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ON THE NUMBER OF DIOPHANTINE m-TUPLES IN

FINITE FIELDS

IGOR E. SHPARLINSKI

Abstract. We use a new argument to improve the error term in
the asymptotic formula for the number of Diophantine m-tuples
in finite fields, which is due to A. Dujella and M. Kazalicki (2021)
and N. Mani and S. Rubinstein-Salzedo (2021).

1. Introduction

1.1. Motivation and set-up. We recall the classical definition of
a Diophantine m-tuple as a vector (a1, . . . , am) ∈ N

m such that all
shifted products aiaj + 1, 1 6 i < j 6 m, are perfect squares.
The long-standing conjecture on the finiteness of the set of Diophan-

tine quintuples, after a series of intermediate results by various authors,
has been established in a striking work of Dujella [3], who has also
shown the the non-existence of Diophantine sextuples. More recently,
He, Togbé and Ziegler [8] have show the non-existence of Diophantine
quintuples is shown, see also [1]. Quite naturally, these results have
suggested to study the generalisation of this notion to other algebraic
domains such as, for example, the set of rational numbers or points on
curves, as well as in many other directions, see, for example, [2,5,6,11]
and references therein. The notion also readily extends to the setting
of finite fields, see [4, 7, 13].
Let q be an odd prime power and let Fq be the finite field of q

elements.
For r ∈ F

∗
q , we say that an m-tuple (a1, . . . , am) ∈ F

m
q form a

Diophantine m-tuple in Fq with a shift r if all m(m − 1)/2 shifted
products aiaj + r are perfect squares in Fq .

Remark 1.1. We note that it is customary to exclude zero values from
the domain from which a1, . . . , am are drawn. However in the counting
results below this makes no difference, while this simplifies the notation.
In particular, the total number of such m-tuples over Fq with a zero
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entry (which is at most mqm−1 ) can be absorbed in the error term of
our asymptotic formula.

Let Nr(m, q) be the number of distinct Diophantine m-tuple in Fq

with a shift r . It has been shown by Dujella and Kazalicki [4] that for
r = 1 and a prime p we have

(1.1) N1(m, p) = 2−m(m−1)/2pm + o(pm).

Using some ideas of Dujella and Kazalicki [4], Mani and Rubinstein-
Salzedo [13, Theorem 5.1] have given explicit formulas for Nr(2, q) and
Nr(3, q) and for m > 4 presented a more precise than (1.1) asymptotic
formula

(1.2) Nr(m, q) = 2−m(m−1)/2qm +O
(

qm−1/2
)

,

where the implied constant may depend on m, which also holds for
any r ∈ F

∗
q (and it is also easy to see that for any odd prime power q

rather than just for a prime q = p as in [13]). We also observe that the
bound (1.2) can be derived within the initial approach of Dujella and
Kazalicki [4] if one appeals to a version of the Lang-Weil bound [12].

1.2. New bound. Here we show that using some simple arguments
the bound on the error term in (1.2) can be improved.

Theorem 1.2. For a fixed m > 4, uniformly over r ∈ F
∗
q , we have

N(m, q) = 2−m(m−1)/2qm +O
(

qm−1
)

,

where the implied constant may depend on m.

As in [13] our proof is based on an application of the Weil bound for
multiplicative character sums with polynomials, see, for example, [9,
Theorem 11.23].

2. Proof of Theorem 1.2

2.1. Preliminary transformations. Since there are O (qm−1) choices
of m-tuples (a1, . . . , am) ⊆ F

m
q for which aiaj + r = 0 for some

1 6 i < j 6 m, or with ai = 0 for some 1 6 i 6 m, following
the argument of [13], we write

Nr(m, q) = 2−m(m−1)/2
∑

a1,...,am∈F∗

q

∏

16i<j6m

(1 + χ (aiaj + r)) +O
(

qm−1
)

,
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where χ is the quadratic character of Fq , we refer to [9, Chapter 3] for
a background on characters. Therefore

(2.1) Nr(m, q) = 2−m(m−1)/2qm +
∑

ε∈{0,1}m(m−1)/2

ε6=0

R (ε) +O
(

qm−1
)

,

where for ε = (εi,j)16i<j6m ∈ {0, 1}m

(2.2) R (ε) =
∑

a1,...,am∈F∗

q

∏

16i<j6m

χ (aiaj + r)εi,j .

We now fix ε ∈ {0, 1}m(m−1)/2 with ε 6= 0 and estimate R (ε). Renum-
bering the variables a1, . . . , am , we see that without loss of generality,
we can assume that

(2.3) ε1,2 = 1.

We now consider the following two cases depending on vanishing and
non-vanishing of the exponents εi,j with 2 6 i < j 6 m.

2.2. Vanishing exponents εi,j with 2 6 i < j 6 m. Assume that

(2.4) εi,j = 0, for all 2 6 i < j 6 m.

Then we see that under the conditions (2.4) the expression for R (ε)
in (2.2) simplifies as

R (ε) =
∑

a1,...,am∈F∗

q

∏

26j6m

χ (a1aj + r)ε1,j

=
∑

a1∈F∗

q

∏

26j6m

∑

aj∈F∗

q

χ (a1aj + r)ε1,j .

Hence, estimating the sums over a3, . . . , am trivially as q − 1 and re-
calling our assumption (2.3), we obtain

|R (ε) | 6 (q − 1)m−2
∑

a1∈F∗

q

∣

∣

∣

∣

∣

∣

∑

a2∈F∗

q

χ (a1a2 + r)

∣

∣

∣

∣

∣

∣

.

Clearly, for every a1 ∈ F
∗
q we have

∑

a2∈F∗

q

χ (a1a2 + r) =
∑

a∈F∗

q

χ (a+ r)

=
∑

a∈Fq

χ (a)− χ(1) =
∑

a∈Fq

χ (a)− 1 = −1.

Hence we obtain

(2.5) |R (ε) | 6 (q − 1)m−1



4 I. E. SHPARLINSKI

in this case.

2.3. Non-vanishing exponents εi,j with 2 6 i < j 6 m. We now
assume that

(2.6) εi,j 6= 0, for some 2 6 i < j 6 m.

We write R (ε) as

R (ε) =
∑

a1,...,am∈F∗

q

∏

26j6m

χ (a1aj + r)ε1,j
∏

26i<j6m

χ (aiaj + r)εi,j .

Observe that for any b ∈ F
∗
q the map

(a1, a2, . . . , am) 7→ (a1/b, a2b, . . . , amb)

is a permutation on F
m
p . Hence

R (ε) = (p− 1)−1
∑

b∈F∗

q

∑

a1,...,am∈F∗

q

∏

26j6m

χ (a1aj + r)ε1,j

∏

26i<j6m

χ
(

aiajb
2 + r

)εi,j ,

which we now rearrange as

R (ε) = (q − 1)−1
∑

a2,...,am∈F∗

q

S(a2, . . . , am)T (a2, . . . , am),

where

S(a2, . . . , am) =
∑

a1∈F∗

q

χ

(

∏

26j6m

(a1aj + r)ε1,j

)

,

T (a2, . . . , am) =
∑

b∈F∗

q

χ

(

∏

26i<j6m

(

aiajb
2 + r

)εi,j

)

.

We now examine the polynomials

Fa2,. . . ,am(X) =
∏

26j6m

(ajX + r)ε1,j ,

Ga2,. . . ,am(X) =
∏

26i<j6m

(

aiajX
2 + r

)εi,j .

Because of our assumptions (2.3) and (2.6) both these polynomials are
of positive degree.
Furthermore, it is clear that there are at most O (qm−2) choices for

(m− 1)-tuples (a2, . . . , am) ∈ F
m−1
q for which at least one of the poly-

nomials Fa2,. . . ,am(X) and Ga2,. . . ,am(X) is a perfect square in the alge-
braic closure of Fq . In this case we estimate both sums S(a2, . . . , am)
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and T (a2, . . . , am) trivially as q − 1. Hence, the contribution to R (ε)
from such sums is

(2.7) A = O
(

(q − 1)−1qm−2(q − 1)2
)

= O(qm−1).

For other choices of (a2, . . . , am) ∈ F
m−1
q , by the Weil bound, see, for

example, [9, Theorem 11.23], we have

S(a2, . . . , am), T (a2, . . . , am) = O(q1/2).

Hence, the contribution to R (ε) from such sums is

(2.8) B = O
(

(q − 1)−1qm−1
(

q1/2
)2
)

= O(qm−1).

Combining (2.7) and (2.8) we arrive to

(2.9) R (ε) = A+B = O(qm−1)

in this case.

2.4. Concluding the proof. Substituting the bounds (2.5) and (2.9)
in (2.1) we immediately obtain the desired result.

3. Comments

It is easy to see that all implied constants can be evaluated explicitly.
Hence one can use our argument to estimate the smallest q (in terms
of m) for which Nr(m, q) > 0 for all r ∈ F

∗
q . However the inductive

approach of Dujella and Kazalicki [4, Theorem 17] seems to be more
effective for this question.
Since we have multivariate character sums, it is also natural to try

improve Theorem 1.2 via the use of some version of the Deligne bound ,
see, for example [10]. Unfortunately, our polynomials have a high di-
mensional singularity locus, which seems to prevent this approach.
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