neural networks, Journal of Fluid

Mechanics 915, A102 (2021).

[15] M. Raissi, A. Yazdani, and G. E. Karniadakis, Hidden fluid mechanics: A

navier-stokes informed deep learning framework for assimilating flow visualization

data, arXiv preprint arXiv:1808.04327 (2018).

[16] M. Raissi, A. Yazdani, and G. E. Karniadakis, Hidden fluid mechanics:

Learning velocity and pressure fields from flow visualizations, Science 367, 1026

(2020).

[17] H. Wang, Y. Liu, and S. Wang, Dense velocity reconstruction from particle

image velocimetry/particle tracking velocimetry using a physics-informed neural

network, Physics of Fluids 34, 017116 (2022).

[18] P. Yin, G. Xiao, K. Tang, and C. Yang, Aonn: An adjoint-oriented neural

network method for all-at-once solutions of parametric optimal control problems, arXiv

19

preprint arXiv:2302.02076 (2023).

[19] N. Demo, M. Strazzullo, and G. Rozza, An extended physics informed

neural network for preliminary analysis of parametric optimal control problems,

Computers & Mathematics with Applications 143, 383 (2023).

[20] S. Mowlavi and S. Nabi, Optimal control of pdes using physics-informed

neural networks, Journal of Computational Physics 473 (2023).

[21] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G. Johnson,

Physics-informed neural networks with hard constraints for inverse design\ast, Siam

Journal on Scientific Computing 43, B1105 (2021).

[22] L. Sun, H. Gao, S. Pan, and J.-X. Wang, Surrogate modeling for fluid

flows based on physics-constrained deep learning without simulation data, Computer

Methods in Applied Mechanics and Engineering 361 (2020).

[23] Y. Sun, U. Sengupta, and M. Juniper, Physics-informed deep learning for

simultaneous surrogate modeling and pde-constrained optimization of an airfoil

geometry, Computer Methods in Applied Mechanics and Engineering 411 (2023).

[24] W. Cao, J. Song, and W. Zhang, A solver for subsonic flow around airfoils

based on physics-informed neural networks and mesh transformation 2024).

[25] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,

Automatic differentiation in machine learning: A survey, Journal of Machine Learning

Research 18, 153 (2018).

[26] B. M. Kulfan, Universal parametric geometry representation method,

Journal of Aircraft 45, 142 (2008).

[27] L. Liu, S. Liu, H. Xie, F. Xiong, T. Yu, M. Xiao, L. Liu, and H. Yong,

Discontinuity computing using physics-informed neural networks, Available at SSRN

4224074.

[28] Z. Mao, A. D. Jagtap, and G. E. Karniadakis, Physics-informed neural

networks for high-speed flows, Computer Methods in Applied Mechanics and

Engineering 360 (2020).

Appendix

The Class-Shape function Transformation (CST) method is widely used in airfoil

representation less design parameters and higher accuracy in geometric fitting.

The upper and lower surfaces of the airfoil can be expressed as

20

,

,

() ()

() ()

u te

l

u

te l

y C x S x x y

y C x S x x y

=  + 

=  + 
 (A-1)

where
,te uy and

,te ly are the airfoil trailing edge thickness, they are zero in this

paper. The class function and shape function are defined as

1 2

0 0

() () (1) ,0 1

!
() () () (1)

!()!

N N

i

n

i

n
i n i

i i

i

C x x x x

n
S x A S x A x x

i n i

−

= =

= −  

=  =   −
−

 
 (A-2)

where different combinations of the exponents 1N and 2N in the class function

define a variety of basic general classes of geometric shapes. For a round-nose airfoil

1 0.5N = and 2 1.0N = . n is the order of Bernstein polynomial. iA is the design

parameter.

