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• Embedding security in slicing architectures through ML-
Agent and Security-Agents.

• Assessing security-aware slicing architecture in nation-
wide testbeds.

• Advancing intra-slice security with non-intrusive and generic
monitoring metrics.

• Empowering network slicing architecture with federated
learning.

• Assessing distributed ML-Agents handling attack predic-
tion in real-world testbeds.
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Abstract

Network Slicing (NS) has transformed the landscape of resource sharing in networks, offering flexibility to support services and
applications with highly variable requirements in areas such as the next-generation 5G/6G mobile networks (NGMN), vehicular
networks, industrial Internet of Things (IoT), and verticals. Although significant research and experimentation have driven the
development of network slicing, existing architectures often fall short in intrinsic architectural intelligent security capabilities. This
paper proposes an architecture-intelligent security mechanism to improve the NS solutions. We idealized a security-native archi-
tecture that deploys intelligent microservices as federated agents based on machine learning, providing intra-slice and architectural
operation security for the Slicing Future Internet Infrastructures (SFI2) reference architecture. It is noteworthy that federated-
learning approaches match the highly distributed modern microservice-based architectures, thus providing a unifying and scalable
design choice for NS platforms addressing both service and security. Using ML-Agents and Security Agents, our approach identi-
fied Distributed Denial-of-Service (DDoS) and intrusion attacks within the slice using generic and non-intrusive telemetry records,
achieving an average accuracy of approximately 95.60% in the network slicing architecture and 99.99% for the deployed slice –
intra-slice. This result demonstrates the potential for leveraging architectural operational security and introduces a promising new
research direction for network slicing architectures.

Keywords: Network Slicing, Machine Learning, Network Analytics, Federated Learning, Security

1. Introduction

Over the last 40 years, mobile networks have evolved and
benefited our society, changing the way we perform daily tasks
with applications that are now indispensable, smarter, and more
useful than before. This impact is measured when we look at
the forecast of having 3.5 billion users consuming connectiv-
ity and supporting use cases with more than 70 different in-
dustrial segments [1, 2]. The evolution of mobile networks has
been marked by a paradigm shift from conventional networks to
software-defined intelligent networks facilitated by softwariza-
tion, cloudification, and Network Slicing (NS) paradigms [3, 4].
These advancements have been made to meet the needs of users
and modern applications.

Applications such as Virtual Reality (VR), Internet of Ev-
erything (IoE), and Autonomous Vehicles are evolving, requir-
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ing, rather than network connectivity, a portion of network re-
sources to cope with specific requirements [5, 6]. Network
Slicing (NS) involves tailoring a physical network to specific
applications and services using three primary baselines: iso-
lation, end-to-end connectivity, and application-driven require-
ments [7, 8]. In this context, challenges arise from intelligent
and secure network slicing, such as high automation, programma-
bility, interoperability, data orchestration, and zero-touch man-
agement [9, 10]. Disruptive paradigms, such as Artificial In-
telligence as a Service (AIaaS) [11] or Machine Learning as a
Service (MLaaS) [12], can evolve network slicing architectures
that provide security skills, not as a feature to be developed
apart from slicing architecture, but rather as native-aware se-
curity defenses for network slicing, particularly in architectural
core operations and transactions [13, 3, 14]. These technologies
and findings are essential for realizing network slicing. The
evolution of mobile networks is envisioned to integrate land,
sky, and sea connectivity [15] because of the heterogeneity of
technologies and domains conducive to security issues [16].

In the literature, we found the use of large-scale testbeds
to build and validate network slicing architectures, algorithms,
and methods. Additionally, advanced testbeds serve as testing
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grounds for developing and experimenting with innovative net-
work slicing architectures [17, 18, 19, 20, 21]. Legacy testbeds [18,
22] were integrated through a reference architecture, and func-
tionalities were presented in the Slicing Future Internet Infras-
tructures (SFI2) reference Architecture [23, 4, 24]. However,
incorporating these legacies and cutting-edge testbeds to sup-
port network-slicing security experimentation poses challenges.
Given the heterogeneous integration scenario for network slic-
ing architecture components, we believe a native security-aware
architecture can effectively advance such methods.

Several security issues related to network slicing include
impersonation, traffic injection, Denial-of-Service (DoS) tam-
pering, eavesdropping, reply attacks, and interface monitoring [23,
25, 26]. This article introduces network slicing architecture en-
hancement with a native, distributed, and highly scalable se-
curity operation method through a combination of Security

Agents and ML-Agents. Existing approaches do not fully ex-
plore the distributed Security Agent aligned with the ML-Agent
as a countermeasure to improve the operational security of net-
work slice architectures and intra-slice with the ability to en-
hance the attack-handling capabilities for each control-plane
core entity [27, 26].

In this context, Federated Learning (FL) is a type of dis-
tributed learning where multiple devices or systems train mod-
els locally on their own data [28], sharing model updates only
(such as weights or gradients) with a central server at the ML-Agent
in the SFI2 architecture. This server aggregates these contribu-
tions without accessing the raw data, allowing for the creation
of a global model that preserves data privacy and security across
distributed sources. Federated Learning offers several advan-
tages over traditional centralized machine learning, particularly
in attack detection within network slicing. In a scenario where
each tenant within a network slice has access to their flow data
and network attack metrics, federated learning becomes a pow-
erful tool for collaborative model development without com-
promising tenants’ privacy.

We validate the effectiveness of our method by embedding
federated learning in ML-Agents to supply Security Agents

handling Distributed Denial-of-Service (DDoS) and intrusion
attacks on network slicing control-plane entities. Our experi-
mentation and validation Proof of Concept (PoC) was based on
microservices that provide cognitive services to architectural
entities in a highly granular, independent, and customizable
manner. ML-Agents and Security Agents are organized in
Kubernetes sidecar containers that run within a separate service
within a pod. The Security Agent works in the same data
plane as the pod services of the SFI2 Architecture core entities
that handle threat identification tasks. By contrast, other en-
tities in the control plane of the architecture usually continue
their management functions.

The contributions of this study are as follows: (1) A frame-
work for embedding native security into network slicing ar-
chitectures through ML-Agent and Security Agents; (2) a
functional evaluation of a security-native network slicing archi-
tecture capable of handling lifecycle operations and intra-slice
security threats; (3) an empirical evaluation of a self-adaptive
learning architecture based on federated learning for network

slicing architectures; and (4) an evaluation of the Security Agent’s
capacity to handle on-the-fly attack prediction in network slic-
ing architectures on a nationwide testbeds.

The structure of the remainder of this paper is as follows.
The topics that relate to this work are discussed in Session 2. In
Section 3, we contextualize our work within a broader scope,
highlighting the unique contributions of this research. The pro-
posed method is presented in detail in Section 4, followed by a
description of the experimental setup and results in Section 5.
Section 6 discusses concluding remarks and future directions.

2. Background

Network slicing. Resource sharing enabled by comput-
ing virtualization has influenced mobile networks, particularly
in 5th Generation Mobile Network (5G) development main-
stream. This has resulted in numerous initiatives from industry,
Standards Development Organizations (SDOs), and academia
to share network resources, known as Network Slicing (NS) [29,
7]. Network slicing is defined by different standard bodies, such
as Next Generation Mobile Networks (NGMN), as a division of
a physical network into multiple networks with capabilities and
characteristics oriented to a use case [30]. 3rd Generation Part-
nership Project (3GPP) defines network slicing as a technology
that allows the operator to create and customize the network to
meet different market demands [31]. Based on these pillars, the
state of the art has been building and evolving solutions, archi-
tectures, and management approaches to offer tailored network
resources to users despite the challenges of seamless isolation,
performance, and security [32].

SLICE INSTANTIATOR

SLICE SUPERVISOR

SLICE ACTUATOR

RESOURCE TRADER

SLICE BUILDER

SFI2
SLICING 

DATABASE

RESOURCE 
MARKETPLACE

DOMAIN
MON

(Interface
Monitoring)

DOMAIN
IM

(Interface
Manager)

SFI2
ARCHITECTURE

S
L
I
C
E
D
 
D
O
M
A
I
N

Figure 1: Framework architecture of basic SFI2 building blocks.

NS Arquitectures. A plethora of network slicing architec-
tures for specific domains, industry verticals, and connectivity
requirements have emerged [33, 34, 35, 36, 4]. While each ar-
chitecture has its features, they share common aspects, such as
the management and lifecycle control loop for network slicing.
These architectures provide entities for network slices’ prepara-
tion, commissioning, operation, and decommissioning phases.
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The control mechanisms for these phases may vary among ar-
chitectures; however, coordination, privacy, energy efficiency,
and security are still critical, especially for business verticals
that utilize network slices [37]. Thus, we proposed a concep-
tual architecture of network slicing SFI2 focused on security,
sustainability, and experimental network integration [23].

SFI2 Framework. The SFI2 architecture is illustrated in
Fig. 1, in which the main functional blocks are highlighted [23].
The architecture includes a block slice requester, resource trader,
slice builder, slice instantiator, slice supervisor, and slice ac-
tuator, as well as the interaction with different domains over
which network slices can be instantiated. Thus, SFI2 becomes
seamless to deploy network slices in heterogeneous testbeds
with different technologies, such as Kubernetes, Docker, or Vir-
tual Machines. The SFI2 architecture was built to be natively
secure and intelligent [38]. In this paper, we introduce the
Security Agent, ML-Agent, with native distributed learning,
and Monitoring Agent components [23].

Federated Learning. Federated learning is a machine learn-
ing paradigm that trains a robust model by leveraging data spread
across heterogeneous devices or servers. Federated learning of-
fers several advantages over centralized approaches for attack
detection. Primarily by preserving data privacy and security,
tenants can train models locally and share only model updates
without exposing sensitive data. It enables collaborative knowl-
edge sharing, allowing tenants to benefit from a robust global
model that captures a wider range of attack patterns without
directly sharing their data. The approach enhances attack de-
tection by continuously updating the global model with new
information from tenants, improving adaptability to emerging
threats. Additionally, it reduces bandwidth and computational
overhead by minimizing data transfer requirements. It increases
resilience to single points of failure by distributing data pro-
cessing across multiple tenants, where data sensitivity and pri-
vacy are critical [39, 40]. The general formula for the feder-
ated learning process can be expressed as F(w) = 1

K ×
∑K

k=1
Fk(w), where F(w) is the global objective function to be mini-
mized, w represents the model parameters, K is the total num-
ber of clients, and Fk(w) is the local objective function of the
kth client. Each client computes an update to the model based
on its local data, and these updates are then aggregated to form
a new global model. The process iterates until convergence or
until a satisfactory model is obtained.

3. Related Work

Previous studies have explored various network-slicing ap-
proaches, each tailored to specific requirements and applica-
tions [3], including aspects such as security or profit-based re-
source allocation [41, 42]. Moreover, federated learning has
been applied to different network challenges, especially those
focused on privacy [43, 44, 45]. Many of these architectures in-
corporate Artificial Intelligence (AI) capabilities, whereas oth-
ers employ AI for orchestration and other purposes in network
slices [46]. This section presents research on applying compu-
tational intelligence techniques in network experimental testbeds

and using machine learning algorithms to enhance security in
network-slicing architectures.

3.1. Federated Learning for Testbeds

Wijethilaka et al. [37] developed a federated learning strat-
egy to enhance network slicing security, a technology that allo-
cates dedicated logical networks to diverse applications. This
manuscript introduces a framework called FLeSO, which uti-
lizes federated learning to train machine learning models to de-
tect anomalies and cyber-attacks in the control plane of sliced
networks. The FLeSO framework was tested using an experi-
mental testbed of sliced networks built with open-source tools
and an NSL-KDD intrusion dataset. The study indicates that
FLeSO is good at identifying attacks, keeping data private, and
enabling proactive security measures.

Boualouache et al. [47] presented a solution for detecting
inter-slice attacks in Vehicle-to-Everything (V2X) 5G networks,
which pose a significant threat to the isolation and privacy of
network slices. The proposed approach utilizes federated and
deep learning to deploy virtual security functions within net-
work slices, which cooperate to train and refine attack detec-
tion models. The effectiveness of this method was validated
through extensive experimentation conducted on a testbed con-
sisting of sliced networks and the CSE-CIC-IDS2018 intrusion
dataset [48]. Our process results in high accuracy in detecting
attacks in network slicing management transactions while en-
suring data privacy.

Saad et al. [49] presents a timely contribution to the field of
federated learning in Beyond Fifth Generation (B5G) networks
with zero-touch management, focusing on the pressing issue
of poisoning attacks that can prevent the optimal functioning
and security of deep learning models utilized in the automated
management and orchestration of network slices. To address
this challenge, the authors introduce a novel framework called
Trust Deep Q-learning Federated Learning (TQFL), which em-
ploys deep reinforcement learning to select a trusted participant
in the federated learning process responsible for detecting and
mitigating poisoning attacks using unsupervised learning and
dimensionality reduction. The performance of TQFL was eval-
uated through an exhaustive experimentation campaign using
the OpenAirInterface platform and a realistic dataset on the la-
tency of the Access and Mobility Management Function (AMF)
function. The results show the effectiveness of TQFL in miti-
gating poisoning attacks while preserving the accuracy and pri-
vacy of federated learning models.

3.2. Sliced Testbeds and Security

Wichary et al. [50] presented a solution to safeguarding and
isolating 5G network slices across multiple layers and domains.
The proposed approach uses a security attribute model, which
associates security controls with the specific requirements of
each slice. The study assessed the effectiveness and practical-
ity of various security measures, categorizing them into eight
domains and six isolation classes.

Jiang et al. [56] proposed a DeepAR-based probabilistic
forecasting model for admission control in network slicing within
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Table 1: Prior state-of-the-art works towards Security and AI for Network Slicing Architectures.

Approach Network
Segment

Standards
Compatibility

Security
Level

Training
Paradigm Dataset Pro-active

Security/Action
Defense/Action

Strategy

Wijethilaka et al. [50] Slicing Architecture None Architecture Local None ○␣
Manage the resources and services

of each slice to guarantee data
confidentiality, integrity, and availability.

Khan et al. [51] RAN 3GPP intra-Slicing Local CIC IDS 2017 ○␣

A centralized controller that
coordinates the agents in

the slices collects and analyzes the
network data, and sends alerts in the

event of anomalies.

Niboucha et al. [52] Core 3GPP intra-Slicing Local Proprietary ○␣

A deep neural network is
used to autonomously detect

and mitigate DDoS attacks on
the mMTC network slices.

Wen et al. [53] Core None Arquitecture None None ○␣

Integrating different security solutions
into the testbed, such as firewalls,

IDS/IPS, and VPNs, on demand for the
network slices that require it.

Silva et al. [54] Core 3GPP Arquitecture None None ○
Prevents DDoS attacks on the 5G
control plane through intelligent

resource scaling.

Chilukuri et al. [55] Core 3GPP Architecture Local Proprietary ○␣

Using Self-Organizing Network (SON)
and Hierarchical Temporal Memory (HTM)-based

learning, the approach detects and
isolates malicious users trying to attack
the 5G core using the XDP technique.

Wijethilaka et al. [37] Slicing Architecture None Architecture Distributed NSL-KDD ○␣

Federated learning is used to
train machine-learning models to

detect anomalies and attacks in the control
plane of sliced networks.

Boualouache et al. [47] Slicing Architecture None intra-Slicing Distributed CSE-CIC-IDS2018 ○␣

Using federated learning and deep
learning to train attack detection models,
virtual security functions are deployed

in network slices that collaborate to
update these models.

Saad et al. [49] RAN 3GPP Architecture Distributed
Eurecom AMF Resource

Consumption Dataset ○

Deep reinforcement learning was
used to select a trusted participant in

federated learning, which is
responsible for proactively
detecting and mitigating
poisoning attacks in B5G

networks.

Jiang et al. [56] SDN None Architecture Local CERNET ○␣

It employs a closed-loop
parameter update mechanism

and uses DeepAR, a
recurrent neural network
model, for probabilistic

forecasting in slicing admission.

Our Proposal Slicing Architecture Any Architecture Local & Distributed CIC IDS 2017 & 5GAD ○

ML-Agents and Security-Agents

deployed as daemonsets in slicing
microservice architectures,

providing security for
each slicing control-plane

entity and intra-slice.

Software-defined Networks (SDNs). The model is designed for
network segmentation and is compatible with 5G and Software-
defined Wide Area Network (SD-WAN) standards. They in-
corporate AI and blockchain technologies to enhance network
security. The training paradigm leverages DeepAR, a recur-
rent neural network model, using real-world historical traffic
from the China Education and Research Network (CERNET)
to proactively manage slice admissions and prevent conges-
tion. In addition, a closed-loop parameter-update mechanism
was employed to optimize resource allocation and improve de-
fense strategies.

Khan et al. [51] presents a solution to the challenge of de-
tecting DoS and DDoS attacks on 5G network slices, which can
significantly impact the functionality and performance of the
associated services. Their proposed method is based on a Re-
current Neural Network (RNN), which utilizes a recently col-
lected dataset from a simulated 5G network slicing testbed. The
model’s efficacy was validated through accuracy tests, resulting
in a remarkable value of 99.99%.

Niboucha et al. [52] addresses the problem of detection and
mitigation of DDoS attacks on Massive Machine Type Commu-
nications (mMTC) network slices in 5G networks, which can
connect many Internet-of-Things (IoT) devices. The proposed
method is a zero-touch security management solution that uses
machine learning to predict, identify, and block malicious de-
vices that generate abnormal traffic. The measure used was the
detection rate of the model, which was tested on a EURECOM
5G testbed.

Concerning testbeds for security, Wen et al. [53] presented
VET5G, an end-to-end virtual testbed for experimenting with
security in 5G networks. The proposed method is a container-
based platform that emulates mobile devices, RAN, and 5G
core networks, supporting programmability and isolation. The
measures used were the performance and usability of the testbed,
which was evaluated in two attack scenarios and a course project.

Wijethilaka et al. [37] focus on ensuring security in sliced
networks, a critical component of future telecommunication sys-
tems. To address this issue, the authors propose an architec-
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ture for a security orchestrator that can provide tailored security
services to different network slices and evaluate its feasibility
and performance through experimentation using an OpenStack-
based testbed, together with Open Source MANO (OSM), Py-
Torch, and an NSL-KDD intrusion detection dataset.

The paper by Silva et al. [54] focuses on the significant is-
sue of DDoS attacks on the 5G control plane, which can com-
promise service availability and security. The authors propose a
new approach, REPEL, an intelligent resource-scheduling strat-
egy that utilizes game theory to combat these attacks. The study
examines the efficiency and effectiveness of REPEL through a
queuing model and an experimental testbed utilizing a virtual-
ized evolved packet-core prototype.

Chilukuri et al. [55] present SENTINEL. This framework
utilizes the Self-Organizing Network (SON) paradigm and learn-
ing based on Hierarchical Temporal Memory (HTM) to protect
the 5G core control plane from DDoS attacks. The framework
detects and isolates malicious users attempting to attack the 5G
core using a slice aggregator and Multi-factor Authentication
(MFA). The efficacy of SENTINEL is evaluated through exper-
imentation on a 5G testbed and utilization of a semisynthetic
dataset of anomalies. The results indicate that SENTINEL main-
tains high levels of service availability for legitimate users while
avoiding the expenditure of additional resources.

We summarize the related works in Table 1, where the Net-
work Segment column refers to the type of network slicing per-
formed by the slicing architecture. The Standards Compatibil-
ity column refers to the compatibility of the slicing architec-
ture with standardizing entities, such as 3GPP and European
Telecommunications Standards Institute (ETSI). The Security
Level column refers to the type of security feature the network-
slicing architecture provides, whether for the network slice ser-
vice (intra-slice) or the architecture as a whole. The Training
Paradigm column refers to the method of training AI mecha-
nisms supported by the slicing architecture. The ’Dataset col-
umn summarizes the datasets of the architectures used in the
experimental evaluations. The Pro-active Security/Action col-
umn refers to how the security mechanisms act in the slicing
architecture, being reactive and proactive.

4. Federated Learning Empowering Sliced Testbeds Secu-
rity

Network slicing architectures are designed to meet a spe-
cific set of connectivity requirements, based mainly on refer-
ence models such as 3GPP and ETSI, among others. In previ-
ous work, we presented and validated a reference model for net-
work slicing architectures that addressed aspects not fully cov-
ered in the state-of-the-art, such as intrinsic security in the func-
tional blocks of architecture and slicing energy efficiency [23,
24, 57].

In the literature, there are security approaches for network
slices from a connectivity or service perspective, with a pre-
dominantly DoS family of attacks [13, 27, 25]. Furthermore,
existing security approaches for network slicing focus on a sin-
gle type of attack owing to the coupled nature of the slicing
architecture design. In this paper, we addressed the operational

security of slicing architecture. Our approach allows a slice ser-
vice provider to handle multiple attacks if the trained ML model
is embedded in the Security Agents. We applied intrinsic
security to slicing architecture through self-adaptive learning
techniques in microservices to provide security for architecture
operations regarding slicing life-cycle management.

Fig. 2 shows the functional blocks of the SFI2 reference
architecture. This architecture envisioned the implementation
of network slices considering energy-efficient slicing and in-
tegrating experimental networks and testbeds while providing
slicing-tailored security functionalities. The functional blocks
on the left (Identity And Access Management (IAM), Database,
AI Management, Monitoring, Slice Preparation, Slice Instan-
tiator, Slice Operation & Management) cooperate at different
stages of the life cycle of a network slice to operationalize the
connectivity service. The blocks on the right (Control/Actuation
and Instantiation Manager) refer to the different target domains
where the SFI2 architecture can deploy network slices in the
B5G domains, Future Internet Brazilian Environment for Ex-
perimentation (FIBRE) new generation domains [58], well-known
experimental testbeds, and others.

The Marketplace maintains and aggregates different target
domains and their resources to enable the deployment of net-
work slices during the slice commissioning phase. In all func-
tional layers of the SFI2 architecture, there is provision for
the coexistence of two daemon agents, the Security-Agent and
the ML-Agent. These agents act independently and with other
functional blocks of the architecture using a microservices ap-
proach.

As mentioned, each functional block of the SIF2 architec-
ture has two complementary services: the ML-Agent and the
Security Agent, which work asynchronously with the slic-
ing architecture. The ML-Agent performs passive and active
functions in the functional block. The passive role involves
the prompt and local response to requests for information from
AI or analytics associated with the network traffic of the func-
tional block. On the other hand, the active role involves the dis-
tributed processing and training of AI models on data common
to the functional block it serves, with the ML-Agent periodi-
cally reporting the performance of the local model to the SFI2
AI Management for aggregation. In line with [59] findings, to
avoid malicious manipulation of system behavior, our approach
assumes that all entities in the SFI2 Architecture that support
the operation of the network slice life-cycle management have
zero trust.

The Security Agent is a critical component of the SFI2
architecture, working as a composite service that operates in
parallel with slicing architecture entities. Its main responsi-
bility is actively or passively monitoring the functional block
for any security threats, including intrusion and DDoS attacks.
The Security Agent works in close collaboration with the
ML-Agent microservice (which embeds trained AI models into
the Security Agent) to detect and prevent malicious traffic
patterns in architecture entities, ensuring the overall security
and integrity of the SFI2 Architecture. For our implementa-
tion, we used the NetData monitoring platform (in Monitoring
Agent), which can monitor the statistics of both computational
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Figure 2: Architecture Building Blocks.

nodes and the microservices that run on them; in our case, the
Kubernetes DaemonSets.

Our primary aim was to develop a Security Agent that
operates as a distributed and asynchronous microservice within
our network-slicing architecture. In 5G networks, Network Data
Analytics Function (NWDAF) provides subscription and notifi-
cation services to core entities that consume analytics informa-
tion from this function. In this work, we extended this indirect
approach to providing and consuming services for SFI2 secu-
rity enforcement. Additionally, we propose a novel method for
updating threat defense models using federated learning, en-
abling entities in the SFI2 Architecture in different phases of
the network slice life cycle to handle security actions on the fly.

An example of this cooperation between the Security Agent

and the ML-Agent is constructing an IDS (Intrusion Detection
System) based on ML (IDS-ML). Fig. 3 illustrates the flow of
the interaction between the Security Agent, the ML-Agent,
and the SFI2 Architecture. As there will be a Security

Agent in each slice created by the SFI2 architecture, it will be
responsible for checking any transaction (communication be-
tween entities in the slicing architecture) and checking the traf-
fic pattern according to the embedded AI model.

The Monitoring Agent is capable of offering or directing
anonymized network flows (traces) such that SFI2 AI Manage-
ment can store them as a dataset to allow updates to AI models
in the future. The SFI2 AI Management entity relates to the
ML-Agents by inducing these agents to train AI models with
global data from SFI2 AI Management or with local data, where
each ML-Agent is embedded. These traces are transformed into
an ML-based input and fed ML-Agent, which generates a local
AI model related to detecting attacks in the context of that spe-
cific slice. The Security Agent updates the IDS-ML rules
from this model.

Our slicing architecture extends the literature by allowing
AI models of each slice (or core entity) to be used to gener-
ate a global Machine Learning (ML) model for the entire SFI2
architecture. Our architectural design decision was based on
the scalability requirement of the NS architecture, so we envi-
sioned a microservice-based architecture with different actua-
tor agents. Each ML-Agent sends its ML model to SFI2 AI

Management, thereby enabling the slicing architecture to han-
dle different DDoS threats. The SFI2 AI Management then
creates a global AI model that considers what has been learned
by all ML-Agents scattered by the architecture. Using the global
AI model, each slice (or Security Agents) updates the rules
in IDS-ML, effectively mitigating potential attacks on the core
entity of the slicing architecture. Finally, the AI models (local
and global) are updated in different rounds and continuously
improved over time.

It should be noted that the SFI2 architecture does not have
access to the data used to create the AI model, only to the
AI model generated by the ML-Agent coupled with the spe-
cific entities of the microservice-based network slicing archi-
tecture. Access to this data is limited to the Security Agent

and ML-Agent for each slice (or core entity). What is shared
with SFI2 AI Management in the SFI2 architecture is only the
AI model, without containing the data generated by the AI model.
However, the overall AI model comprises contributions from all
slices (or core entities) created with information about threats
that the core entity itself did not find. In addition, using native
federated learning allows the proposal to be placed in the con-
text of Edge Computing with fewer computational resources.
This is because the slice (or core entity) can have a more com-
plex AI model at the edge without requiring significant compu-
tational power to train and generate the model.
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Figure 3: Secure Flow Interactions.

5. Experimental Evaluation

This paper examines the potential for collaboration between
the ML-Agent, Security Agent, and Monitoring Agent to
improve the functionality and operational security of network
slicing architectures and intra-slice. To achieve this goal, we
assessed two (2) experimental perspectives. The first involved
evaluating the ML-Agent’s ability to recognize reconnaissance
and DoS attacks in a sliced 5G core network, using generic
non-intrusive monitoring metrics provided by the Monitoring
Agent feeding the ML-Agent to identify those threats. The
second perspective focuses on detecting anomalies within net-
work slicing architectures’ operational components (building
blocks), spanning slice preparation, slice implementation, and
slice operation and management entities using federated learn-
ing.

We have developed a progressive experimental framework,
beginning with centralized and classical algorithms to address
intra-slice security threats in instantiated and active services.
Subsequently, we elevate the analysis of defense mechanisms
against security threats by leveraging the unprecedented gener-
alization capabilities of FL. This approach enables the con-
struction and validation of slice architectures capable of ad-
dressing threats from two perspectives: (1) within the deployed
service (intra-slice); and (2) from the operational standpoint of
the control plane empowered by FL.

5.1. Intra-Slice Anomaly Detection

In this first experiment, we validate the ability of our ar-
chitecture to deal with threats involving the running service or
deployed network slice. In state-of-the-art, network-slicing ar-
chitectures, security solutions deal predominantly with the op-
erational security of the architecture, striving to maintain the
confidentiality, availability, and integrity of operational compo-
nents. On the other hand, our proposal sheds light on the secu-
rity improvement for the service in operation, or intra-slice, by

guaranteeing the security aspects for the running network slices
on the tenant.

This experiment is based on monitoring a network slice dur-
ing its operation. We built a Monitoring Agent to collect
metrics from the network slice and feed the ML-Agent and the
Security Agent. Among the advances in this study, when
monitoring the running network slice, we protect it from pri-
vacy when the Monitoring Agent inspects the packets’ con-
tents, only volumetric and statistical aspects [60]. We collected
metrics such as network consumption, Central Processing Unit
(CPU), and memory of running network slice.

5.1.1. Description of Test
We validated the feasibility of using generic non-intrusive

metrics to assess anomaly detection using basic ML algorithms.
We employed K-Nearest Neighbors (KNN), Decision Tree (DT),
and Random Forest (RF) to handle the resource consumption
dataset to predict anomalies in a running network slice contain-
ing a 5G core. Our test aimed to validate the performance of
these algorithms for anomaly detection in a 5G core. In con-
trast, validate the collaboration of Security Agent, ML-Agent,
and Monitoring Agent.

AMF SMF UDRNEF

UPF

UE

DNDN

5GAD-Dataset

NSSF NRFPCF UDMAUSF

Security 
Agent

Monitoring 
Agent

Attacker

a sliced 5G Core

ML 
Agent

cgroup 
Monitoring

Net ∪ CPU ∪ RAM Centralized ML
Distributed ML

AI 
Model

SFI2 
AI Management

Training 
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Figure 4: Monitoring Agent, ML-Agent and Security Agent pipelining
for intra-slice anomaly detection.
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Fig. 4 shows the experimental scenario. Initially, we in-
stantiated an “Attacker” container equipped with Packet Cap-
tures (PCAPs) with traces of attacks on 5G core entities and
with the premise of being connected to the 5G core control
plane network. Packets are injected into the deployed core us-
ing the TCPReplay tool [61]. In phase one (1), the Monitoring
Agent is an instance of NetData running in a container that col-
lects different CPU, memory, and networking metrics based on
the Docker Control Group (cgroup), as detailed in Table 2. The
metric records were transformed into the features of the running
slice resource consumption dataset. Some monitored metrics in
Table 2, such as net packets eth0, have additional attributes, in-
cluding received, sent, and multicast, resulting in a final dataset
with 42 features and labels.

Table 2: Generic Slice Metrics and their Descriptions.

Metric Description
cpu CPU usage by the entity.
cpu limit Maximum allowed CPU usage for the entity.
throttled Number of times the CPU was throttled or restricted.
throttled duration Total duration of CPU throttling.
mem Total memory usage by the entity.
writeback Amount of data being written back to the disk.
mem activity Activity related to memory usage, such as accesses and modifications.
pgfaults Number of page faults that occurred.
mem usage Current amount of memory in use.
mem usage limit Maximum allowed memory usage.
mem utilization Percentage of memory utilization.
mem failcnt Count of failed memory allocation attempts.
net eth0 Network traffic on the eth0 interface.
net carrier eth0 Carrier (signal) status of the eth0 network interface.
net packets eth0 Number of network packets transmitted and received on the eth0 interface.
net errors eth0 Number of network errors on the eth0 interface.
net drops eth0 Network packets dropped on the eth0 interface.
net fifo eth0 Number of FIFO errors on the eth0 interface.
net events eth0 Network-related events on the eth0 interface.
throttle io Rate of I/O (input/output) throttling.
throttle serviced ops I/O operations that were throttled.
pids current Current number of active processes.

Following, as Fig. 4 we perform the union operation (∪)
based on the timestamp, taking the resulting Comma-Separated
Values (CSV) to the ML-Agent in step two (2). The result-
ing CSV in step two (2) is a new resource behavioral dataset
employed to validate our method. Different algorithms and
ML are applied to the data in this phase. The ML-Agent ser-
vice instance responds to the remote procedure call of SFI2 AI
Management that starts the model training life cycle. We em-
ployed classic algorithms such as KNN, RF, and DT to val-
idate our contribution. In phase three (3), when the training
of the AI models is complete, the Security-Agent receives the
trained model. In phase four (4), the trained model weights in-
tegrate the SFI2 AI Management model pool, which can serve
this model for further requests. In phase five (5), the Security
Agent can now perform anomaly detection based on the current
running network slicing.

5.1.2. Dataset
The 5G Attack Detection (5GAD-2022) dataset consists of

intercepted 5G network data, including both normal and mali-
cious traffic in Packet Capture (PCAP) files. The normal data
was generated by simulating typical user activities like stream-
ing videos, making web requests, and joining video confer-
ences. The malicious data includes ten types of attacks cat-

egorized into reconnaissance, DoS, and network reconfigura-
tion. These attacks exploit vulnerabilities in the 5G Core net-
work [62].

The dataset was collected in a simulated environment us-
ing open-source software free5GC and User Equipment (UE)
simulator [63]. Network traffic was captured using Wireshark,
focusing on the application layer to ensure that attack packets
were fully included. Each packet was truncated or padded to
1,024 bytes to standardize the data for the machine learning
model training [62]. In our experiment, the PCAPs were previ-
ously processed by changing the source and destination Internet
Protocol (IP) to enable correct forwarding to core entities.

The dataset consists of CPU, memory, and network metrics
of all free5GC core entities. Here, AMF, Authentication Server
Function (AUSF), Charging Function (CHF), Non-3GPP Inter-
working Function (N3IWF), N3 Interface for Untrusted non-
3GPP User Equipment (N3IWUE), Network Repository Func-
tion (NRF), Network Slice Selection Function (NSSF), Policy
Control Function (PCF), Session Management Function (SMF),
Unified Data Management (UDM), Unified Data Repository
(UDR), UE and User Plane Function (UPF).

This PCAP dataset was reinforced in our experimental testbed,
leading the Monitoring Agent to record new behavioral re-
source consumption. We labeled our slice resource consump-
tion dataset according to the original PCAP dataset. Empiri-
cally, we have established a new dataset derived from 5GAD
with a proportion of 90% benign instances and 10% malignant
instances with precision of one second. This was done to simu-
late a real-world scenario where benign traffic is more prevalent
than malignant traffic.

5.1.3. Evaluation
For our evaluation, we used the Fabric testbed, a nation-

wide testbed on which we deployed a virtual machine with
32GB of memory and 16 cores with an Ubuntu 20.04 operating
system, containing scikit-learn, Docker 27.1 and Python 3.11.
We started the architecture containers (available here https://
github.com/romoreira/SFI2_B5G_Security), instantiated
the “Attacker” node and the sliced 5G core based on free5GC.

We performed 10-fold cross-validation on the dataset to en-
sure that all training data were used as test instances to avoid
overfitting. As shown in Table 3, the classical ML models em-
bedded in the Security Agent can identify anomalies in the
running network slice (intra-slice). In Table 3, we compare the
performance of the algorithms according to different metrics
such as accuracy, F1-Score, recall, and precision.

Accuracy is the proportion of correctly classified instances:
Accuracy = T P+T N

T P+T N+FP+FN . Precision measures true positives
among predicted positives: Precision = T P

T P+FP . Recall, or Sen-
sitivity, measures true positives among actual positives: Recall =

T P
T P+FN . The F1-score, the harmonic mean of precision and re-
call, is given by F1-Score = 2× Precision×Recall

Precision+Recall . These metrics of-
fer a comprehensive view of model performance, with F1-score
being especially useful for imbalanced datasets. Our results is
presented in Table 3.

In this experiment, we reinjected packets into a sliced 5G
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Table 3: Security Agent performance in anomaly detection: Values high-
lighted within the rectangle represent the highest average F1-scores among en-
tities directly impacted by intra-slice attacks.

Accuracy (%) F1-score (%) Recall (%) Precision (%)
Sliced 5G Core Entity DT KNN RF DT KNN RF DT KNN RF DT KNN RF
AMF 99.04 99.00 99.04 97.14 97.00 97.13 95.27 94.87 95.08 99.22 99.40 99.42
AUSF 92.58 92.59 92.58 67.10 67.02 67.00 61.83 61.75 61.74 94.74 95.36 95.14
CHF 100 99.98 100 100 99.94 100 100 99.90 100 100 99.99 100
N3IWF 94.45 94.49 94.50 78.47 78.51 78.62 71.51 71.44 91.58 96.30 97.01 96.78
N3IWUE 92.75 92.76 92.78 68.14 68.01 68.20 62.58 62.45 62.60 95.49 96.29 96.10
NRF 100 99.92 100 100 99.77 100 100 99.58 100 100 99.96 100
NSSF 92.60 92.58 92.58 67.24 66.74 66.95 61.94 61.51 61.69 94.76 96.21 95.35
PCF 96.44 96.56 96.53 87.99 88.27 88.19 82.47 82.35 82.34 96.65 97.87 97.63
SMF 100 99.96 100 100 99.88 100 100 99.79 100 100 99.98 100
UDM 92.58 92.61 92.58 67.00 67.00 67.00 61.74 61.71 61.74 95.14 96.00 95.14
UDR 97.32 97.29 97.36 91.26 91.10 91.38 86.41 86.07 86.48 98.10 98.34 98.32
UE 100 99.99 100 100 99.97 100 100 99.95 100 100 99.99 100
UPF 99.95 99.89 99.99 99.86 99.68 99.97 99.79 99.61 99.95 99.93 99.75 99.99

core to trigger reconnaissance, network reconfiguration, and
DoS attacks. Specifically, we cause AMF to generate fraudulent
requests to UDM while impersonating AMF. We also injected
the “Get All Network Functions” attack without specifying the
network function, causing NRF to behave in a Byzantine man-
ner. We also triggered a “Random Data Dump” that refers to de-
liberately requesting nf-instances from NRF. We triggered “Au-
tomatic Redirect with Timer” attacks, which caused UE traffic
to be temporarily redirected by changing policies in UPF.

We inject packets leading to the network reconfiguration
phenomenon, thus causing “Fake AMF Delete” causing the sliced
5G core to lose connectivity with the AMF. Similarly, we pro-
voke “Random AMF Insert” scenarios that generate new fraud-
ulent instances of the AMF. These events triggered a change
in the consumption pattern of the CPU, memory, and network
resources of the running network slice. Thus, the Security

Agent was able to identify these intra-slice nuances, leading to
the performance presented in Table 3.

Finally, we cause a DoS attack, specifically the “Crash NRF
Attack” behavior, where malformed requests are deliberately
sent to the entity, causing it to fail and triggering abnormal be-
haviors in the resources of the other entities of the sliced 5G
core. In addition to the “automated drop with timer” and “au-
tomated redirect with times” behavior that alternates between
redirecting or dropping the traffic of the UE in the UPF, this
leads to anomalous resource consumption in the control entity.

Specifically, the attacks we simulated to evaluate our method
directly affected the entities AMF, NRF, NSSF, PCF, SMF,
UDR, UDM, UE, and UPF, as listed in Table 3. Therefore, we
observed in more detail the performance of the embedded AI
model generated by the ML-Agent combined with the Security
Agent on these entities. As shown in Fig. 5, the graphs con-
tain the ROC curve, showing a trade-off between sensitivity and
specificity.

The Area Under the ROC Curve (AUC) quantifies the over-
all ability of the model to discriminate between positive and
negative classes. An AUC value closer to 1 indicates good
classification, while a value of 0.5 suggests random guessing.
A higher AUC value represents a better model performance in
distinguishing between classes. The results in Fig. 5 suggest
that the Security Agent combined with the ML-Agent can
adequately identify intra-slice anomalies. A higher area under
the curve (AUC) indicates better performance in distinguishing
between legitimate traffic and DoS attacks for the Security

Agent, reflecting the system’s effectiveness in accurately iden-
tifying attacks while minimizing false alarms.

Table 4: Intra-Slice Security Defense Mechanism Comparison.

Approach Dataset Security
Threat

Employed
Method

On-time
Detection

Low-overhead
Monitoring

Defense
Efficiency

Boualouache et. al [47] CSE-CIC-IDS 2018 [64] DoS Deep Learning (DL) ○␣ ○␣
Accuracy:

99.00%

Hossain et. al [65] VeReMi [66] DDoS
DL with

Knowledge
Destilation (KD)

○␣ ○␣
Accuracy:

99.00%

Majeed et. al [67] CTU-13 [68] BotNet DL ○␣ ○␣
Accuracy:

97.74%

Boualouache et. al [69] 5G-NIDD [70] DoS FL ○ ○␣
F1-Score:
88.00%

Our Approach 5GAD [62] DoS Classic ML ○␣ ○
Accuracy:

100%

Table 4 presents a thorough comparison of existing intra-
slice security defense mechanisms, positioning our proposed
approach within the current research landscape. The compar-
ison covers key aspects, including the dataset used, type of se-
curity threat addressed, employed method, on-time detection
capabilities, low-overhead monitoring, and overall defense effi-
ciency. By comparing various approaches, such as those based
on DL, FL, and traditional ML, our method achieved 100% ac-
curacy in detecting DoS attacks on the 5GAD dataset through
non-intrusive monitoring. This comprehensive analysis under-
scores the robustness of our approach, particularly in achiev-
ing superior detection accuracy without increasing monitoring
overhead, thereby contributing to the advancement of security
solutions in network slicing.

5.2. Anomaly Detection in Architecture Building Blocks
In this second experiment, we propose a formal evaluation

of security-native new advances, showcasing it on the SFI2 Ar-
chitecture through experiments in which each federated client
processes a local dataset [48] consisting of network flows gen-
erated by FlowMeter [71]. This tool creates tuples of network
flows based on the statistical grouping of network packets. Once
the packet capture file is generated (PCAP), it is converted into
a CSV containing 78 features for each network flow. In this ex-
periment, we validated the “Security Level” feature (Table 1)
of our architecture based on its ability to handle security threats
from an architectural perspective. We have advanced the SFI2
Architecture by empowering each functional entity to manage
security threats in the lifecycle control flow on the fly.

We assume that all SFI2 Architecture microservices are ready
to handle the network slice lifecycle. In our experimental eval-
uation, we used SFI2 AI Management to trigger a federated
learning scenario using non–Informally, Identically Distributed
(IID) data. Each federated client (see Fig. 2 as ML-Agent and
associated with microservices as a daemon set) had access to
a dataset of a specific type of intrusion and DDoS attack. The
data in each ML-Agent may not follow the same distribution
nor may have the same characteristics as the data on other de-
vices or the overall population, referred to as non-IID data. This
presents challenges for federated learning, such as slow conver-
gence, poor accuracy, and model divergence.

We analyzed the optimal hyperparameters for each partic-
ipant, considering their respective local training sets. In addi-
tion, we used the Bayesian approach with the help of the Op-
tuna hyperparameter optimization framework [72]. As depicted
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Figure 5: Receiver Operating Characteristic (ROC) curve for the main entities directly impacted by the intra-slice attacks.

in Fig. 6, the neural network comprises distinct structures, lay-
ers, and input and output data. We sought to minimize loss
by considering the number of neural network layers, optimizer,
learning rate, and epochs. This neural network architecture was
chosen after a previous hyperparameter optimization process,
which sought to determine the optimal number of layers to min-
imize the loss.

We embedded the Long Short-Term Memory (LSTM) model
shown in Fig 6 designed for the efficient processing of sequen-
tial data in our ML-Agent. The model starts with an input layer
that maps 78 input features (detailed in the subsection 5.2.2) to
16 units, followed by a hidden layer with the same dimension-
ality, employing Rectified Linear Unit (ReLU) activation, and
a dropout layer with a probability of 0.4 to prevent overfitting.
The output layer reduces the feature space to two units for bi-
nary classification (DDoS or non-DDoS). During training, our
model has nodes such as AccumulateGrad, TBackward0, Ad-
dmmBackward0, and SoftmaxBackward0, which represent op-
erations and gradient accumulations, respectively. For example,
input layer.weight and output layer.weight with shapes (16, 78)
and (2, 16), respectively, are crucial in forward passes, whereas
backward operations such as ReluBackward0 and SoftmaxBack-
ward0 ensure accurate gradient computation during the back-
ward pass, culminating in the final output of the shape (32, 2).

 (32, 2)

SoftmaxBackward0

AddmmBackward0

AccumulateGrad

output_layer.bias
 (2)

ReluBackward0

AddmmBackward0

AccumulateGrad

input_layer.bias
 (16)

TBackward0

AccumulateGrad

input_layer.weight
 (16, 78)

TBackward0

AccumulateGrad

output_layer.weight
 (2, 16)

Figure 6: The Neural Network used by each ML-Agent.
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5.2.1. Description of Test
We have formalized the evaluation of our SFI2 reference

architecture security extension by conducting experiments on a
testbed that replicated the production network conditions. We
deployed a virtual machine with 32 GB of memory, an 8-core
CPU, and a GPU RTX 4060 Ti with 8 GB of memory, Ubuntu
20.04 operating system. Flower federated learning framework,
cuDNN 12.0 toolkit combined with Torch 2.3. Our dataset con-
sisted of benign and malicious network traffic [48]. The testing
process was divided into two phases. The first phase involves
offline training of deep neural network algorithms in a local and
federated manner. In the second phase, we implemented the
learned models in the SFI2 architecture, specifically in the dis-
tributed scenario of the testbed, where each ML-Agent runs as
microservices in different architectural blocks.

The second experiment involved running the functional blocks
of the SFI2 Architecture on different testbed nodes. The SFI2
prediction API can receive a network flow in tuple format and
judge its traffic class, benign or malignant. Therefore, we mea-
sured the API response time capacity to assess the API readi-
ness regarding the response of our architecture when running
production slices.

Finally, validation was performed on a nationwide physical
testbed in the Future Internet Brazilian Environment for Exper-
imentation New Generation testbed, which is a microservice-
based testbed with many compute nodes spread across educa-
tional institutions in Brazil and is designed to be an evolution
of the previous FIBRE testbed supported by the National Edu-
cation and Research Network (RNP) [58]. This network is geo-
graphically distributed and has an interconnection between Ku-
bernetes nodes via an Internet Protocol (IP) network that con-
nects different research institutions in Brazil.

In our current implementation, we considered only a cen-
tralized coordinator within the testbed. This decision was made
because the centralized coordinator is located in the AI agent
of the SFI2 architecture, which is protected by a security agent.
It is designed specifically for and is accessible only to SFI2
tenants, ensuring a secure and controlled environment for fed-
erated learning processes. However, we recognize the poten-
tial benefits of using blockchains and distributed coordinators
for federated learning, particularly in enhancing participant se-
curity, transparency, and trust. As such, exploring these ap-
proaches represents a valuable direction for future work, where
decentralized coordination mechanisms could further strengthen
the system’s resilience and scalability further [73].

5.2.2. Dataset
We chose four days to train and validate the deep neural

networks, encompassing tuples of network flows from differ-
ent days and times. We used 90% of the time for training and
10% for testing, and each experiment was performed 10 (ten)
times. Each capture or dataset acquisition day was assigned to
a single federated client during the learning process, as listed in
Table 5. The dataset was divided as follows: Monday featured
only regular activity (normal traffic with different applications),
whereas Tuesday through Friday included hybrid attacks and

regular activity. The neural network structure and the layers
employed for each federated client are shown in Fig. 6.

Table 5: Dataset file description and distribution.

Day Size
(# lines)

%
of Malignant

Assigned to
which ML-Agent

Tuesday 445,909 3.1 #1
Wednesday 692,703 36.48 #2

Thursday 288,602 0.01 #3
170,366 1.28 #4

Friday
286,467 55.48 #5
191,033 1.03 #6
225,745 56.71 #7

Within just four (4) days of the existing dataset [48], time
divisions into morning, afternoon, and evening led to the sep-
aration of more than four (4) datasets for each ML-Agent, as
shown in Table 5 (column “Assigned to which ML-Agent”).
The dataset comprises a real network encompassing various de-
vices such as firewalls, switches, and routers. We previously
trained models for the SFI2 AI Management building block, al-
lowing future microservices of the SFI2 reference architecture
to import the model. Later, using the trained and operational
model, we validated the performance of the security API in
classifying network flows from both network slices and func-
tional blocks of the architecture.

The chosen dataset represents the diversity of devices and
user behaviors it brings. The dataset was constructed to include
various intrusions and benign traffic at different times of the day
to capture the unique characteristics of each time slot. The first
day of the week, Monday, was excluded from the local training
process of our experiment because it consisted of only regular
traffic. The remaining days were considered for training, as they
contained a mixture of benign and malignant traffic.

To understand the type of data ML-Agents have dealt with,
we conducted a Principal Component Analysis (PCA), which is
a statistical technique used for dimensionality reduction. PCA
reduces dimensionality by transforming the original variables
into a new set of variables, the main components. The PCA-
generated scatter plots reveal that classes have considerable over-
lap within features, which may lead to difficulties in achieving
high accuracy or convergence in terms of learning in certain
AI models. Fig. 7 shows that the malignant and benign classes
are mixed, indicating an intrinsic classification challenge for
ML-Agents. To migrate some of this overlap, we conducted a
hyperparameter optimization.

5.2.3. Analysis Method
We present the results of optimizing the hyperparameters of

each ML-Agent using its local dataset, where the hyperparam-
eters were refined using the Tree-Structured Parzen Estimator
(TPE) algorithm [74] to maximize the accuracy of each model
coupled to the local ML-Agent. Table 6 lists the search space
and hyperparameters. It is worth noting that the non-IID format
of the dataset managed by each ML-Agent resulted in the dis-
covery of diverse hyperparameters, even when using the same
neural network for every ML-Agent. In our experiments, it was
necessary to optimize the hyperparameters, as we found that the
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Figure 7: Principal Component Analysis (PCA) of each ML-Agent dataset.

hegemonic hyperparameters for each ML-Agent and its dataset
in the non-IID scenario prevented the global model from con-
verging its learning rate.

Through the process of optimizing the hyperparameters, we
were able to ensure that each ML-Agent could train effectively
on its respective local dataset. Subsequently, we evaluated the
training capacity and performance of each ML-Agent using their
local dataset. The ML-Agent column indicates the training agent
employed during the experiment. In contrast, the “Dataset” col-
umn provides details on the data assigned to the ML-Agent, and
the “Attacks” column specifies the types of attacks the ML-Agent
was trained to classify/identify.

5.2.4. Training Behavior
We evaluated the training performance of a neural network

using binary classification of malignant or benign traffic. Our
native AI and security architecture are flexible enough to sup-
port different types of approaches for handling threats defense
and training AI models to handle security. Initially, we vali-
dated two behaviors of SFI2 AI Management, triggering cen-
tralized training or distributed training across ML-Agents cou-
pled as microservices in the architecture. For centralized, we
grouped the seven datasets in this experimental scenario, lead-
ing to a centralized training approach. Thus, after ten (10) dif-
ferent runs, we obtained an average test accuracy of 90.01%.
We ensured that learning was consistent by presenting the loss
function and training accuracy graphs in Fig. 8, and Fig. 9.

Although visually, the Accuracy and Loss graphs in Fig. 8
and Fig. 9 appear to fluctuate slightly; in our experiments, the
model converged at epoch 10 when there were no more signif-
icant gains in accuracy, and we activated the early stopping of
the learning process. It should also be noted that the aggre-
gation of the dataset culminated in a dataset with higher CPU
and memory consumption, and training took an average of 1072
seconds.

Subsequently, we analyzed in Fig. 10 the behavior of the
accuracy and loss curves for the federated learning scenario in-
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Figure 8: Accuracy behavior for a joint dataset using a centralized training
approach.
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Figure 9: Loss behavior for a joint dataset using a centralized training approach.
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Table 6: Dataset description and Hyperparameters for each ML-Agent.

ML-Agent Dataset Attacks
Learning

Rate (LR)
Optimizer Epochs

#1 Tuesday Brute Force, FTP-Patador, and SSH Patator 0.0003074258400864182 Adam 10

#2 Wednesday DoS/DDoS: Slowloris, Slowhttptest, Hulk, and GoldenEye 0.0005025961155459187 RMSprop 10

#3 Thursday Infiltration: Dropbox, Meta exploit Win Vista, Cool disk –
MAC, Dropbox download, and Win Vista

0.00010603472201401003 RMSpro 10

#4 Thursday Web Attack: Brute Force, XSS, and SQL Injection 0.00013936442920558617 Adam 10

#5 Friday Firewall Rules: On and Off 0.000587441102433820 RMSprop 10

#6 Friday Botnet Ares 0.0006052967400865347 SGD 10

#7 Friday DDoS LOIT 0.00012091571705782663 Adam 10

volving two training rounds. This distributed scenario aligns
with our contribution because it enables each Security Agent

to deal with potential security threats as a specific entity in the
network slicing architecture. Biases in weight aggregation av-
erages can compromise centralized AI models.

As Fig. 10 shows, each model exhibited different behaviors
during the training process. However, it is worth noting that
the ML-Agents showed appropriate behavior in the curves, in-
dicating that they could converge in learning. Consequently,
the server model achieved an average accuracy of 90.8% using
two training rounds. The variation in accuracy and loss levels
between the different ML-Agents, as shown in Fig. 10, is an
intrinsic characteristic of federated learning in a non-IID sce-
nario, where each ML-Agent can have a unique learning behav-
ior over the time.

In addition, as shown in Fig. 10 graphs represent how chal-
lenging it was for ML-Agents to deal with non-IID data while
creating a global AI model to empower network slicing archi-
tectures, dealing with different types of DDoS and intrusion
attacks. Although challenging, the models of each ML-Agent

converged in learning because the stabilization of the loss and
accuracy after the end of the epochs was noted. With this, we
have that each ML-Agent dealt with different types of DDoS
attacks and, at the same time, contributed to adjusting a generic
and robust AI model for the architecture of networking slicing.

After conducting a thorough analysis of the capabilities of
the ML-Agents to train federatively with non-IID datasets and
reporting the weights to the central model in the SFI2 Archi-
tecture, we examined the effect of federated learning rounds on
accuracy. Fig. 11 shows the variability of the aggregate accu-
racy of the model concerning different interaction rounds. Our
findings indicate that, with an error of less than 5%, increasing
the number of training rounds had no significant influence on
the accuracy of the central model. It can, therefore, be deduced
that the non-IID datasets may not benefit from long federated
training rounds.

We present a comparison of the training times for the cen-
tralized and federated approaches in Table 7. Subsequently,
we analyzed the models resulting from federated clients with
the aggregated server model by utilizing cosine divergence to
assess the significance of any differences between the server
and client models (vector of weights) across various training
rounds. A substantial difference suggests that a particular cus-

tomer may be overlooked because of its minimal impact on the
convergence of the model. The average cosine divergence be-
tween client models and the server is presented in Table 8.

5.2.5. Analysis of Models
Regarding the training paradigm analyses, we compared the

models resulting from federated clients with the aggregated server
model by utilizing cosine divergence to assess the significance
of any differences between the client and server models across
various training rounds. Upon obtaining the samples and the av-
erage cosine divergence between the client models and server,
we analyzed the variance (ANOVA) to evaluate the statistical
equivalence of these samples. We employed an ANOVA with
four levels, each representing a sample of the cosine difference
for the different training rounds. We formulate the following
hypotheses for our analysis:

• Null Hypothesis: The means of all levels are equal.

• Alternative Hypothesis: The means of one or more levels
are different.

The ANOVA test results presented in Table 9, especially the
p-value, indicate no statistically significant difference between
the means of the four variables; namely, increasing the num-
ber of training rounds in federated learning does not affect the
accuracy achieved. Specifically, the value of p is 0.35479, indi-
cating that we should accept the null hypothesis that the means
are equal at a significance level of 5%.

According to Table 10, the R-squared value is 0.12427, which
indicates that the model accounts for only 12.43% of the vari-
ation in the data. Hence, it can be inferred that other factors,
such as the size of the dataset, the type of algorithm employed,
and the quality of communication between nodes, significantly
influence the model’s accuracy beyond the number of training
rounds.

Fig. 12 shows the statistical equivalence between the co-
sine differences and Standard Error (SE) of the mean according
to the results of the ANOVA test. This implies that the model
can learn and improve, albeit without statistically significant
improvements. Additionally, the model seems to converge to-
wards a solution as it progresses towards distributed learning.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 10: Accuracies for each ML-Agent. The graphs (a) to (g) refer to the accuracy and loss behaviors of each ML-Agent with its local dataset according to
Table 6.
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Table 7: Comparison of training time considering two different approaches.

Approach Round Count Mean
Training Time

Standard Error
Mean

Standard
Deviation Minimum Q1 Median Q3 Maximum

Federated

Two 280 362.37 6.43 107.57 236.66 257.7 344.06 452.29 619.3
Four 420 358.55 5.22 107 235.57 255.5 338.67 446.07 622.77
Eight 980 358.9 3.4 106.34 235.57 256.8 339.78 446.51 622.77

Sixteen 1832 378.64 2.65 113.24 235.57 277.29 344.95 453.35 628.73

Centralized
Mean

Training Time SE Mean StDev Minimum Q1 Median Q3 Maximum

10 1072.3 0.249 0.789 1070.5 1072.3 1072.5 1072.5 1073.5

0.909

0.969 0.966 0.956
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Figure 11: Accuracy for different Federated Rounds.

Table 8: Descriptive Statistics of cosine divergence for each training round.

N Analysis Mean Standard Deviation SE of Mean
2 7 0.00446 0.02164 0.00818
4 7 -0.00045 0.02043 0.00772
8 7 0.01440 0.01721 0.00650

16 7 0.01746 0.02376 0.00898
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-0.0005
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Figure 12: Cosine Variation through different training Rounds.

The Table 11 presents a comparative analysis of various
state-of-the-art approaches in addressing different security threats
using distinct datasets and employed methods. Each approach
is evaluated based on its capability to support multiple network
slicing (NS) architectures, provide proactive monitoring, im-
plement low-overhead monitoring, and its overall defense ef-

Table 9: Analysis of Variance Test.

DF Sum of Squares Mean Square F Value Prob>F
Model 3 0.00149 0.00050 1.13519 0.35479
Error 24 0.01048 0.00044
Total 27 0.01196

Table 10: Fit Statistics.

R-Square Coeff Var Root MSE Data Mean
0.12427 2.33603 0.02089 0.00894

ficiency. The results indicate that the accuracy or precision
of these methods varies. Our proposed approach, utilizing the
CIC-IDS2017 dataset with an LSTM model, demonstrates com-
petitive acuracy at 96.60%, while also meeting the criteria for
multiple NS architecture support, proactive monitoring, and low-
overhead monitoring.

Table 11: Comparison of FL-based Security Defense Mechanisms for NS Ar-
chitectures.

Approach Dataset Security
Threat

Employed
Method

Multiple
NS Architecture

Support

Pro-active
Monitoring

Low-overhead
Monitoring

Defense
Efficiency

Niboucha et. al [52] Own DDoS Gradient Boosting ○␣ ○␣ ○␣
Accuracy:

96.76%

Wijethilaka et. al [37] NSL-KDD [75]
DoS, and

User to Root Attack (U2R) DL ○␣ ○ ○␣
Accuracy:

99.99%
Sedjelmaci and

Boualouache [76] CSE-CIC-IDS-2018 [64] DDoS and Botnet Mean-field Game ○␣ ○␣ ○␣
Accuracy:

97.00%

Wijethilaka et. al [20] NSL-KDD [75]
DDoS,

Man-in-the-Middle (MITM),
and Botnet

DL ○␣ ○ ○␣
Accuracy:

98.00%

Rumesh et. al [77] Own DDoS LSTM ○␣ ○ ○␣
Accuracy:

99.87%

Mirzaee et. al [78] NSL-KDD [75] DoS and U2R DL ○␣ ○ ○␣
Accuracy:

99.50%

Thantharate [79] Own DDoS Sequential Model ○␣ ○␣ ○␣
Precision:
94.00%

Our Approach CIC-IDS2017 [48] DDoS LSTM ○ ○ ○
Accuracy:

96.60%

6. Concluding Remarks

In this paper, we presented a microservice-based approach
to enhance the intelligence and security of network-slicing ar-
chitectures. Our research reveals that several network slicing ar-
chitectures lack the necessary intelligence and security features
to effectively operate and protect network slices. To address
this shortcoming, we propose using ML-Agents and Security

Agents, which collaborate to provide intelligent and secure
management and orchestration for network slice core entities.

Our research demonstrated that federated learning, when as-
sociated with microservice architectures, can enhance network-
slicing architectures, improve their resilience to various secu-
rity attacks, and build robust AI models for attack prediction
for architecture blocks and intra-slices. We conclude that feder-
ated learning can make an architecture more resilient to threats,
mainly by providing on-demand adjustments and adapting to
changing data. In addition, we evaluated the behavior of train-
ing rounds in federated learning. We determined that the num-
ber of training rounds was insignificant for constructing these
AI models.

The results of this study offer new insights into the evolution
of architectures and frameworks for network slicing, allowing
their extension to the design of architectures adapted to security
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that support the requirements of new applications and business
verticals.

For future work, we plan to focus on enhancing our solu-
tion by integrating new machine learning models to bolster its
capacity to respond to security threats. Additionally, we aim to
explore the application of reinforcement learning to ensure the
robustness of network slicing architectures, even in novel attack
scenarios. We also intend to investigate the impact of different
security methods on service-level agreements and operator rev-
enue.

This study reports recent advancements and highlights sig-
nificant research opportunities in intelligent and security-aware
resource sharing for future network architectures.
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