
JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.1 (1-13)

Information and Computation ••• (••••) ••••••
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Efficient pattern matching in elastic-degenerate strings ✩

Costas S. Iliopoulos a, Ritu Kundu b,∗, Solon P. Pissis c

a Department of Informatics, King’s College London, London, UK
b School of Computing, National University of Singapore, Singapore, Singapore
c CWI, Amsterdam, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 June 2017
Received in revised form 14 January 2020
Accepted 16 January 2020
Available online xxxx

Keywords:
Algorithms on strings
Degenerate strings
Indeterminate strings
Elastic-degenerate strings
Gapped strings

Motivated by applications in bioinformatics and image searching, in what follows, we
study the classic pattern matching problem in the context of elastic-degenerate strings: the
generalised notion of gapped strings. An elastic-degenerate string can be seen as an ordered
collection of k strings interleaved by k − 1 elastic-degenerate symbols, where each such
elastic-degenerate symbol corresponds to a set of two or more variable-length strings. We
present efficient algorithms for two variants of the pattern matching problem on elastic-
degenerate strings: first, for a solid pattern and an elastic-degenerate text; second, for
an elastic-degenerate pattern and a solid text. A proof-of-concept implementation of the
former is provided.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty in sequential data (strings) can be modelled using various representations. One such representation is a
degenerate string, which is defined by the existence of one or more positions that are represented by sets of symbols from
an alphabet �, unlike a solid (or deterministic, standard) string characterised by a single symbol at each position. For
instance, [a

b

]
ac

[b
c

]
a
[a
b
c

]
is a degenerate string of length 6 over � = {a,b,c}; and abaababa is a solid string of length 8

over � = {a,b}. When a string is solid, we simply refer to it as string.
A more restrictive variant of degenerate strings – which allows at a given position a subset consisting of either a single

letter or all the letters of � – was proposed by Fischer and Paterson in their seminal work [2]. For example, ab�ac is an
instance of a string of length 5 where the third position carries a hole or don’t care or wildcard symbol (usually represented
by � or ∗) which can match any letter from the alphabet including itself. This restrictive model has been called “partial
words” or “strings with wild cards/holes/don’t cares” in recent years; [3] presents a comprehensive survey on partial words.

A gapped string is another way to capture uncertainty: it is an ordered collection of standard strings separated by variable-
length gaps defined by an ordered collection of intervals [4]. Simply, a gapped string P can be represented as follows [5]:
P = P1 ∗a1,b1 P2 ∗a2,b2 P3· · · ∗a�−1,b�−1 P� , where ∗ is a wildcard symbol (also called don’t care symbol or hole) that matches
any symbol from alphabet �; ∀i ∈ [1, �] each Pi is a string over �; and ∀i ∈ [1, � − 1] each pair (ai, bi) represents the gap
(minimum and maximum number of wildcard symbols, respectively) between two consecutive strings Pi and Pi+1.

✩ This is an extended version of an article presented at the Language and Automata Theory and Applications - 11th International Conference, LATA
2017 [1].

* Corresponding author.
E-mail addresses: costas.iliopoulos@kcl.ac.uk (C.S. Iliopoulos), dcsritu@nus.edu.sg (R. Kundu), solon.pissis@cwi.nl (S.P. Pissis).
https://doi.org/10.1016/j.ic.2020.104616
0890-5401/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2020.104616
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:costas.iliopoulos@kcl.ac.uk
mailto:dcsritu@nus.edu.sg
mailto:solon.pissis@cwi.nl
https://doi.org/10.1016/j.ic.2020.104616

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.2 (1-13)

2 C.S. Iliopoulos et al. / Information and Computation ••• (••••) ••••••
In [1], we introduced another representation to encapsulate uncertainty in sequential data—which we call elastic-
degenerate strings—by extending and combining the ideas of gapped strings and degenerate strings. An elastic-degenerate
string is a string where an elastic-degenerate symbol can occur at one or more positions; each such symbol corresponds to a
set of two or more variable-length strings. Another way to visualise an elastic-degenerate string is to see it as an ordered

collection of k strings interleaved by k − 1 elastic-degenerate symbols. For instance, bc

[
ab
aab
aca

]
ca

[
abcab
cba

]
bb is an example

of an elastic-degenerate string over � = {a,b,c}, where k = 3.
This generalisation of the concept of degeneracy is motivated by several data mining problems [6] which can be reduced

to the core task of discovering occurrences of one or more patterns in a text that can best be described as an ordered
collection of strings interleaved by sets of variable-length strings.

More specifically, in genomics an important class of problems is to study within-species genetic variation; state-of-
the-art solutions for this class comprises matching (mapping) short strings (called reads) to a longer genomic sequence
(canonical reference genome obtained through assembly). Owing to the high diversity among biologically relevant genomic
regions in many organisms, the population level complexities cannot be captured by the linear structure of a reference
genome [7]. Consequently, the recent research trend has shifted towards using alternative representations of genomic se-
quence for population-based genome assembly [8–11]. One such representation that encodes a set of related genomes with
variations in the reference genome itself (called Population Reference Genome in [11]), can essentially be seen as an elastic-
degenerate string.

The problem of pattern matching and discovery in the context of degenerate, partial, and gapped strings has been studied
extensively: some of the efficient and practical algorithms for pattern matching on degenerate strings developed over the
last decade can be found in [12–16]; [3] presents a comprehensive survey on partial words; [17] and references therein
provide an overview of combinatorial algorithms for problems involving gapped strings. However, the precise identification
of allowed strings (with varying lengths) in a gap makes the matching problem in the context of elastic-degenerate strings,
algorithmically more challenging. Nevertheless, since we introduced the notion in [1], several works have been added to
the literature for solving the problem of finding patterns in elastic-degenerate texts involving a range of settings [18–23];
see [24] for a summary.

Another practical relevance of this generalisation lies in the nature of real data and the querying process in many
applications where occurrences of an elastic-degenerate pattern in a set are to be found. For example, to expedite the
mapping, a set of related reads with small variations can be encoded as an elastic-degenerate string. In addition, matching
of elastic-degenerate patterns in the given data also finds application in areas such as computer vision or image processing;
one such example can be an image-search query, looking for a pattern in which some portions remain unchanged but are
interspersed by areas which might be occluded with different objects.

In this article, we extend the work presented in [1] that studied one aspect of the classic pattern matching problem
in the context of elastic-degenerate strings, namely, the pattern matching problem given a solid pattern and an elastic-
degenerate text. Here, we also study the converse notion—pattern matching given an elastic-degenerate pattern and a solid
text—and present the first algorithm (based on a graph-theoretic approach using dynamic programming technique) to solve
the problem.

The rest of the article is organised in the following format: The vocabulary, notions, and tools that will be used in this
article are introduced in the next section. The formal problem definitions and algorithms (along with their analysis) of
the two variants of the pattern matching problem for elastic-degenerate string are described in Section 3 and Section 4,
respectively. Finally, the conclusions drawn are delineated in Section 5.

2. Preliminaries

The following two subsections lay the groundwork for the rest of the manuscript.

2.1. Terminology

We begin with basic definitions and notation. We think of a string X of length n = |X | as an array X[1. . n], where every
X[i], 1 ≤ i ≤ n, is a symbol drawn from some fixed alphabet � of size |�| = O(1). The empty string of length 0 is denoted
by ε. �∗ denotes the set of all strings over alphabet � including the empty string ε. A string Y is a factor of a string X if
there exist two strings U and V , such that X = U Y V . We say that there is an occurrence of Y in X , or simply, that Y occurs
in X , when Y is a factor of X . The starting position of an occurrence, say i, is called head of the occurrence and its ending
position i + |Y | - 1 is called tail of the occurrence. Note that an empty string occurs at each position in a given string.
Consider the strings X, Y , U , and V , such that X = U Y V . If U = ε, then Y is a prefix of X . If V = ε, then Y is a suffix of X .

A degenerate symbol σ̃ over an alphabet � is a non-empty subset of �, i.e., σ̃ ⊆ � and σ̃ �= ∅. |σ̃ | denotes the size of the
set and we have 1 ≤ |σ̃ | ≤ |�|. A degenerate string is built over the potential 2|�| − 1 non-empty subsets of symbols of �. In
other words, a degenerate string X̃ = X̃[1. . n] is a string such that every X̃[i] is a degenerate symbol, 1 ≤ i ≤ n. If |x̃[i]| = 1,
that is, X̃[i] represents a single symbol of �, we say that X̃[i] is a solid symbol and i is a solid position. Otherwise X̃[i] and
i are said to be a non-solid symbol and a non-solid position, respectively. For example, [ab]

ac
[
b
c

]
a
[a
b
c

]
is a degenerate string of

length 6 over � = {a, b, c}. A string consisting of only solid symbols is called a solid string or, simply, a string.

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.3 (1-13)

C.S. Iliopoulos et al. / Information and Computation ••• (••••) •••••• 3
Here, we briefly describe the terminology building the concept of elastic-degeneracy in strings (most of which has been
established in [1]).

Definition 1 (Seed: S). A seed S is a (possibly empty) string over �.

Definition 2 (Elastic-degenerate symbol: ξ). An elastic-degenerate symbol ξ , over a given alphabet �, is a set of two or more

strings over � (i.e. ξ ⊆ �∗ and |ξ | > 1). An elastic-degenerate symbol ξ is denoted by

⎡
⎢⎢⎢⎣

E1
E2

.

.

.

E |ξ |

⎤
⎥⎥⎥⎦, where each Ei, 1 ≤ i ≤ |ξ |,

is a solid string. The minimum (resp. maximum) length in ξ , denoted by |ξ |min (resp. |ξ |max), is the length of the shortest
(resp. longest) string in the set.

Definition 3 (Elastic-degenerate string: X̂). An elastic-degenerate string X̂ , over a given alphabet �, is a sequence S1ξ1 S2ξ2 S3. . .
Sk−1ξk−1 Sk , where Si, 1 ≤ i ≤ k, is a seed and ξi, 1 ≤ i ≤ k − 1 is an elastic-degenerate symbol.

An elastic degenerate string X̂ can be visualised as follows:

X̂ = S1

⎡
⎢⎢⎢⎣

E1,1
E1,2

.

.

.

E1,|ξ1 |

⎤
⎥⎥⎥⎦ S2

⎡
⎢⎢⎢⎣

E2,1
E2,2

.

.

.

E2,|ξ2 |

⎤
⎥⎥⎥⎦ S3. . . Sk−1

⎡
⎢⎢⎢⎣

Ek−1,1
Ek−1,2

.

.

.

Ek−1,|ξk−1 |

⎤
⎥⎥⎥⎦ Sk.

Example 2.1. X̂ = abbc

[
ab
aab
acca

]
cca

[
aabcab
cba

]
bb is an elastic-degenerate string, where we have the following:

• Three seeds: S1 = abbc, S2 = cca, and S3 = bb.

• Two elastic-degenerate symbols:

ξ1 =
⎡
⎣ ab
aab
acca

⎤
⎦ and ξ2 =

[
aabcab
cba

]
.

• For ξ1: E1,1 = ab, E1,2 = aab, E1,3 = acca; minimum length is 2 (length of E1,1); and maximum length is 4 (length
of E1,3).

• For ξ2: E2,1 = aabcab, E2,2 = cba; minimum length is 3 (length of E2,2); and maximum length is 6 (length of E2,1).

Observe the use of X̂ to distinguish an elastic-degenerate string from a solid string X or a degenerate string X̃ . In the
following, we define a few characteristics of a given elastic-degenerate string X̂ with k seeds.

Definition 4 (Total size: ‖ X̂‖). The total size of X̂ , denoted by ‖ X̂‖, is defined as the sum of the total length of its seeds and

the total length of all the strings in each of its elastic-degenerate symbols: ‖ X̂‖ =
k∑

i=1
|Si | +

k−1∑
i=1

|ξi |∑
j=1

|Ei, j|.

Definition 5 (Length: | X̂|). The length of X̂ , denoted by | X̂ |, is defined as the sum of the total length of its seeds and the

total number of its elastic-degenerate symbols: | X̂ | =
k∑

i=1
|Si | + k − 1.

Informally, the total number of positions in X̂ is its length considering an elastic-degenerate symbol to occupy only
one position. Intuitively, a position belonging to some seed will be called a solid position and that of an elastic-degenerate
symbol will be called an elastic-degenerate position. In Example 2.1, the total length of the seeds is 9; hence, ‖ X̂‖ = 9 + (2 +
3 + 4) + (6 + 3) = 27, while | X̂| = 9 + 2 = 11. The first a occurs at (solid) position 1, followed by b at (solid) position 2 and
so on; ξ1 and ξ2 are at (elastic-degenerate positions) 5 and 9, respectively; the last b is at (solid) position 11.

Definition 6 (Possibility-set:
). For the elastic-degenerate string X̂ = S1ξ1 S2ξ2 S3. . . Sk−1ξk−1 Sk , its possibility-set
 is de-
fined as

 = {S1 E1,r1 S2 E2,r2 . . . Ek−1,r Sk} ∀ri,1 ≤ i ≤ k − 1 such that 1 ≤ ri ≤ |ξi|.
k−1

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.4 (1-13)

4 C.S. Iliopoulos et al. / Information and Computation ••• (••••) ••••••
Informally, the possibility-set
 of X̂ is the set of all possible solid strings obtained from X̂ . A solid string can be
obtained by replacing each of the elastic-degenerate symbols with one of its constituent strings. In Example 2.1,
 =
{abbcabccaaabcabbb,abbcabccacbabb,abbcaabccaaabcabbb,abbaabccacbabb,abbcaccaccaaabcabbb,
abbcaccaccacbabb}. Note that constituent strings replacing the elastic-degenerate symbols have been underlined for clarity.

Definition 7 (Elasticity: �). Elasticity (denoted as �) of X̂ is the difference between the lengths of the shortest and the
longest string in its possibility-set
.

As the shortest (or longest) string of
 is obtained by replacing each elastic-degenerate symbol with its shortest (or
longest) constituent string,

� =
k−1∑
i=1

|ξi|max −
k−1∑
i=1

|ξi|min

In Example 2.1, the total minimum length of the elastic-degenerate symbols is 5 (2+3); the total maximum length of the
elastic-degenerate symbols is 10 (4+6). Hence, � = 10 − 5 = 5.

Now we will introduce the notion of elastic cardinality which is based on the prefix/suffix nesting relationship amongst
strings in an elastic-degenerate symbol.

Definition 8 (Elastic cardinality: μ). The prefix (suffix) cardinality μpi (μsi) is defined as the largest number of the prefixes
(suffixes) of a string in an elastic-degenerate symbol ξi that appear as the other constituent strings within the same ξi . The
elastic cardinality of X̂ , denoted by μ, will be the maximum prefix or suffix cardinality amongst all its elastic-degenerate
symbols (i.e. μ = max(max(μpi), max(μsi)), 1 ≤ i ≤ k − 1).

Note that μ will at least be 1 since each string is a prefix (suffix) of itself. Also note that μ > 1 for X̂ may cause different
combinations (i.e. replacement of elastic-degenerate symbols by one of its string elements) to result in the same solid string.
To further clarify the concept, consider another example as follows:

Example 2.2. For X̂ = bc

⎡
⎢⎢⎢⎣
abc
ab
d
de
dee

⎤
⎥⎥⎥⎦ccc

⎡
⎢⎣
ab
cba
ba
ε

⎤
⎥⎦ba, we have the following:

• For elastic-degenerate symbol ξ1: μp1 = 3 because three prefixes of E1,5 (dee) appear in ξ1: E1,5 itself, E1,3 (d) and
E1,4 (de). Although E1,1 (abc), apart from itself, also has another prefix as a constituent of ξ1, i.e. E1,2 (ab), but we have
to take the largest number. As no string has any of its suffix present as a constituent, μs1 = 1.

• For elastic-degenerate symbol ξ2: ξ1: μps = 3 because two suffixes of E2,2 (cba) appear as E2,3 (ba) and E2,4 (ε).
Although E2,4(ε) is also a suffix of every string in ξ2, but we have to take the largest number. As every string in ξ2 has
E2,4 (ε) as its prefix, μp2 = 2.

• X̂ has elastic cardinality μ = max(3, 1, 3, 2) = 3.

• Two combinations - bcabccccbaba and bcabccccbaba - yield the same solid string.

2.2. Algorithmic tools

In this section, we briefly introduce two fundamental data structures, which support a wide variety of string matching
operations, and a well-known pattern matching algorithm. These tools will be used extensively by the proposed algorithm.

2.2.1. Suffix tree
The suffix tree S(X) of a non-empty string X of length n is a compact trie representing all the suffixes of X such that

S(X) has n leaves labelled from 1 to n. The construction of the suffix tree S(X) for string X of length n over a fixed-
sized alphabet takes O(n) time and space using one of the algorithms in [25–27]. Once the suffix tree of X has been
constructed, it can be used to support queries that return all Occ occurrences of a given string (called pattern) of length m
in time O(m + Occ). In addition, the longest common ancestor (LCA) of any two leaves of S(X), thus the length of the longest
common prefix (LCP) of any two suffixes of X , can be computed in constant time after a linear-time pre-processing [28,29].
A generalised suffix tree is a suffix tree for a set of strings [30,31]. For a general introduction to suffix trees, see [32].

2.2.2. KMP algorithm and failure function
Knuth, Morris, and Pratt (KMP) introduced a linear-time algorithm for pattern matching in [33]; that is, an algorithm

for finding all occurrences of a pattern P in a text T . It pre-processes P by computing a failure function f such that f (i)
is defined as the length of the longest prefix of P that is a suffix of P [1. . i]. By using the failure function, it achieves an
optimal search time of O(n) after O(m)-time pre-processing, where n is the length of T and m is the length of P .

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.5 (1-13)

C.S. Iliopoulos et al. / Information and Computation ••• (••••) •••••• 5
2.2.3. Aho-Corasick Automaton
The Aho-Corasick automaton [34] of a set of strings P , denoted by AC(P), is the minimal partial deterministic finite

automaton accepting the set of all strings having a string of P as a suffix (see [35, Section 7.1] for more description and
for efficient construction). The construction of the suffix automaton AC(P) can be done in linear time and space [32]
independent of the alphabet size. Once the automaton AC(P) has been constructed, searching a text T for occurrences of
the patterns in P can be realised in time linear in the length of T for a fixed alphabet; such a problem is known as the
dictionary matching problem. We can slightly modify the search algorithm so that it reports the head (rather than the tail)
of an occurrence; this modified version has been used in the rest of the article.

3. Solid pattern and elastic-degenerate text

Before formalising the problem, we define matching and occurrence in the context of a solid pattern and an elastic-
degenerate text.

Definition 9 (Matching). An elastic-degenerate string X̂ with k seeds and a solid string Y are said to match, denoted by
X̂ � Y , if, and only if, there exists a solid string S = S1 E1,r1 S2 E2,r2 . . . Ek−1,rk−1 Sk, 1 ≤ ri ≤ |ξi |, obtained from X̂ (i.e. S ∈
 of
X̂), such that S = U Y V , where U , V ∈ �∗ , satisfying:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U = ε, V = ε if S1 �= ε, Sk �= ε

E1,r1 �= ε, V = ε, U is a prefix of E1,r1 if S1 = ε, Sk �= ε

Ek−1,rk−1 �= ε, U = ε, V is a suffix of Ek−1,rk−1 if S1 �= ε, Sk = ε

E1,r1 �= ε, U is a prefix of E1,r1 ,

Ek−1,rk−1 �= ε, V a suffix of Ek−1,rk−1

if S1 = ε, Sk = ε.

Informally, we say that X̂ and Y match such that Y starts at the first position of X̂ if the position is solid or as a suffix
of one of its non-empty strings if it is elastic-degenerate; and Y ends at the last position of X̂ if the position is solid or as
a prefix of one of its non-empty strings if it is elastic-degenerate.

Example 3.1. Consider X̂ as given in Example 2.1. For string Y = abbcabccacbabb we have that X̂ � Y .

Definition 10 (Occurrence). In an elastic-degenerate string (text) T̂ , a solid string (pattern) P is said to have an occurrence
starting and ending at positions i and j respectively, if P � T̂ [i. . j]. An occurrence is represented as the pair of starting
position i (head) and ending position j (tail).

For consistency with the intuitive meaning of an occurrence, we say that P occurs at the position of some elastic-
degenerate symbol (say ξi) of T̂ , if it is a factor of any of the constituent strings of ξi .

Example 3.2. Consider a pattern P = cabbcb and a text T̂ as follows:

aacabbcbbc

⎡
⎣ a
aab
acca

⎤
⎦bb

⎡
⎣ c
acabbcbb

cba

⎤
⎦bacabbc

⎡
⎢⎣

b
cabb
bbc

aacabb

⎤
⎥⎦cbc.

All the occurrences of P in T̂ are given below.

Occurrence: (3,8) (10,15) (11,14) (11,15) (14,14) (17,22) (22,24)

ξ1: a ξ1: acca ξ1: acca ξ2: acabbcbb ξ3: b ξ3: cabb
Strings chosen: -

ξ2: c ξ2: cba ξ2: c or ξ3: bbc or ξ3: aacabb

Note that more than one occurrence of P can start at the same starting position but their ending positions are different:
for instance, (11, 14) and (11, 15) in Example 3.2. Also, note that different strings in the same elastic-degenerate symbols
can lead to the same occurrence: for instance, the same pair of head and tail as happened for occurrences (17, 22) and
(22, 24) in Example 3.2.

Example 3.3. Here we illustrate the case where an elastic-degenerate string has an empty seed (S2). Consider a pattern P =
babbcb and a text T̂ as follows:

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.6 (1-13)

6 C.S. Iliopoulos et al. / Information and Computation ••• (••••) ••••••
T̂ = ab

[
bcab
abb

]⎡
⎣ ab
cbb
abc

⎤
⎦cca

[
bb
cb

]
ca.

There is an occurrence of P at (2, 4) of T̂ .

3.1. Problem definition

Pattern Matching in Elastic-Degenerate Texts

Input: An elastic-degenerate text T̂ = S1ξ1 S2. . . ξk−1 Sk of length n and total size N , a pattern P of length m < N .
Output: All the occurrences of P in T̂ .

By definition, all the occurrences of the pattern P in the text T̂ fall under the following cases:

1. P entirely lies in some seed.
2. P entirely lies in some string of an elastic-degenerate symbol.
3. P spans across one or more elastic-degenerate symbols. This can further be seen as:

(a) P starts in some seed.
(b) P starts in some string of an elastic-degenerate symbol.

For instance, consider Example 3.2: the occurrences (3, 8) and (14, 14) fall into Case 1 and Case 2, respectively; (10, 15)

and (17, 22) fall into Case 3(a); (11, 14), (11, 15), and (22, 24) fall into Case 3(b).

3.2. Algorithm

Note that a naïve solution to this problem would be to find the pattern occurrences in the possibility-set
 of T̂ using
the KMP algorithm; this time is exponential in the number of elastic-degenerate symbols (as the number of strings in

 is O(qk−1) where q is the maximum number of constituent strings in any ξ). In this section, we present an efficient
algorithm that makes use of the KMP algorithm and the suffix tree data structure. Clearly, the KMP algorithm can easily
report the occurrences corresponding to the Cases 1 and 2. Case 3 requires some additional processing and data structures.
The algorithm works in two stages, outlined below.

3.2.1. Stage 1: pre-processing
Pre-process the pattern P to compute its failure-function as required by the KMP algorithm. In addition, create the

generalised suffix tree SS for the set {P , S1, S2, . . . , Sk} of strings corresponding to all the seeds of T̂ , as well as the
generalised suffix tree Sξ for the set {P } ∪ ξ1 ∪ ξ2∪. . . ∪ξk−1 of strings corresponding to all the strings in each of the
elastic-degenerate symbols of T̂ . Furthermore, pre-process these two suffix trees so as to answer LCA queries in constant
time.

3.2.2. Stage 2: search
Start searching the pattern P in the text T̂ using the KMP algorithm, comparing the symbols and using the failure

function to shift the pattern on a mismatch. The starting position of an occurrence being tested may be either solid or
elastic-degenerate; we call the two types of occurrences as Type 1 and Type 2, respectively. We consider the two types
separately as follows.
Type 1: Solid starting position Consider a situation when an occurrence starting from a position (say pos) that lies in some
seed Si is being tested. Proceed normally comparing the corresponding symbols of P and Si ; and shifting the pattern using
failure function on a mismatch. As soon as the elastic-degenerate symbol ξi is encountered (suppose corresponding position
in the pattern is p), suspend the KMP algorithm (for this test). Check each of the strings of ξi (i.e. Ei, j) whether or not it
occurs in the pattern at position p, using LCA queries on Sξ , and tick (mark) the tails of the found occurrences. This can be
realised by maintaining a boolean array of size m, which we denote by Ti .

Next, Procedure 1 (given formally below) is executed. Each ticked position of Ti is tried to extend by testing whether
Si+1 occurs adjacent to it (using LCA queries on SS). For each such found occurrence of Si+1, occurrences of strings of ξi+1
are checked using the suffix tree Sξ and their tails are ticked in Ti+1. The procedure will then be repeated for Ti+1; this
continues recursively until there is no tail marked in some call.

Once the process ends (reporting all the occurrences of P starting from pos, if any), the failure function corresponding to
the position where the KMP algorithm was suspended (i.e. p) is used to shift the pattern and the KMP algorithm resumes.
It is to be noted that an occurrence of P is implied if the length returned by the LCA query between the pattern starting
from some ticked-tail t and either of the following hits the boundary of the pattern:

• some seed Si ;
• any string Ei, j of some elastic-degenerate symbol ξi .

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.7 (1-13)

C.S. Iliopoulos et al. / Information and Computation ••• (••••) •••••• 7
Procedure 1: Procedure to extend ticked tails in a given Ti and reporting the occurrences found, if any.
Extend(Ti)

isNonEmpty ← f alse;

forall indices t of Ti which are ticked do
ls ← | LCA(P [t + 1. . m], Si+1[1. . |Si+1|]) |;
if (ls + t) = m then // Pattern ends

Report the occurrence;
else if ls = |Si+1| then // Si+1 occurs here

e ← t + |Si+1|;
forall Ei+1, j in ξi+1 do

le ← | LCA(P [e + 1. . m], Ei+1, j[1. . |Ei+1, j |]) |;
if (le + e) = m then // Pattern ends

Report the occurrence (if not reported already);
else if le = |Ei+1, j | then // Ei+1, j occurs here

Mark e + |Ei+1, j | − 1 in Ti+1;
isNonEmpty ← true;

if isNonEmpty then
Extend(Ti+1);

pos

T̂

Si ξi Si+1 ξi+1 Si+2 ξi+2 Si+3

Ei,|ξi | Ei+1,|ξi+1 | Ei+2,|ξi+2 |

Ei,1 Ei+1,1 Ei+2,1

Ei,r1

Ei,r2

Ei+1, j1

Ei+1, j2

Ei+1, j3

Ei+2,p1

Ei+2,p2

P

Ti

p

Ei,r1

e1

�
Ei,r2

e′
1

�

Ti+1

Si+1 Ei+1, j1

e2

�
Si+1 Ei+1, j2

e′
2

�
Ei+1, j3

e′′
2

�

Ti+2

Si+2
X

Si+2 Ei+2,p1

e′
3

�
Si+2 Ei+2,p2

e3

X

Ti+3
Prefix(Si+3)

pattern ends

Fig. 1. An illustration of how the algorithm works for Type 1 occurrences. Strings in elastic-degenerate symbols are shown as zigzag, while solid lines depict
the seeds. Symbol X denotes that this path could not be extended further while the symbol � represents a ticked tail.

Fig. 1 elucidates the description given above.
Type 2: Elastic-Degenerate starting position Consider a situation when the starting position of an occurrence to be tested
is an elastic-degenerate symbol ξi . This case can be processed in a similar fashion as the one described for Type 1, with the
only difference being the manner in which tails are ticked initially.

Begin by applying the KMP algorithm for each Ei, j to achieve two purposes: finding the occurrences of P in Ei, j and
ticking the last position of Ei, j for which a prefix of P appears as a suffix of Ei, j . The ticked tails obtained in that way
are then extended by Procedure 1 recursively and occurrences are reported. After the Procedure 1 ends, the KMP algorithm
resumes and the testing starts at the beginning of the seed Si+1.

3.3. Analysis

In the following, we discuss the correctness of the algorithm and analyse its space and time complexity.

3.3.1. Correctness
Consider an occurrence (i, j). If the occurrence falls under the Case 1 (resp. Case 2) then j = i + m − 1 (resp. j = i)

for some fixed i. Thus, the number of occurrences falling under either Case 1 or Case 2 is bounded by O(n). On the other
hand, for occurrences under Case 3, let parameter γ represent the maximum number of elastic-degenerate symbols spanned

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.8 (1-13)

8 C.S. Iliopoulos et al. / Information and Computation ••• (••••) ••••••
by any occurrence (i, j). Note that γ captures the possibility that the elastic-degenerate symbols contain empty strings. As
there can be maximum m prefixes going past an elastic-degenerate position, the number of occurrences per starting position
i are bounded by O(γ m). Thus the total number of distinct occurrences (i, j) is bounded by O(γ mn).

The correctness of the presented algorithm is straightforward as every starting position of the text is being tested for
potential occurrences exhaustively. While the occurrences corresponding to the Cases 1 and 3(a) are covered by Type 1,
Type 2 investigates all occurrences associated with Case 2 and Case 3(b). Thus all the occurrences of P in T̂ are reported.

3.3.2. Space complexity

The space required by both the failure-function and the ticked tails array is O(m). The suffix tree SS uses O(m +
k∑

i=1
|Si |)

space and the suffix tree Sξ uses O(m +
k−1∑
i=1

|ξi |∑
j=1

|Ei, j|) space. This leads to the total space required to be O(N), as
k∑

i=1
|Si | +

k−1∑
i=1

|ξi |∑
j=1

|Ei, j| = N and m < N .

3.3.3. Time complexity
The time taken by the pre-processing stage is O(N) as the failure function can be computed in O(m) time and construc-

tion of both the suffix trees (along with their pre-processing required to answer LCA queries in constant time) can be done
in O(N) time.

The search stage uses the KMP algorithm over each seed and each string of every elastic-degenerate symbol in the text
to report the occurrences for Case 1 and Case 2; and to search the beginning of the occurrence for Case 3. Thus the time

consumed by the KMP algorithm is O(
k∑

i=1
|Si | +

k−1∑
i=1

|ξi |∑
j=1

|Ei, j |) =O(N).

Procedure 1 can be analysed as follows. Intuitively, for every ticked position in the pattern (which can at most be m),
an LCA query is used to find whether the corresponding seed occurs at the ticked position or not; a found such occurrence
is then tried to extend by another LCA query with each of the strings in the following elastic-degenerate symbol. Let
parameter α represent the maximum number of strings in any elastic-degenerate symbol of the text. This extension step
for each ticked position will be carried out at most α times. More specifically, the outer loop of the procedure runs m times
and the inner one takes O(α) time, as each LCA query takes constant time. Thus, each recursive call requires O(mα) time.
The number of recursive calls depends on the number of the elastic-degenerate symbols spanned by the occurrence of P
being tested. In other words, if an occurrence spans across i elastic-degenerate symbols, there will be i recursive calls to
the procedure. If γ is the maximum such i, Procedure 1 executes in O(αγ m) time in total for each starting position.

Initial ticking of the tails in Type 1 needs O(α) time. For Type 2, initial ticking is done by KMP algorithm (already
accounted above). In the worst case, Procedure 1 will be called from each of the n starting positions of the text, leading to
an overall time-complexity of the algorithm to be O(N + αγ mn). In other words, the algorithm takes O(N + αγ mn) time
to find and report O(γ mn) number of possible occurrences of the pattern.

4. Elastic-degenerate pattern and solid text

We begin by defining occurrence in the context of an elastic-degenerate pattern and a solid text.

Definition 11 (Occurrence). An elastic-degenerate string P̂ is said to occur in a solid string T at position i, if T [i.. j] � X̂ ,
where i < j; the occurrence is represented as a pair of its starting and ending positions (or head and tail).

An occurrence (i, j) simply means that the substring starting at position i in T and ending at position j is the same as
one of the solid strings obtained from P̂ .

Example 4.1. Consider X̂ as given in Example 2.1. In a given text

T = ccababbcabccaaabcabbbaacacabbcaabccacbabbaacaaa,

there are two occurrences (overlined) of X̂ : (5, 21) and (27, 41)

ccababbcabccaaabcabbbaacacabbcaabccacbabbaacaaa

Notice that more than one solid string obtained from P̂ (if μ > 1) can match the substring starting at a position but
their ending positions will be different.

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.9 (1-13)

C.S. Iliopoulos et al. / Information and Computation ••• (••••) •••••• 9
4.1. Problem definition

Finding Occurrences of an Elastic-Degenerate Pattern in a Solid Text

Input: A solid text T of length n; an elastic-degenerate pattern P̂ = S1ξ1 S2. . ξk−1 Sk—of total size m, elastic cardinality
μ, and elasticity �—where each ξi = {Ei, j}, 1 ≤ j ≤ |ξi |.
Output: All pairs (s, e) such that there is an occurrence of P̂ in T starting at position s and ending at position e.

A simple (brute-force) approach may use the Aho-Corasick Automaton of the strings in
 of P̂ to find their occurrences in

T . As the total number of all the strings in
 is O(
k−1∏
i=1

|ξi |)), this approach will result in time complexity that is exponential

in k. We present, in the following, a much more efficient solution.

4.2. Algorithm: basic idea

Every occurrence of P̂ in T will start from an occurrence of S1. Furthermore, finding an occurrence of P̂ can be seen
as iteratively incrementing its partial match seed by seed. The most straightforward approach, better than the naïve (brute-
force) solution, is to independently find the occurrences of all the components (Si and strings of ξi); followed by dynamic
programming method to validate those occurrences so as to extend the partial matches starting from an occurrence of the
first seed.

A significant efficiency can be achieved by using memoization if the problem is decomposed into sub-problems in the
following way: Let Il be the set of ending positions of all the occurrences of the partial pattern up to seed Sl in the text. If
OS1 is the set of tails of all the occurrences of S1 in the text, we begin with I1 =OS1 and use the following recursion to
build the solution level by level such that Ik contains all the distinct ending positions of the occurrences of the complete
pattern:

Il =
⋃

j∈Il−1

extend(j, l − 1)

where extend(j, i) is a function which tries to extend the ending position j of seed Si as follows: for each Ei,r, 1 ≤ r ≤ |ξi |
that starts next to j such that Si+1 occurs at the tail of this Ei,r , add the tail of this occurrence of Si+1 to the result. For
reporting the starting positions corresponding to each ending position in Ik , back-pointers are required such that if j at
level l − 1 has been extended to i at level l then there is pointer from i to j.

This level-wise decomposition is conceptually the same as building a layered graph1 (divided into levels) such that the
vertices at each level i are subset of tails of occurrences of the seed Si in the text and edges exist only between the vertices
of adjacent levels (more specifically, from vertices of level i to vertices of level i − 1). In the rest of the article, we will call
a level l an internal level if 1 < l < k and an external level if l = 1 or l = k.

Our algorithm utilises the dynamic programming technique but explicitly creates the graph for organising and maintain-
ing the search information. Moreover, we incorporate two simple ideas to speed up the graph construction and reporting
stages as presented below.
Rarest seed as anchor: We note that every occurrence of P̂ in T must have an occurrence of every seed. Instead of starting
from level 1 (corresponding to the occurrences of the first seed), we can initiate building the graph from the level corre-
sponding to the seed with the minimum number of occurrences in the text. We will call such a seed an anchor.
Adaptive graph traversal: For reporting, traversing the graph can be made adaptive to the number of distinct starting and
ending positions of the pattern in the text as follows:

Traversal direction =
{

bottom-up (i.e. from level k to level 1) if |Ik| ≤ |I1|
top-down (i.e. from level 1 to level k) otherwise.

Forward as well as back chaining (pointers) strategy is required in order to attain this flexibility of the traversal. In addition,
reporting can be done efficiently (as compared to a straightforward depth-first search) by utilising word-level parallelism
if we maintain a bit-vector (at each vertex) of reachable nodes at level k (or level 1) for the bottom-up (or top-down)
traversal. Fig. 2 illustrates the graph construction and simplification ideas.

It is worth pointing out that our algorithm bears superficial similarity to the implicit graph construction and traversal for
reporting as used in [5] for gapped strings. Apart from the above-mentioned features to improve efficiency, there are other
significant distinctions owing to the fundamental difference between a gapped and an elastic-degenerate pattern (which, in
turn, gives different valid occurrences of a seed) and the definition of an occurrence itself (there can be many occurrences
within the same starting and ending positions in [5], thus each enumerated path is an occurrence).

1 A layered graph has the vertices partitioned into levels such that edges can exist only between the vertices of adjacent levels.

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.10 (1-13)

10 C.S. Iliopoulos et al. / Information and Computation ••• (••••) ••••••
Distinct Ending Positions

Distinct Starting Positions

Anchor

· · ·

· · ·

level a − 1 (Sa−1)-

level 2 (S2)-

level a (Sa)-

level 1 (S1)-

level k (Sk)-

level k − 1 (Sk−1)-

level a + 1 (Sa+1)-

level a + 2 (Sa+2)-

level a − 2 (Sa−2)-

Fig. 2. An illustration of the graph constructed from the anchor (forward and backward edges have been differentiated using different arrowheads). Level a
is chosen as an anchor because the seed Sa has minimum number of occurrences in the text. Graph traversal will be bottom-up because |Ik| ≤ |I1|.

4.3. Algorithm: details

The following steps describe our solution:

Stage 1: Pre-processing We build two Aho-Corasick Automata of the set S and set E = {Ei, j} ∀i, j; denoted by AC(S) and
AC(E), respectively.

Stage 2: Computing occurrences of the components (i.e. all seeds and all the constituent strings of each elastic-degenerate
symbol) Using the automaton AC(S), we compute the occurrences of the seeds in the text T and store them in a boolean
table Occ(S) such that Occ(S)[i, j] is true if j is the head of the seed Si . Let Sa be the seed with the minimum number of
occurrences (to be used as the anchor).

Similarly, the occurrences of the strings making elastic-degenerate symbols (i.e. Ei, j) can be computed using automaton
AC(E) and stored in a table, Occ(E), of k rows and n columns. Each cell Occ(E)[i, j] contains the list of lengths of the
strings of ξi (i.e. |Ei,r |, 1 ≤ r ≤ |ξi |) that have heads (if i ≥ a, tails otherwise) at position j in the text. In other words,
to enable building the graph from the anchor a, the elastic-degenerate symbols before the anchor seed will record their
occurrences at the corresponding ending positions while those after the anchor will mark them at the starting positions.

Stage 3: Graph construction The graph is constructed level by level starting from the occurrences of the anchor seed. A
vertex at level l represents a tail (ending position in the text) of an occurrence of the seed Sl; it contains forward edges
(pointers) to its children at level l + 1, ∀1 < l ≤ k and backward edges (pointers) to its parent at level l − 1, ∀1 ≤ l < k. Each
level is maintained as an associative array of the vertices with corresponding text-index as the key. Edges are maintained
as a list of pointers within a vertex.

We follow Procedure 2 to build the graph iteratively, starting from the anchor-level, extending in both, forward and back-
ward directions; making use of the tables Occ(S) and Occ(E). Clearly, when the procedure ends, Ik and I1 will respectively
contain all the distinct ending positions and starting positions (if any) of P̂ in the text.

Stage 4: Reporting Note that if we were to report only the distinct starting and ending positions of all the occurrences
(rather than specifically reporting each pair corresponding to an occurrence), we can stop at the previous stage. For re-
porting each occurrence, we need to traverse the graph since each vertex (say v1,i) at level 1 reachable from a vertex at
level k (say vk, j) makes an occurrence—(v1,i .key, vk, j .key)—and vice-versa. Either bottom-up (if |I1| > |Ik|) or top-down
(if |I1| ≤ |Ik|) traversal of the simplified graph is executed. A bit-vector of length Z is maintained at each vertex where
Z = min(|I1|, |Ik|); each bit represents reachability to a vertex at the starting level (i.e. level k for bottom-up and 1 for top-
down) of the traversal. Initially the bit-vectors at each vertex is set to all zeroes at all levels except the starting level where
the bit of the vertex itself is set to 1. In the bottom-up (or top-down) traversal, taking union of bit-vectors of the children
(or parents) updates the corresponding bit-vectors at the previous (or next) level; proceeding level wise in this fashion
eventually gives the ending positions (or starting positions) corresponding to each starting position (or ending position) at
level 1 (or k).

4.4. Analysis

Let Ocomp , OS , and OSa be the number of occurrences of the components, all the seeds, and the anchor (rarest seed) of
the elastic-degenerate pattern P̂ , respectively. The following lemmas establish the size of the graph which is conducive to
the analysis of space and time complexity of the algorithm.

Lemma 4.2. The number of vertices of the graph is O(min(OS , k�OSa)).

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.11 (1-13)

C.S. Iliopoulos et al. / Information and Computation ••• (••••) •••••• 11
Procedure 2: Construct the graph starting from the anchor-level a, extending in both, forward and backward direc-
tions; making use of the tables Occ(S) and Occ(E).
Construct(a, Occ(S), Occ(E))

Add the tails of all occurrences of Sa to Ia ;
/* Construct the graph to level k : Forward */
for l ← a to k − 1 do

forall v in Il do
i ← v.key
forall j in Occ(E)[l, i + 1] do

if Occ(S)[l, i + j + 1] is T rue then
e ← i + j + |Sl+1|
Add vertex corresponding to e to Il+1, if not already there
Add backward edge from e to v
Add forward edge from v to e

/* Construct the graph to level 1 : Backward */
for l ← a to 2 do

forall v in Il do
i ← v.key − |Sa|
forall j in Occ(E)[l − 1, i] do

e ← i − j
if Occ(S)[l − 1, e − |Sl−1| + 1] is T rue then

Add vertex corresponding to e to Il−1, if not already there
Add forward edge from e to v
Add backward edge from v to e

Proof. Let δi be the difference in the lengths of the shortest and the longest string within an elastic-degenerate symbol ξi

and �i be the difference in the lengths of the shortest and the longest partial string up to seed si+1 . �i =
i−1∑
j=1

δ j . It implies

� = �k > �i ∀1 ≤ i < k. Each partial string up to seed i will have � ending positions (with a fixed starting position) in the
worst case. Analogously, for a fixed anchor seed, there are � starting positions and � ending positions extending to its left
and right, respectively. Thus, at each level the maximum number of vertices are �OSa , but a vertex is only added if there
is a corresponding occurrence of the seed. Hence, the total number of vertices of the graph is bounded by the minimum of
the two: OS and k�OSa . �
Lemma 4.3. The number of edges of the graph is O(μV) where V is the number of the vertices in the graph.

Proof. Each cell of Occ(E) contains the list of the lengths of string in the corresponding elastic-degenerate symbol occurring
at the corresponding position; the size of such a list is upper-bounded by μ. For each vertex at level (say l), an edge is
added for each length in the list contained in the corresponding cell of Occ(E) if followed by an occurrence of the seed
Sl+1. As a consequence, for V vertices in the graph, the number of edges are O(μV). �
4.4.1. Space complexity

The total space consumed by the two automata is O(m). O(kn) space is required by the boolean matrix Occ(S). A cell
in the table Occ(E) requires O(μ) space, leading to the total space taken by the table to be O(knμ). The vertices at each
level are maintained as an associative map; if direct addressing model is used, O(kn) space is needed for the vertices of
the graph. Each vertex stores O(μ) pointers representing edges, thus the graph takes O(knμ) space. Consequently, the total
space used by the algorithm is O(m + kμn).

4.4.2. Time complexity
Constructing both AC(S) and AC(E) takes O(m) time. O(n +Ocomp) time is required for finding all the occurrences of

the components.
Adding an edge (given two vertices) takes constant time. Furthermore, checking the presence of a vertex and adding a

new vertex can be done in constant time, assuming a direct addressing associative map model. Consequently, the graph
construction procedure of Stage 2 runs in O(μV) time where V is the number of vertices in the graph. Note that the
number V of the vertices of the graph is less than or equal to the number μV of the edges by Lemma 4.3.

Graph simplification in the subsequent stage requires O(μV) time; followed by O(μVZ/w) time for reporting the
occurrences, where w is the size of the computer word and Z is the number of distinct starting or ending positions,
whichever is minimum.

Overall, O(n + m +Ocomp + μVZ/w) time is taken where V = min(OS , k�OSa) by Lemma 4.2. Although the worst-
case time complexity is certainly better than that of the naïve approach, it can still be O(m + kμn2/w) (as Ocomp can be
μkn; Z can be n; and V can be kn). However, real data is mostly such that the Z ≪ n and V ≪ n (because the number
of occurrences of the pattern and seeds are not that frequent). Therefore, the algorithm is expected to be fast in practice.

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.12 (1-13)

12 C.S. Iliopoulos et al. / Information and Computation ••• (••••) ••••••
5. Conclusion

Motivated by applications in bioinformatics and image-searching, we extended the notion of gapped strings to elastic-
degenerate strings. In particular, we presented efficient algorithms for two variants of the pattern matching problem in
the context of elastic-degenerate strings: first, for a solid pattern and an elastic-degenerate text; second, for an elastic-
degenerate pattern and a solid text.

The presented algorithm for the first variant runs in O(N + αγ mn) time; where m is the length of the given pattern; n
and N are the length and total size of the given elastic-degenerate text, respectively; α and γ are parameters, respectively
representing the maximum number of strings in any elastic-degenerate symbol of the text and the maximum number of
elastic-degenerate symbols spanned by any occurrence of the pattern in the text. Note that in applications involving gene
sequence variation data, α represents the number of sequences in the multiple sequence alignment of the similar sequences
and γ represents the number of genetic variation-sites falling in a full occurrence. The values of these parameters can be
small in practice, and so the presented algorithm is expected to work very fast in practice. The implementation of this
algorithm is available at https://github .com /Ritu -Kundu /ElDeS.

The algorithm for the second variant takes O(m + kμn2/w) time, where n is the length of the given text, m is the total
size of the given elastic-degenerate pattern, k is the number of seeds, μ is the elastic cardinality of the pattern, and w is
the size of the computer word.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] C.S. Iliopoulos, R. Kundu, S.P. Pissis, Efficient pattern matching in elastic-degenerate texts, in: F. Drewes, C. Martín-Vide, B. Truthe (Eds.), Language
and Automata Theory and Applications - 11th International Conference, Proceedings, LATA 2017, Umeå, Sweden, March 6-9, 2017, in: Lecture Notes in
Computer Science, vol. 10168, 2017, pp. 131–142.

[2] M. Fischer, M. Paterson, String-Matching and Other Products, MAC Technical Memorandum, Mass. Inst. of Technology, Project MAC, 1974, https://
books .google .co .uk /books ?id =aSa4HAAACAAJ.

[3] F. Blanchet-Sadri, Algorithmic combinatorics on partial words, Int. J. Found. Comput. Sci. 23 (06) (2012) 1189–1206, https://doi .org /10 .1142 /
S0129054112400473, arXiv: https://www.worldscientific .com /doi /pdf /10 .1142 /S0129054112400473, https://www.worldscientific .com /doi /abs /10 .1142 /
S0129054112400473.

[4] M. Crochemore, M.-F. Sagot, Motifs in sequences: localization and extraction, in: Compact Handbook of Computational Biology, Marcel Dekker, New
York, 2004, pp. 47–97.

[5] M.S. Rahman, C.S. Iliopoulos, I. Lee, M. Mohamed, W.F. Smyth, Finding patterns with variable length gaps or don’t cares, in: Computing and Combi-
natorics: 12th Annual International Conference, Proceedings, COCOON 2006, Taipei, Taiwan, August 15-18, 2006, vol. 4112, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006, pp. 146–155.

[6] Y. Li, J. Bailey, L. Kulik, J. Pei, Efficient matching of substrings in uncertain sequences, in: M.J. Zaki, Z. Obradovic, P. Tan, A. Banerjee, C. Kamath, S.
Parthasarathy (Eds.), Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014, SIAM,
2014, pp. 767–775.

[7] Y. Liu, M. Koyutürk, S. Maxwell, M. Xiang, M. Veigl, R.S. Cooper, B.O. Tayo, L. Li, T. LaFramboise, Z. Wang, X. Zhu, M.R. Chance, Discovery of common
sequences absent in the human reference genome using pooled samples from next generation sequencing, BMC Genomics 15 (1) (2014) 685, https://
doi .org /10 .1186 /1471 -2164 -15 -685.

[8] L. Huang, V. Popic, S. Batzoglou, Short read alignment with populations of genomes, Bioinformatics 29 (13) (2013) i361–i370, https://doi .org /10 .1093 /
bioinformatics /btt215, arXiv: http://bioinformatics .oxfordjournals .org /content /29 /13 /i361.full .pdf +html, http://bioinformatics .oxfordjournals .org /content /
29 /13 /i361.abstract.

[9] D.M. Church, V.A. Schneider, K.M. Steinberg, M.C. Schatz, A.R. Quinlan, C.-S. Chin, P.A. Kitts, B. Aken, G.T. Marth, M.M. Hoffman, J. Herrero, M.L.Z.
Mendoza, R. Durbin, P. Flicek, Extending reference assembly models, Genome Biol. 16 (1) (2015) 13, https://doi .org /10 .1186 /s13059 -015 -0587 -3.

[10] A. Dilthey, C. Cox, Z. Iqbal, M.R. Nelson, G. McVean, Improved genome inference in the MHC using a population reference graph, Nat. Genet. 47 (6)
(2015) 682–688, https://doi .org /10 .1038 /ng .3257, technical report.

[11] S. Maciuca, C. del Ojo Elias, G. McVean, Z. Iqbal, A natural encoding of genetic variation in a burrows-wheeler transform to enable mapping and
genome inference, in: M.C. Frith, C.N.S. Pedersen (Eds.), Algorithms in Bioinformatics - 16th International Workshop, Proceedings, WABI 2016, Aarhus,
Denmark, August 22-24, 2016, in: Lecture Notes in Computer Science, vol. 9838, Springer, 2016, pp. 222–233.

[12] J. Holub, W. Smyth, S. Wang, Fast pattern-matching on indeterminate strings, J. Discret. Algorithms 6 (1) (2008) 37–50, https://doi .org /10 .1016 /j .jda .
2006 .10 .003, selected papers from AWOCA 2005, http://www.sciencedirect .com /science /article /pii /S1570866706000967.

[13] C.S. Iliopoulos, L. Mouchard, M.S. Rahman, A new approach to pattern matching in degenerate DNA/RNA sequences and distributed pattern matching,
Math. Comput. Sci. 1 (4) (2008) 557–569, https://doi .org /10 .1007 /s11786 -007 -0029 -z.

[14] W.F. Smyth, S. Wang, An adaptive hybrid pattern-matching algorithm on indeterminate strings, Int. J. Found. Comput. Sci. 20 (06) (2009)
985–1004, https://doi .org /10 .1142 /S0129054109007005, arXiv: https://www.worldscientific .com /doi /pdf /10 .1142 /S0129054109007005, https://www.
worldscientific .com /doi /abs /10 .1142 /S0129054109007005.

[15] M. Crochemore, C.S. Iliopoulos, R. Kundu, M. Mohamed, F. Vayani, Linear algorithm for conservative degenerate pattern matching, Eng. Appl. Artif.
Intell. 51 (2016) 109–114, https://doi .org /10 .1016 /j .engappai .2016 .01.009, http://www.sciencedirect .com /science /article /pii /S0952197616000130.

[16] J. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, L. Mouchard, E. Prieur-Gaston, B. Watson, Efficient pattern matching in degenerate
strings with the burrows–wheeler transform, Inf. Process. Lett. 147 (2019) 82–87, https://doi .org /10 .1016 /j .ipl .2019 .03 .003, http://www.sciencedirect .
com /science /article /pii /S0020019019300535.

[17] S.P. Pissis, MoTeX-II: structured MoTif eXtraction from large-scale datasets, BMC Bioinform. 15 (1) (2014) 235, https://doi .org /10 .1186 /1471 -2105 -15 -
235.

https://github.com/Ritu-Kundu/ElDeS
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib57E466B51574524B47A2826A54B0C0F5s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib57E466B51574524B47A2826A54B0C0F5s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib57E466B51574524B47A2826A54B0C0F5s1
https://books.google.co.uk/books?id=aSa4HAAACAAJ
https://books.google.co.uk/books?id=aSa4HAAACAAJ
https://doi.org/10.1142/S0129054112400473
https://doi.org/10.1142/S0129054112400473
https://www.worldscientific.com/doi/pdf/10.1142/S0129054112400473
https://www.worldscientific.com/doi/abs/10.1142/S0129054112400473
https://www.worldscientific.com/doi/abs/10.1142/S0129054112400473
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib05A5CCC18D212B2AA82C2BA8BDE1BAA2s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib05A5CCC18D212B2AA82C2BA8BDE1BAA2s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib936797FCF25DAE0C60096B7316789978s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib936797FCF25DAE0C60096B7316789978s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib936797FCF25DAE0C60096B7316789978s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib20D594BF584600A70E54D5F389DE17FDs1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib20D594BF584600A70E54D5F389DE17FDs1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib20D594BF584600A70E54D5F389DE17FDs1
https://doi.org/10.1186/1471-2164-15-685
https://doi.org/10.1186/1471-2164-15-685
https://doi.org/10.1093/bioinformatics/btt215
https://doi.org/10.1093/bioinformatics/btt215
http://bioinformatics.oxfordjournals.org/content/29/13/i361.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/29/13/i361.abstract
http://bioinformatics.oxfordjournals.org/content/29/13/i361.abstract
https://doi.org/10.1186/s13059-015-0587-3
https://doi.org/10.1038/ng.3257
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib48E2146DACBF832DB2432FF288D8A25Ds1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib48E2146DACBF832DB2432FF288D8A25Ds1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib48E2146DACBF832DB2432FF288D8A25Ds1
https://doi.org/10.1016/j.jda.2006.10.003
https://doi.org/10.1016/j.jda.2006.10.003
http://www.sciencedirect.com/science/article/pii/S1570866706000967
https://doi.org/10.1007/s11786-007-0029-z
https://doi.org/10.1142/S0129054109007005
https://www.worldscientific.com/doi/pdf/10.1142/S0129054109007005
https://www.worldscientific.com/doi/abs/10.1142/S0129054109007005
https://www.worldscientific.com/doi/abs/10.1142/S0129054109007005
https://doi.org/10.1016/j.engappai.2016.01.009
http://www.sciencedirect.com/science/article/pii/S0952197616000130
https://doi.org/10.1016/j.ipl.2019.03.003
http://www.sciencedirect.com/science/article/pii/S0020019019300535
http://www.sciencedirect.com/science/article/pii/S0020019019300535
https://doi.org/10.1186/1471-2105-15-235
https://doi.org/10.1186/1471-2105-15-235

JID:YINCO AID:104616 /FLA [m3G; v1.291; Prn:21/08/2020; 12:32] P.13 (1-13)

C.S. Iliopoulos et al. / Information and Computation ••• (••••) •••••• 13
[18] R. Grossi, C.S. Iliopoulos, C. Liu, N. Pisanti, S.P. Pissis, A. Retha, G. Rosone, F. Vayani, L. Versari, On-line pattern matching on similar texts, in: J.
Kärkkäinen, J. Radoszewski, W. Rytter (Eds.), 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw, Poland,
in: LIPIcs, vol. 78, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 9.

[19] K. Aoyama, Y. Nakashima, I. Tomohiro, S. Inenaga, H. Bannai, M. Takeda, Faster online elastic degenerate string matching, in: G. Navarro, D. Sankoff, B.
Zhu (Eds.), Annual Symposium on Combinatorial Pattern Matching, CPM 2018, July 2-4, 2018 - Qingdao, China, in: LIPIcs, vol. 105, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018, 9.

[20] S.P. Pissis, A. Retha, Dictionary matching in elastic-degenerate texts with applications in searching VCF files on-line, in: G. D’Angelo (Ed.), 17th Inter-
national Symposium on Experimental Algorithms, SEA 2018, L’Aquila, Italy, June 27–29, 2018, in: LIPIcs, vol. 103, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018, 16.

[21] A. Cislak, S. Grabowski, J. Holub, Sopang: online text searching over a pan-genome, Bioinformatics 34 (24) (2018) 4290–4292, https://doi .org /10 .1093 /
bioinformatics /bty506.

[22] G. Bernardini, N. Pisanti, S.P. Pissis, G. Rosone, Approximate pattern matching on elastic-degenerate text, Theor. Comput. Sci. (2020), https://doi .org /10 .
1016 /j .tcs .2019 .08 .012, http://www.sciencedirect .com /science /article /pii /S0304397519305018.

[23] G. Bernardini, P. Gawrychowski, N. Pisanti, S.P. Pissis, G. Rosone, Even faster elastic-degenerate string matching via fast matrix multiplication, in: C.
Baier, I. Chatzigiannakis, P. Flocchini, S. Leonardi (Eds.), 46th International Colloquium on Automata, Languages, and Programming, ICALP, 2019, July
9-12, 2019, Patras, Greece, in: LIPIcs, vol. 132, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 21.

[24] R. Kundu, Algorithmic Advances in Handling Uncertainty and Regularity in Strings, Ph.D. thesis, King’s College London, 2019.
[25] P. Weiner, Linear pattern matching algorithms, in: Proceedings of the 14th IEEE Annual Symposium on Switching and Automata Theory, Institute of

Electrical Electronics Engineer, 1973, pp. 1–11.
[26] E.M. McCreight, A space-economical suffix tree construction algorithm, J. ACM 23 (2) (1976) 262–272.
[27] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (3) (1995) 249–260.
[28] H.T. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.
[29] B. Schieber, U. Vishkin, On finding lowest common ancestors: simplification and parallelization, SIAM J. Comput. 17 (6) (1988) 1253–1262, https://

doi .org /10 .1137 /0217079.
[30] A. Amir, M. Farach, Z. Galil, R. Giancarlo, K. Park, Dynamic dictionary matching, J. Comput. Syst. Sci. 49 (2) (1994) 208–222, https://doi .org /10 .1016 /

S0022 -0000(05)80047 -9, http://www.sciencedirect .com /science /article /pii /S0022000005800479.
[31] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, New York, NY,

USA, 1997.
[32] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings, Cambridge University Press, 2007, 392 pages.
[33] D.E. Knuth, J. James H. Morris, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2) (1977) 323–350, https://doi .org /10 .1137 /0206024.
[34] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic search, Commun. ACM 18 (6) (1975) 333–340, https://doi .org /10 .1145 /360825 .

360855.
[35] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, 1994.

http://refhub.elsevier.com/S0890-5401(20)30104-8/bibD227745E016EEE8A6E0A24496482AA8Es1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibD227745E016EEE8A6E0A24496482AA8Es1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibD227745E016EEE8A6E0A24496482AA8Es1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib33745DDC49AB63C7588F2F40747BEB52s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib33745DDC49AB63C7588F2F40747BEB52s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib33745DDC49AB63C7588F2F40747BEB52s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibCD1E5FD3092355856887B68AED1C007Ds1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibCD1E5FD3092355856887B68AED1C007Ds1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibCD1E5FD3092355856887B68AED1C007Ds1
https://doi.org/10.1093/bioinformatics/bty506
https://doi.org/10.1093/bioinformatics/bty506
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1016/j.tcs.2019.08.012
http://www.sciencedirect.com/science/article/pii/S0304397519305018
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibACB2A83786DF7ED5F088AFDE095ED9E5s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibACB2A83786DF7ED5F088AFDE095ED9E5s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibACB2A83786DF7ED5F088AFDE095ED9E5s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibB1731B18D43B7E2E63960918F4B91F4Fs1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib4FBEE0B63CF4638EB4A9D4E67C27A6F0s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib4FBEE0B63CF4638EB4A9D4E67C27A6F0s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibE0ADAAF8F0836FAACE64BA1F6E305E09s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibB0D6C3DB1AE18C28407D9D669FA1D180s1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibAB064F590003CD1A9155C2B6D6D65587s1
https://doi.org/10.1137/0217079
https://doi.org/10.1137/0217079
https://doi.org/10.1016/S0022-0000(05)80047-9
https://doi.org/10.1016/S0022-0000(05)80047-9
http://www.sciencedirect.com/science/article/pii/S0022000005800479
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib8ABFBAA53DBD2451460FB740155504FDs1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib8ABFBAA53DBD2451460FB740155504FDs1
http://refhub.elsevier.com/S0890-5401(20)30104-8/bib0756700E2F9C7B098ADECCCB6040CABFs1
https://doi.org/10.1137/0206024
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
http://refhub.elsevier.com/S0890-5401(20)30104-8/bibA2D93B2E40DF9EE8B89B0571AFCB136Bs1

	Efficient pattern matching in elastic-degenerate strings
	1 Introduction
	2 Preliminaries
	2.1 Terminology
	2.2 Algorithmic tools
	2.2.1 Suffix tree
	2.2.2 KMP algorithm and failure function
	2.2.3 Aho-Corasick Automaton

	3 Solid pattern and elastic-degenerate text
	3.1 Problem definition
	3.2 Algorithm
	3.2.1 Stage 1: pre-processing
	3.2.2 Stage 2: search

	3.3 Analysis
	3.3.1 Correctness
	3.3.2 Space complexity
	3.3.3 Time complexity

	4 Elastic-degenerate pattern and solid text
	4.1 Problem definition
	4.2 Algorithm: basic idea
	4.3 Algorithm: details
	4.4 Analysis
	4.4.1 Space complexity
	4.4.2 Time complexity

	5 Conclusion
	Declaration of competing interest
	References

