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Abstract

The field of digital libraries (DLs) coalesced in 1994: the first digital library con-
ferences were held that year, awareness of the World Wide Web was accelerating,
and the National Science Foundation awarded $24 Million (U.S.) for the Digital
Library Initiative (DLI). In this paper we examine the state of the DL domain af-
ter a decade of activity by applying social network analysis to the co-authorship
network of the past ACM, IEEE, and joint ACM/IEEE digital library conferences.
We base our analysis on a common binary undirectional network model to repre-
sent the co-authorship network, and from it we extract several established network
measures. We also introduce a weighted directional network model to represent
the co-authorship network, for which we define AuthorRank as an indicator of the
impact of an individual author in the network. The results are validated against
conference program committee members in the same period. The results show clear
advantages of PageRank and AuthorRank over degree, closeness and betweenness
centrality metrics. We also investigate the amount and nature of international par-
ticipation in Joint Conference on Digital Libraries (JCDL).
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1 Introduction and Motivation

In 1994, the National Science Foundation awarded $24 Million (U.S.) to six
institutions, thereby officially kicking off the federally-sponsored DL research
program. Also in 1994, the first of what was later to become the IEEE Ad-
vances in Digital Libraries (ADL) conference and the ACM Digital Libraries
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(DL) conference were held in New Jersey and Texas, respectively. In 2001, the
two conference series were merged and the first ACM/IEEE Joint Conference
on Digital Libraries (JCDL) was held in Virginia. These conferences have in-
duced a pattern of collaborations which has shaped the domain of DLs over
the past decade. To study the structure of these collaborations, and thereby
learn more about the DL research community itself, we used social network
analysis to investigate authorship trends in the composite corpus of the DL,
ADL and JCDL conferences.

Many co-authorship networks have been studied (Newman, 2001a,Smeaton et al., 2002,Farkas et al., 2002
to investigate the structure of scientific collaborations, and several have stud-
ied DL discipline in general (Mutschke, 2001,Cunningham, 2001). The DL
community offers an interesting case study for a number of reasons. Firstly, it
is a quickly growing, dynamic field which has only existed since approximately
1994. Investigations of its present status and structure will yield valuable data
for future longitudinal studies. Secondly, the domain of DLs is a highly mul-
tidisciplinary community which has attracted researchers from a wide area of
expertise, e.g. databases, networking, information and library science, human
computer interaction, high performance computing, archiving, and education.
This enriches DL research with the expertise of a variety of scholars, but may
lead to fractionating of the community. Lastly, in such a dynamic, and new
domain, few journals exist that are peer-reviewed and included in the ISI Jour-
nal Citation Reports. This makes it difficult to assess the status, impact and
influence of researchers and their institutions if traditional methods cannot be
applied.

We are interested in the structure of collaborations within the DL research
community and quantitative metrics for the concepts of status and influence.
In this paper, we study author status by determining author centrality in a
co-authorship network derived from the ADL, DL and JCDL conferences from
1994-2004. Other DL conferences exist: the European Conference on Digital
Libraries (ECDL) began in 1997, the International Conference on Asian Dig-
ital Libraries (ICADL) began in 1998, and the Russian Conference on Digital
Libraries (RCDL) began in 1999. In addition to these conferences, the DL
research community is covered by online serials such as D-Lib Magazine and
the Journal of Digital Information. Although there is a Journal of Digital Li-
braries, much of the DL research results are covered in traditional journals by
the respective communities outlined above. We chose the ADL, DL and JCDL
conference series because of our familiarity with the conferences, the ease of
automated data collection of them, their longevity, their sponsorship by the
ACM and IEEE, and the fact that they were the first such conferences to be
held. Although ADL, DL and JCDL are international conferences, the fact
that they are always held in the U.S. will surely influence the results, because
attendance of an author is required for paper acceptance.
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To perform this analysis, we built a weighted directional network model to
represent collaboration relationships. We applied a variety of centrality mea-
sures to investigate this network and then defined AuthorRank, an alternative
centrality metric which exploits the features of such networks. The result is
validated against the set of past DL, ADL and JCDL program committee
members on the assumption that program committee members can be re-
garded as prestigious actors in a field. Our results show clear advantages of
the use of AuthorRank and PageRank.

2 Background and Related Work

Social network analysis has attracted considerable interest in recent years and
plays an important role in many disciplines (Otte and Rousseau, 2002,Wasserman and Faust, 1994,Scott,
A popular culture example is the Oracle Of Bacon project (Tjaden, 2003),
which determines the distance between any actor and Kevin Bacon by ex-
amining movie co-starring relationships. This fun example demonstrates the
usefulness that can arise by adapting the concept of a relationship in social
network analysis to the domain of interest. By defining a relationship to be
the co-authoring of an ADL, DL or JCDL conference paper, we can bring
social network analysis methods to bear on our analysis of the DL research
community.

2.1 Social Network Analysis

Social network analysis is based on the premise that the relationships between
social actors can be described by a graph. The graph’s nodes represent social
actors and the graph’s edges connect pairs of nodes and thus represent so-
cial interactions. This representation allows researchers to apply graph theory
(Wasserman and Faust, 1994) to the analysis of what would otherwise be con-
sidered an inherently elusive and poorly understood problem: the tangled web
of our social interactions. In this article, we will assume such graph represen-
tation and use the terms node, actor, and author interchangeably. The terms
edge, relationship, and co-authorship are also used interchangeably.

Given that we have established a social network graph, we can describe its
properties on two levels, namely by global graph metrics and individual actor
properties. Global graph metrics seek to describe the characteristic of a social
network as a whole, for example the graph’s diameter, mean node distance, the
number of components (fully connected subgraphs), cliques, clusters, small-
worldness, etc. Actor properties relate to the analysis of the individual prop-
erties of network actors, e.g. actor status, distance, and position in a cluster.
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The status of an actor is usually expressed in terms of its centrality, i.e. a
measure of how central the actor is to the network graph. Central actors are
well connected to other actors and metrics of centrality will therefore attempt
to measure an actor’s degree (number of in- and out- links), average distance
to all other actors, or the degree to which geodesic paths between any pair of
actors passes through the actor.

A class of impact metrics focuses on the recursive nature of status. Clearly,
when one is endorsed by a high status actor, this increases one’s status more
than being endorsed by a low status actor. Hence, one’s status can be derived
from the status of the actors one is linked to. This leads to a recursive def-
inition of status which is mathematically addressed by eigenvector analysis.
Since the web’s hyperlink structure mimics the properties of a social network
graph (WWW pages are nodes, hyperlink are edges), eigenvector analysis can
also used to measure the prestige of web pages; well-known algorithms include
PageRank (Page et al., 1998), SALSA (Lempel and Moran, 2000) and HITS
(Kleinberg, 1999). However, in these algorithms all edges by definition have
binary weights: a hyperlink either exists or does not exist, and a social relation-
ship exists or does not exist. Bharat and Henzinger (Bharat and Henzinger, 1998)
developed a weighted edge scheme to improve the HITS algorithm. Given
its formulation, it is also possible to modify the assumption of equiproba-
bility underlying PageRank’s formulation to take edge weight into account
(Chakrabarti, 2003).

2.2 Co-Authorship Networks

Co-authorship networks are an important class of social networks and have
been used extensively to determine the structure of scientific collaborations
and the status of individual researchers. Although somewhat similar to the
much studied citation networks in the scientific literature (Garfield, 1979), co-
authorship implies a much stronger social bond than citation. Citations can
occur without the authors knowing each other and can span across time. Co-
authorship implies a temporal and collegial relationship that places it more
squarely in the realm of social network analysis.

An early example of a co-authorship network is the Erdös Number Project,
in which the smallest number of co-authorship links between any individ-
ual mathematician and the Hungarian mathematician Erdös are calculated
(Castro and Grossman, 1999). (A mathematician’s “Erdös Number” is anal-
ogous to an actor’s “Bacon Number”.) Newman studied and compared the co-
authorship graph of arXiv, Medline, SPIRES, and NCSTRL (Newman, 2001a,Newman, 2001b)
and found a number of network differences between experimental and theoret-
ical disciplines. Co-authorship analysis has also been applied to various ACM
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conferences: Information Retrieval (SIGIR) (Smeaton et al., 2002), Manage-
ment of Data (SIGMOD) (Nascimento et al., 2003) and Hypertext (Chen and Carr, 1999),
as well as mathematics and neuroscience (Farkas et al., 2002), information sys-
tems (Cunningham and Dillon, 1997), and the field of social network analysis
(Otte and Rousseau, 2002). International co-authorship networks have been
studied in Journal of American Society for Information Science & Technology
(JASIST) (He and Spink, 2002) and Science Citation Index (Wagner and Leydesdorff, 2003).

3 Constructing Co-Authorship Networks

We present the representational foundations of our work by discussing three
approaches to model co-authorship networks. The first model is a traditional
undirected, binary graph, the second model is a directed, binary network
which allows calculation of actor prestige, and in the third model we con-
sider weighted co-authorship relations in the network. A set of centrality and
prestige metrics is adapted to operate on the resulting graphs. In particular,
we propose AuthorRank, a weighted version of PageRank.

3.1 Binary, Undirected Co-Authorship Networks

A simple and widely used co-authorship network model is based on an undi-
rected, binary graph G in with each edge represents a co-authorship relation-
ship.

Consider two articles:

article authors

article 1 → {v1, v2, v3}

article 2 → {v1, v2}

If any two authors co-authored an article, an edge with unit weight is created
(Figure 1(a)). For example, in the table above, authors v1 and v2 would be
connected by an edge since they co-authored article 1.

The resulting graph is denoted as an undirected unit-weighted graph G =
(V, E), where the set of n authors is denoted V = {v1, ...vn} and E ⊆ V 2

represents the edges between authors. As will be shown in following sections,
various graph metrics can be extracted from this kind of network.
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V1 V2

V3

(a) Binary
undirected
network

V1 V2

V3

(b) Binary di-
rected network

Article 1: V1-V2-V3

Article 2: V1-V2

Exclusivity:

Article 1: V1-V2 = 0.5

Article 1: V1-V3 = 0.5

Article 1: V2-V3 = 0.5

Article 2: V1-V2 =1

Co-authorship frequency

V1-V2: 1.5

V1-V3: 0.5

V2-V3: 0.5

Normalized weight
V1->V2: 1.5/2=0.75

V2->V1: 1.5/2=0.75

V1->V3: 0.5/2 =0.25

V3->V1: 0.5/1=0.5

V2->V3: 0.5/2=0.25

V3->V2: 0.5/1=0.5

V1

V2

V3

0.75

0.75

0.25
0.5

0.5

0.25

(c) Weighted directed network

Fig. 1. Representations of co-authorship network

3.2 Binary, Directed Co-Authorship Networks

In order to measure prestige of an author, we must distinguish “endorsement”
accorded from endorsement received by authors. In social network analysis, the
concept of prestige is defined for directional relationships. In order to convert a
co-authorship graph to a directed graph, we make the following assumptions:

(1) any undirected network can be represented as a directed network with
symmetric linkage, i.e. every edge in the undirected network G is replaced
by two, symmetrical directed edges;

(2) the resulting directional, symmetrical edges represent the mutual endorse-
ment of authors. In fact, in a random walk model, the directional edges
can be understood as the bi-directional movement of a surfer;

(3) The edge weight is a binary value, indicating the presence or absence of
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two symmetrical edges.

The resulting graph is denoted as a directed unit-weighted graph (Figure 1(b)).
As will be shown in the following sections, PageRank and other prestige mea-
sures can be applied to this network.

3.3 Weighted, Directed Co-Authorship Networks

The binary graph representation of co-authorship network omits a number of
factors which shape collaboration patterns among authors. There are many
cases in which the binary network does not correspond with a common sense
notion of magnitude. For example, if two authors co-publish many papers,
should the link between them be considered more important than the link
between occasional co-authors? Also, if one article has two authors and an-
other article has a hundred authors, should the authors in the first article be
considered more connected than those of the second article?

To allow an expression of relationship magnitude we represent the co-authorship
network as a directed weighted graph. The co-authorship graph G is denoted
G = (V, E, W ), where V is the set of nodes (authors), E is the set of edges
(co-author relationships between authors), and W is the set of weights wij

associated with each edge connecting a pair of authors (vi, vj).

We propose to determine the magnitude of the link between two authors on
the basis of two factors:

(1) Frequency of co-authorship: authors that frequently co-author should
have a higher co-authorship weight.

(2) Total number of co-authors on articles: if an article has many authors,
each individual co-author relationship should be weighted less.

We can now determine the weight of co-authorship links. Let the set of n
authors be denoted as V = {v1, ...vn}. Let the set of m articles be denoted as
A = {a1, ..., ak, ...am}, and f(ak) be the number of authors of article ak. We
define:

Exclusivity: If authors vi and vj are co-authors in article ak,

gi,j,k = 1/(f(ak) − 1) (1)

gi,j,k represents the degree to which author vi and vj have an exclusive co-
authorship relation for a particular article. This definition gives more weight
to co-author relationships in articles with fewer total co-authors than articles
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with large numbers of co-authors, i.e. it weighs the co-authorship relation in
terms of how exclusive it is.

Co-authorship frequency:

cij =
m∑

k=1

gi,j,k (2)

The co-authorship frequency consists of the sum of all gi,j,k values for all
articles co-authored by vi and vj . This gives more weight to authors who
co-publish more papers together, and do so exclusively.

Normalized weight:

wij =
cij

n∑
k=1

cik

(3)

This normalization ensures that the weights of an author’s relationships sum
to one.

The notions of exclusivity and frequency used in determining co-authorship
relations correspond to the principles underlying Term Frequency vs. Inverse
Document Frequency (TFIDF) weighting used in IR (Baeza-Yates and Ribeiro-Neto, 1999).
A TFIDF term weight expresses how strongly a term is tied to a particular
document on the basis of how frequently the term occurs in the document it-
self versus how frequently it occurs in all documents in the collection. In other
words, a term which is exclusively tied to a particular document will be most
frequent within the document itself, i.e. its term frequency is high, while being
relatively rare across the collection, i.e. its document frequency is low. In the
same manner, we normalize the raw co-authorship frequency by the number
of co-authors, the latter an indication of how exclusive or non-exclusive the
co-authorship relations is.

The proposed weighting scheme also has an intuitive basis in random walks on
graphs (Figure 1(c)). The normalized weight corresponds to the probability
distribution of a random walk on the co-authorship graph. A random walker
may choose to start navigating the network from any author. In Figure 1(c),
if the walk starts from author v1, the walker may travel to v2 or v3 with
probability 0.75 and 0.25 respectively. If the walker starts from author v3,
however, the walker has the same probability of visiting v1 or v2. The weighted
co-authorship also has an intuitive meaning as the endorsement of an author.
For example, from Figure 1(c), we can understand that v1 and v2 have a higher
mutual endorsement since they co-authored more papers.
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3.4 Metrics for Co-Authorship Network

A number of social network metrics are available for measuring the charac-
teristics of a binary undirected collaboration network, including components
analysis, small world analysis, and centrality analysis. These metrics measure
various network properties and some may only be applied under certain con-
ditions. The metrics used in this paper and their applicability are listed in
Table 1 and discussed below.

Table 1
Co-authorship network metrics

Metric Type Property Scope Importance

Binary Weighted Actor Global Whole Largest Centrality Prestige

Network Component

Component × × ×

Small World × × ×

Cluster × × ×

Closeness × × × ×

Betweenness × × × ×

Degree × × × ×

PageRank × × × ×

AuthorRank × × × ×

3.4.1 Component size analysis

A component of a graph is a subset with the characteristic that there is a
path between any node and any other node of this subset. A co-authorship
network usually consists of many disconnected components (e.g. disconnected
research groups or individuals), and component analysis can be used to learn
about the structure of the network. Some network analysis methods are only
widely used in connected networks. Therefore, in networks with disconnected
components, those methods are typically only applied to the largest connected
component, as shown in Table 1.

3.4.2 Degree, closeness, betweenness centrality

We have adapted three common centrality metrics, namely degree centrality,
closeness centrality, and betweenness centrality (Wasserman and Faust, 1994),
for their use on binary, undirected co-authorship networks.
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Degree centrality of a node is defined as the total number of edges that are
adjacent to this node. Degree centrality represents the simplest instantiation
of the notion of centrality since it measures only how many connections tie
authors to their immediate neighbors in the network.

However, authors may be well connected to their immediate neighbors but be
part of a relatively isolated clique. Although locally well connected, overall
centrality is low. Closeness centrality therefore expands the definition of de-
gree centrality by focusing on how close an author is to all other authors. To
calculate a node’s closeness centrality we determine its shortest-path distances
to all authors in the network and invert these values to a metric of closeness.
A central author is thus characterized by many, short connections to other
authors in the networks.

Betweenness centrality represents a different operationalization of centrality.
It is based on determining how often a particular node is found on the shortest
path between any pair of nodes in the network. Nodes that are often on the
shortest-path between other nodes are deemed highly central because they
control the flow of information in the network. Betweenness centrality can be
used in disconnected networks, however it may generate a large number of
nodes with zero centrality, since many nodes may not act as a bridge in the
network.

Though the discussed centrality metrics can be extended to directed and
weighted networks, this has received less attention (Newman, 2004,Wasserman and Faust, 1994).
In this article we will focus on their usage in binary, undirected networks.

3.4.3 Eigenvector centrality or PageRank

PageRank is the ranking mechanism at the heart of Google (Page and Brin, 1998,Page et al., 1998).
In PageRank, a hyperlink is understood as an “endorsement” relationship.
PageRank’s definition of prestige deviates from the degree, closeness and be-
tweenness centrality by modeling inherited or transferred status.

A page has high rank if the sum of the ranks of its backlinks is high. This covers
both the case when a page has many backlinks and when a page has a few
highly ranked backlinks. PageRank can be calculated using a simple iterative
algorithm, and corresponds to the principal eigenvector of the normalized link
matrix of the web.

PageRank is originally designed to rank retrieval results based on the hyper-
link structure of the web, which is a directed but binary graph in nature,
therefore we apply PageRank to the binary directed network model. Our work
is inspired by a variety of proposals to extend PageRank to weighted and
bi-directional networks. Eigenvalue centrality was originally intended for an
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undirected graph (Bonacich, 1972). Applying PageRank and related centrality
measures in a weighted environment is discussed in (Newman, 2004,Newman, 2003).
Other variations and improvements to PageRank include a “topic sensitive”
PageRank to improve search performance (Haveliwala, 2003), distributed com-
putation techniques for calculating PageRank (Sankaralingam et al., 2003,Wang and DeWitt, 2004),
and faster computation of PageRank (Kamvar et al., 2003).

3.4.4 AuthorRank: PageRank for weighted, directional networks

We submit that PageRank can be applied to an undirectional co-authorship
graph by transforming each undirectional edge into a set of two directional,
symmetrical edges. However, the reduction of edge weights to binary values
entails a severe loss of information. The generated co-authorship weights ex-
press valuable information which should, and can, be taken into account when
calculating PageRank values over a weighted co-authorship graph.

We therefore define AuthorRank, a modification of PageRank which considers
link weight. It is based on a modification of the PageRank assumption that
a node transfers its PageRank values evenly to all the nodes it connects to.
Indeed, PageRank assumes that when a node A connects to n other nodes, each
receives a fraction 1

n
of PR(A). In probabilistic terms, this models a random

walker who is equally probable to walk from node A to each of its connecting
nodes. However, in reality, the chances of link traversal can be expected to be
distributed quite unevenly and according to the degree of relationship between
A and the nodes it connects to. Our co-authorship link weights express how
strongly related two nodes, or authors, are in the co-authorship graph and
these weights can therefore be used to determine the amount of PageRank
that should be transferred from node A to the nodes it connects to (Figure
2).

The AuthorRank of an author i is then given as follows:

AR(i) = (1 − d)+ d (AR(1) × w1,i + · · ·+ AR(n) × wn,i)

AR(i) = (1 − d)+ d
n∑

j=0

AR(j) × wj,i

where AR(j) corresponds to the AuthorRank of the backlinking node, and
wj,i corresponds to the edge weight between node j and i. The AuthorRank
can be calculated with the same iterative algorithm used by PageRank. One
may think of AuthorRank as a generalization of PageRank by substituting
wj,i with 1

C(j)
in PageRank, in which C(j) is defined as the number of links

going out of page j.
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Looking at the example network underlying Figure 1 and Figure 2, Author-
Rank better reveals status of actors than centrality measures and PageRank.
When collaboration frequency and exclusivity are considered, v1 and v2 are
more prestigious than v3 in the network, AuthorRank captures this property,
while centrality measures and PageRank cannot.

A

B

C

D

1/3

1/3

1/3

(a) PageRank: A
connects to B,C,D
and transfers 1/3

A

B

C

D

1/2

1/4

1/4

(b) AuthorRank:
A connects to
B,C,D and trans-
fers according to
link weight

Fig. 2. Weight transfer in PageRank and AuthorRank

4 DL Research Community Co-Authorship Analysis

4.1 Generating the Co-authorship Network

We extracted co-authorship data from DBLP (http://dblp.uni-trier.de/) for
ACM DL (1995-2000), IEEE ADL (1994-2000), and JCDL (2001-2003). This
includes all long papers, short papers, posters, demonstrations, and organizers
of workshops. 1 The dataset contained 1567 authors, 759 publications, and
3401 co-authorship relationship pairs. Some statistics are readily available
from this data set. For example, the number of articles, authors, international
(non-US) authors, and new authors per year are shown in Figure 3. It can be
seen that number of articles and the number of authors are highly correlated,
and that a major boost occurred following the merger of the ACM/IEEE DL
series into a single JCDL conference. Figure 4 shows the number of publica-
tions per author. The values range between 1 and 22, with 4 authors publishing
more than 10 papers and 78% of the authors publishing only 1 paper and 95%

1 Unfortunately, due to an error in DBLP, the DL 94 dataset was omitted. We do
not believe this omission will significantly alter our findings.
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authors having 3 papers or less. Authors with 8 or more publications are shown
in Table 2. Each paper has a mean of 3.02 authors and a median of 3 authors.
The distribution of number of authors per paper is shown in Table 3.

We also studied international collaboration. Approximately 72% (1133/1567)
of the authors are affiliated with U.S. institutions. We discovered that among
3401 co-authorship relationships, only about 7% are collaborations between
authors from different countries. A country collaboration network is created
by accumulating cross-country collaborations from the author network. Fig-
ure 5 shows the result; countries are represented by domain names, and two
countries are closer to each other if authors from those countries collaborated
closely. The figure can only be considered approximate due to the limitations
of the visualization technology used. Figure 5 shows that JCDL community
is centered around .us, with .uk, .nz, and .sg closely surrounding .us; .nz and
.de also play significant roles in connecting different countries. There are nine
countries (.es, .ie, .at, .hu, .nl, .in, .kr, .il, and .za; with 61 authors) that are
not connected with other countries. The distribution of authors from each
country is shown in Figure 6.
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Fig. 3. Articles, authors, international authors, and new authors per year
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Fig. 5. Country network

4.2 Component Size Analysis

Similar to observations from previous research in co-authorship networks, the
DL co-authorship network is not a single connected graph. The largest com-
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Table 2
Authors with 8 or more publications

Name Publications

Hsinchun Chen 22

Edward A. Fox 17

Ian H. Witten 16

Hector Garcia-Molina 13

Alexander G. Hauptmann 10

Gary Marchionini 10

Judith Klavans 9

Carl Lagoze 9

Michael L. Nelson 9

David Bainbridge 8

Richard Furuta 8

Ee-Peng Lim 8

Catherine C. Marshall 8

Terence R. Smith 8

ponent of the network has 599 authors, the second largest component has 31
nodes and so on. The entire co-authorship network with all components is
visualized in Figure 7, in which nodes represent authors and links represent
co-authorship relationship. The largest component is on the left side of the
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Table 3
Distribution of number of authors per paper

Number of authors Number of papers Percentage

1 149 19.6%

2 216 28.5%

3 179 23.6%

4 94 12.4%

5 45 5.9%

6 33 4.3%

7 20 2.6%

8 7 0.9%

9 4 0.5%

10 5 0.7%

11 1 0.1%

12 2 0.3%

13 1 0.1%

14 1 0.1%

15 2 0.3%

total 100%

Figure, while the right side shows many small components. Well-connected
components are recognizable by their very dense (dark) shape.

Nascimento (Nascimento et al., 2003) reports that the largest component in
SIGMOD’s co-authorship graph has about 60% of all authors. In the four co-
authorship networks studied by Newman (Newman, 2001a), NCSTRL has the
smallest largest component, containing 57.2% of all authors. However, in the
JCDL co-authorship network the largest component only includes 38% of all
authors. Several possible explanations could account for this low value, includ-
ing the relative immaturity of the the DL field, the multi-disciplinary nature
of the composite JCDL conference series, the fact that many DL projects grow
from a “grass-roots”, institutionally oriented focus (Esler and Nelson, 1998),
or limited international collaboration in the DL research community.

To better understand the nature of major components and the reason for them
not being in the large component, we conducted a manual analysis of other
large components. This showed that the most dense shapes include authors
from the same institution or working on the same project. We counted 18 com-
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Fig. 7. Component size analysis

ponents with sizes ranging from 7 to 31. By checking the affiliation of authors,
we discovered that 5 components consist mainly of non-US participants, and
that the 31-node component represents the medical informatics community.
By checking titles and content, we found that 13 components account for short
papers or posters only, many of which are about a specific DL application in a
particular scenario. Therefore, it is our guess that the short paper and poster
programs encourage a wide participation from other disciplines.

4.3 Cluster Analysis

The weighted graph model also improves the clustering because close and
frequent collaboration causes higher similarity scores between authors, result-
ing in them being grouped closer together. By representing each author as
a vector of relationships to other authors using the weighted graph model,
we conducted a bottom-up, hierarchical clustering algorithm on the largest
component of the co-authorship network. The hierarchical clustering algo-
rithm starts with all authors and successively combines them into groups with
high inter-authorship similarity. Typically, the earlier mergers happen between
groups with a large similarity, and similarity becomes lower and lower for later
merges. The result reveals that initial clusters do not necessarily reflect insti-
tutional boundaries. This may be due to the fact that authors may change in-
stitutions, and in some cases strong collaborations exist between institutions.
In the next stage, institutions are merged into larger clusters due to their joint
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publications or common research interests. A well-connected author is usually
only clustered in this stage, which confirms that well-connected authors play
an important role in connecting different clusters.

As a matter of illustration, the clusters to which the authors of this paper be-
long are shown in Figure 8. As can be seen, small clusters are initially formed
in each authors’ institution (Los Alamos National Laboratory and Old Do-
minion University), and later institutions are merged to larger clusters. The
frequency of joint publications may explain the different stage of merging. By
checking publications in each cluster, we found that LANL, Cornell University
and the University of Southampton form a larger cluster because Cornell co-
operated with Southampton in the Open Citation project, and LANL worked
with Cornell on the Open Archives Initiative. Similarly, Virginia Tech (VT)
collaborated with the Federal University of Minas Gerais in Brazil in the Web-
DL project (Calado et al., 2003), with Penn State (PSU) in the CITIDEL
project, and with Old Dominion University (ODU) in the NCSTRL project.
ODU and PSU have no joint publications, they are clustered together be-
cause both collaborated with VT. VT and Federal University of Minas Gerais
probably merged earlier because they have more joint publications.

Virginia Tech

Federal

University

Penn State Univ

Old Dominion

Univ

LANL

Cornell

Southampton

….authors

…
 …

.

…… other clusters…...

Fig. 8. Clustering Result
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4.4 Small World Analysis

Since small world analysis can only be done in a connected graph, we used
the largest component of the co-authorship network for our calculation. The
largest component (599 authors and 1897 links) has a clustering coefficient of
0.89, and a characteristic path length of 6.58. With a similarly sized connected
random graph, the clustering coefficient is 0.31 and the characteristic path
length is 3.66. This means that the JCDL co-authorship network is a small
world graph as can be expected. The giant component is shown in Figure 9.

Nascimento (Nascimento et al., 2003) reports that the SIGMOD co-authorship
graph yields a clustering coefficient of 0.69, and a characteristic path length of
5.65. In all four networks studied by Newman, the largest clustering coefficient
generated is 0.726. This shows a rather high clustering coefficient of the JCDL
co-authorship network, meaning that co-authors of one author are more likely
to publish together. The JCDL co-authorship network also has a rather long
characteristic path length, indicating that authors from different groups are
not as well connected as, for example, those in the SIGMOD co-authorship
network.

Fig. 9. Largest component
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4.5 Centrality

Using the R package (http://www.r-project.org/), we calculated the degree,
closeness, and betweenness centrality for the binary undirected co-authorship
network only, as these metrics are not well defined in a weighted network. The
highest ranking 20 authors for each metric and their scores are listed in Table
4.

4.5.1 Degree centrality

The degree centrality distribution is shown in Figure 10. It follows a rough
power-law distribution with a few authors having a high degree of connection,
and most authors have low degree. This measurement has the disadvantage of
giving many authors the same weight. It is also biased to authors with many
co-authors on a single publication, which is common in experimental sciences
(Newman, 2001a). The time complexity is O(1).

4.5.2 Closeness centrality

The closeness centrality is only applied to the largest component (599 authors)
since closeness is not well defined in a disconnected network. It has a bias
toward authors that are directly connected to a well-connected author. For
example, we discovered in Table 4 that graduate assistants of a prestigious
professor may have a fairly high weight. The time complexity is O(n2), where
n is the number of authors in the network.
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Table 4
Authors ranked according to centrality measure

rank Degree Betweenness Closeness

1 Hsinchun Chen 59 Hsinchun Chen 89250.92 Hsinchun Chen 0.259

2 Edward A. Fox 55 Edward A. Fox 83163.92 Edward A. Fox 0.251

3 Terence R. Smith 31 Judith Klavans 57422.69 Judith Klavans 0.235

4 Carl Lagoze 31 William Y. Arms 52242.27 Gary Marchionini 0.234

5 Judith Klavans 27 Nina Wacholder 39226.5 Michael L. Nelson 0.229

6 Zan Huang 26 Craig Nevill-Manning 38808.08 Yiwen Zhang 0.226

7 Gary Marchionini 25 David M. Levy 35769.0 Ann M. Lally 0.226

8 William Y. Arms 21 Ann P. Bishop 32280.0 Lillian N. Cassel 0.226

9 Richard Furuta 21 Tobun D. Ng 30197.13 Byron Marshall 0.225

10 Luis Gravano 20 Gary Marchionini 29593.86 Rao Shen 0.225

11 Michael Freeston 19 Alexander Hauptmann 29142.0 William Y. Arms 0.224

12 Ian H. Witten 18 Catherine C. Marshall 28587.0 Anne Craig 0.221

13 Hector Garcia-Molina 18 Terence R. Smith 23691.87 Larry Brandt 0.221

14 Michael G. Christel 18 Carl Lagoze 22192.66 Terence R. Smith 0.219

15 David Millman 18 David Bainbridge 21168.03 Tobun D. Ng 0.219

16 Tamara Sumner 18 Michael L. Nelson 20696.41 James C. French 0.219

17 Diane Hillmann 18 Howard D. Wactlar 17577.0 Kurt Maly 0.212

18 Yilu Zhou 18 Ching-chih Chen 17309.67 Mohammad Zubair 0.212

19 Jialun Qin 18 John J. Leggett 15845.5 Hesham Anan 0.212

20 Mary Tiles 18 Elizabeth D. Liddy 14964.0 Xiaoming Liu 0.212

4.5.3 Betweenness centrality

The betweenness centrality is applied to the whole network, however only 153
authors have positive values. The remaining 1414 authors do not lie on the
shortest paths between other authors. Betweenness is, in some sense, a measure
of the influence a node has over the spread of information through the network,
and indeed some high-ranking authors play crucial rules in connecting different
communities.

The computation of betweenness centrality is the most resource-intensive of
all measures we explored, since it requires enumerating all of the shortest
paths between each pair of nodes. The time complexity is O(n3), where n
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is the number of authors in the network, thus limiting its feasibility in large
networks.

4.6 PageRank and AuthorRank

We developed a Java program with a MySQL backend to calculate PageRank
and AuthorRank. Both calculations can be completed in several seconds. The
20 highest scoring authors for the PageRank and AuthorRank metrics are
listed in Table 5. The time complexity of both algorithms is O(n), where n is
the number of authors in the network.

Table 5
Authors ranked according to PageRank/AuthorRank

Rank PageRank AuthorRank

1 Edward A. Fox Hsinchun Chen

2 Hsinchun Chen Edward A. Fox

3 Carl Lagoze Ian H. Witten

4 Judith Klavans Gary Marchionini

5 Richard Furuta Hector Garcia-Molina

6 Gary Marchionini Carl Lagoze

7 Michael G. Christel Alexander G. Hauptmann

8 Terence R. Smith Judith Klavans

9 Tamara Sumner Richard Furuta

10 Ian H. Witten Terence R. Smith

11 Alexander G. Hauptmann Tamara Sumner

12 Hector Garcia-Molina Ee-Peng Lim

13 Javed Mostafa Michael G. Christel

14 Alexa T. McCray Michael L. Nelson

15 Ee-Peng Lim Wee Keong Ng

16 David Bainbridge Javed Mostafa

17 Sally Jo Cunningham David Bainbridge

18 Luis Gravano J. Alfredo Sánchez

19 Catherine C. Marshall Alexa T. McCray

20 W. Bruce Croft Andreas Paepcke
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4.7 Correlation and validation

Several articles have compared the performance of centrality and prestige met-
rics, and a general conclusion can be that no single measure is suited for all ap-
plications; each method has its virtues and utility (Wasserman and Faust, 1994,Chakrabarti, 2003).
We verified and compared metrics in two ways: by the computation of the
Spearman correlation coefficient across ranking methods, and by cross-validation
against the dataset of JCDL program committee members.

4.7.1 Spearman Correlation

The Spearman correlation coefficient is used to measure the strength of associ-
ation between two variables. In our case, since betweenness generated only 153
authors with positive ranking, and closeness centrality has only been calcu-
lated for the largest component, we only compare degree centrality, PageRank,
and AuthorRank. The correlation coefficient between the degree centrality and
PageRank is 0.52, and the correlation coefficient between the degree centrality
and AuthorRank is 0.30 (Figure 11). As expected, PageRank and AuthorRank
are more closely correlated with a correlation coefficient of 0.75 (Figure 11).

4.7.2 Program committee validation

We also verified each ranking method against a dataset consisting of all mem-
bers of the JCDL, ADL and DL program committees from 1994 to 2004. This
is meaningful, as program committee members are assumed to be prestigious
actors in the co-authorship network. To that end, the names of all JCDL, ADL
and DL program committee members were collected from the conference web
sites or printed proceedings. The highest scoring 50 authors for each rank-
ing method (degree, closeness, betweenness, PageRank, AuthorRank) were
then matched one by one against each JCDL committee member to identify
matches.

Figure 12 shows the result of this comparison. The highest ranking 5 authors
for each metric have an almost perfect match against the dataset of JCDL
program committee members. Overall closeness ranking performs the worst,
as only six authors of the 50 highest ranking authors are on the JCDL com-
mittees. This is not a surprise since closeness measures the distance to other
authors, and since an author next to a prominent author is not necessarily
also a prominent author. Degree centrality had mediocre performance. Be-
tweenness centrality performs the best among the three centrality measures.
Since betweenness evaluates one’s importance as a bridge between others, this
suggests a committee member may be more likely to serve as a bridge between
research groups than a non-committee member. Betweenness, PageRank, and
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AuthorRank all show good results, however PageRank and AuthorRank are
feasible in large networks due to their low computational complexity. The
results of PageRank and AuthorRank are highly correlated, but there is no
conclusive evidence that one performs better than the other.

(a) Degree centrality vs. AuthorRank (b) PageRank vs. AuthorRank

Fig. 11. Comparison of ranking algorithms

5 Conclusions and future applications

In this paper we investigated the co-authorship network of the DL research
community as represented in the ADL, DL and JCDL conference series. We
also presented AuthorRank, an alternative metric for ranking authors’ prestige
in weighted co-authorship networks. So what does it all mean? What have we
learned about the state of DL research 10 years after the first DL conference?

Our analysis paints the picture of a domain that is in many ways still evolv-
ing the rich networks of collaboration common in other areas of the scientific
enterprise. Our co-authorship graphs indicate a rich tapestry of collaborations
across institutional boundaries, but demonstrate a significantly higher degree
of clustering and dispersion than one would find in other domains. In compar-
ison with other co-authorship networks for related disciplines, we find the DL
research community co-authorship graph has a smaller largest component, a
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Fig. 12. Ranking against JCDL program committee membership (1994-2004)

larger clustering coefficient and a larger characteristic path length. DL authors
thus collaborate closely within specific clusters but restrict their collaborations
to specific groups of interest.

Do these results mean collaboration is less valued in DL research? Of particular
interest is our result demonstrating how well our calculations of author status,
i.e. PageRank and AuthorRank, in the co-authorship graph correspond to the
JCDL program committees. Although the domain of DLs is less well-connected
than other scientific domains, the value of collaboration still functions as an
invisible hand guiding the selection of program committees in at least one
seminal DL conference. It is thus of vital importance that a continued emphasis
be placed on collaboration to ensure DL research will be even more of the open,
diverse, but well connected marketplace of ideas it is today.

Potentially, the presented network models have several applications. PageR-
ank or AuthorRank could be used as alternative metrics to evaluate research
impacts, they can objectively guide how conference program committees are
established, or to quantitatively evaluate the prestige of conferences based on
their program committees. The weighted model has an advantage for the vi-
sualization of a co-authorship graph, which makes it possible to emphasize
important links and truncate trivial links. Based on this idea, our colleagues
built an interactive author navigation tool (Liu et al., 2004) based on the web-
dot tool of GraphViz (http://www.graphviz.org). Users can select a preferred
author (center of the graph), set a distance from the selected author, and
indicate the minimum weight necessary for links to be displayed. In this vi-
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sualization, the weight of a link plays an important role as it allows users to
identify important links.
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