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ABSTRACT 

Rapid fire progression, such as flashover, has been one of the leading causes for firefighter deaths and 

injuries in residential building environments. Due to long computational time of and the required prior 

knowledge about the fire scene, existing models cannot be used to predict the potential occurrence of 

flashover in practical firefighting applications. In this paper, a scene-agnostic model (FlashNet) is proposed 

to predict flashover based on limited heat detector temperature information up to 150 °C. FlashNet utilizes 

spatial temporal graph convolutional neural networks to effectively learn features from the limited 

temperature information and to tackle building structure variations. The proposed model is benchmarked 

against five different state-of-the-art flashover prediction models. Results show that FlashNet outperforms 

the existing flashover prediction models and it can reliably predict flashover 30 seconds preceding its 

occurrence with an overall accuracy of about 92.1 %. Ablation study is carried out to examine the 

effectiveness of different key model components and geometric average adjacency matrix. The research 

outcomes from this study are expected to enhance firefighters’ situational awareness in the fire scene, 

protecting them from hazardous fire environments and to pave the way for the development of data-driven 

prediction systems.  

Keywords: Machine learning; compartment fires; synthetic fire data; smart firefighting; intelligent system 

1 INTRODUCTION 

In the United States, firefighter deaths and injuries are the mounting concerns. Approximately 800 

firefighters have been killed (Fahy et al. 2020) and more than 320,000 injured (Campbell et al. 2019) from 

2008 to 2018. Many of these injuries ended their careers. The National Fire Protection Association (Fahy 

et al. 2020) suggested that approximately 58 % of fireground deaths occurred in residential areas. Studies 

(Fahy et al. 2020 and Campbell et al. 2019) also revealed that rapid fire progression, such as flashover, was 

responsible for 13 % of firefighter deaths and numerous injuries. A flashover is the near-simultaneous 

ignition of most of the directly exposed combustible material in an enclosed area (Peacock et al. 1999), and 
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its occurrence is often characterized by a smoke layer temperature of about 600 °C (Reneke 2013, Hurley 

et al, 2015). However, firefighters have not had any tools to predict flashovers and rely solely on their 

experience to recognize flashover indicators (Hamins et al. 2015), such as rollover near ceiling and/or high 

heat, to avoid this life-threatening event. Yet, since the fire conditions change rapidly and the transition of 

flashover usually happens within seconds (Garrity and Yusuf 2021), it is rather difficult to identify the 

imminent occurrence of flashover while inside a building fire and hardly possible on the outside. With that, 

if the fire fighters cannot recognize impending flashover their lives are at tremendous risk. It is believed 

that with the advancement of smart interconnected fire protection devices and systems (Reneke 2013), a 

data-driven model can be developed to predict the potential occurrence of flashover based on typical 

thermal sensor signals, such as from heat detectors.  

 Over the past twenty years, many attempts have been made to develop real-time prediction models. 

Existing prediction models include empirical correlations (Babrauskas 1980, McCaffrey et al. 1981, Mitler 

and Steckler 1995, Kim and Lilley 2002), inversed modelling techniques (Overholt and Ezekoye 2012, 

Price 2014), and sensor-steered computational fluid dynamics (CFD) approaches (Koo et al. 2010, Jahn 

2017). However, the empirical models, such as (Babrauskas 1980, Mitler and Steckler 1995, Kim and Lilley 

2002), are limited to single-compartment applications and are not suitable for multi-compartment 

structures. The sensor-steered CFD approaches (Koo et al. 2010, Jahn 2017) are more generic for structure 

variance. They provide better prediction capabilities and a higher accuracy. However, these models require 

expensive computation and rely on high-performance computing machines. For instance, one simulation 

time step takes more than five minutes to compute (Jahn 2017). Therefore, CFD approaches fail to meet 

the need for real-time firefighting applications.  

Other limitations associated with the above-mentioned models are that they rely on both the continuous 

temperature signals from thermocouples and the prior knowledge about the fire scene. The fire scene 

information includes building structures, fire location, fire size, fire growth rate, and vent opening 

conditions of doors and windows. Residential fire protection devices, such as heat detectors, will stop 

functioning at elevated temperature (i.e., 150 °C) (NFPA 2002), and the information about the fire locations 

and the vent conditions are generally unknown. Since these realistic conditions (i.e., sensor temperature 

limit and the effect of arbitrarily fire location and vent opening conditions) have not been considered in the 

model development process, there is a knowledge gap between existing theoretical studies and the existing 

solutions to practical firefighting applications. This present study thus aims to fill this gap to overcome both 

the challenges of real-time computation and the complexity of realistic conditions.  

Machine learning (ML) has made breakthroughs in various scientific and engineering problems, 

including fault detection (Nasiri et al. 2017), cyber-attack prevention (Rao and Frtunikj 2018), object 

detection for self-driving vehicles (Brundage et al. 2018), human activity recognition (Xiao et. al 2021a), 

offline learning (Swazinna et. al, 2021), and motor imagery EEG subject classification (Arunabha Roy 

2022), where real-time predictions and reliable accuracy are needed. Efforts of ML-driven fire forecast 

have also been made in the fire research community. Hodges et al. (2019) used a neural network model to 

estimate smoke spread in a T-shape structure. Tam et al. (2020) developed a fire data generator to facilitate 

the use of ML for flashover prediction in multi-compartment structures. Dexters et al. (2021) used a classic 

ML model to determine the relationships for different fire parameters. Garrity and Yusuf (2021) utilized a 

simple feed-forward neural network model to forecast the temperature rise in a standard testing enclosure. 

Wu et al. (2021) and Zhang et al (2022) used deep learning models to predict local temperature in built 

environments. However, the dataset being considered in these studies were generally limited and 

simplifications were made. Wang et al. (2021) investigated ML paradigms to predict flashover based on 

limited sensor temperature up to 150 °C. In Fu et al. (2021), the ML-based flashover prediction model was 

expanded to account for a wider range of fire scenarios. The model was also validated against real fire 

experiments and prediction accuracy of ~ 82 % with a lead time of 30 seconds preceding flashover events 

was reported. In the same study, it was demonstrated that the required computational time for each 

prediction took less than one second. Compared with the over five-minute simulation in Koo et al. (2010) 

and Jahn (2017), the improvement in computation efficiency is substantial and the use of machine learning 

approach is promising.  
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Practical conditions are needed to be considered for firefighting applications and the main limitation of 

existing prediction models such as Wang et al. (2021) and Fu et al. (2021) lies in their generalizability 

across building structures. Their model architectures do not support a variable number of input data and 

floorplans. For example, a model trained for one building structure with four channels of temperature data 

does not generalize to another with eight channels. This model limitation imposes the need of prior 

knowledge about the exact floorplan of the building structure. Yet, this kind of information is usually 

unknown in practical firefighting. To account for fire scene diversity, Flashover prediction neural Network 

(FlashNet) is proposed as a scene-agnostic flashover prediction model. It formulates the building structures 

with different floorplans as graphs, whose nodes represent the sensor inputs in each building compartment. 

FlashNet uses graph neural networks (GNNs) to learn the signal dependency among the compartments and 

predicts flashover from the sensor signals and their interrelationships. Conceivably, the use of GNNs allows 

FlashNet to implicitly understand different fire scenarios, such as building structure, fire locations, and vent 

opening conditions.    

The contributions of this work are as follows: 1) to the best of the authors’ knowledge, this is the first 

study to apply GNNs to achieve a scene-agnostic flashover prediction model, 2) to use a comprehensive 

synthetic dataset for the development of a machine learning based flashover prediction model in multi-

compartment structures with a wide range of fire and vent opening conditions, 3) to propose the formulation 

of a geometric average adjacency matrix which opens a new door to handle fire data from different building 

structures, 4) to propose a novel GNN model that effectively captures the temporal information about the 

limited heat detector temperature signals and the spatial relationships between different compartments for 

flashover predictions, and 5) results show that FlashNet outperforms the existing state-of-the-art flashover 

prediction models and achieves reliable model performance for flashover prediction 30 seconds preceding 

the event without any prior knowledge about the fire scene. It is believed that the outputs from this work 

will provide a step forward to facilitate smart firefighting (Hamins et. al 2015) and help reduce fire fighter 

deaths and injuries.  

The next section will discuss the data collection process. Section 3 presents the model formulation and 

Section 4 discusses the results. 

2 TRAINING DATA SYNTHESIS FROM SIMULATION 

Training a well-performing ML model requires an adequate dataset. However, the acquisition of sufficient 

real flashover fire test data for diversity of home structures is expensive, if even possible. Building a model 

for a three-compartment building structure with simplified fire and vent opening conditions would require 

approximately 1000 full-scale simulated experiments in a recent study (Tam et al. 2020). Considering the 

diversity of possible fire scenes, the required number of experiments increases exponentially with the 

complexity of buildings and becomes impossible to achieve. As such, this study applies the learning-by-

synthesis approach (Sugano et al. 2014) and trains the flashover model using massive simulated fire data.  

This section first describes the fire data synthesis engine and then the set of variables in fire data 

synthesis, including home structures, compartment configurations, fire conditions, vent opening conditions, 

and sensor temperature profiles.   

2.1 Fire Data Synthesis Engine 

Training data for FlashNet is synthesized by a zone model, namely CFAST (Peacock et. al 2021). CFAST 

is a two-zone fire model that predicts the thermal environment in a compartmented structure. The model is 

validated against more than 15 sets of full-scale experiments (Peacock et al. 2015) with peak heat release 

rate (HRR), compartment aspect ratio (i.e., compartment length versus ceiling height), and global 

equivalence ratio, ranging from approximately 50 kW to 15,700 kW, 0.4 to 4.9, and roughly 0 to a value 

larger than 1 for a wide range of ventilation factors, respectively. In terms of accuracy, the average 

discrepancy of CFAST predictions of upper layer gas temperature against the experimental measurements 

is within 6 %. Appendix A provides a validation case for a 6-compartment home, and comparison shows 
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that the magnitudes and trends of the temperature profiles match well with the experimental data and the 

maximum absolute root mean squared error is about 30 °C.  

CData (Reneke et al. 2019) is the input file generator for CFAST. It systematically generates CFAST 

input files, saving users from the time-consuming manual configuration work. The input file generation 

depends on a set of user-specified simulation parameters, including building layouts, surface materials, fire 

conditions, ventilation configurations, location of detector(s), and output intervals. CData also accounts for 

seven different probability density functions (i.e., uniform, normal, log-normal, etc.) to ensure the diversity 

of input file generation. Additionally, user-defined functions can also be used to formulate inputs for desired 

fire environments.  

In this study, the data generation process was done on a Fire Research Division Linux Cluster using 

approximately 250 nodes, and it took about two weeks. A summary spreadsheet of all parameters for each 

case was generated. It allows for data inspection, such as removing duplicate cases and examining data 

behavior of each simulation parameter. This information is crucial to ensure the quality and range of the 

fire data.   

2.2 Variables of Fire Data Synthesis 

The parameters of fire data synthesis include home structures, compartment configurations, fire conditions, 

vent opening conditions, and sensor profiles. The following sections will discuss each of these factors.  

2.2.1 Home structures  

Seventeen typical single-floor home structures are selected from (Persily et al. 2006), which defines 209 

dwellings to represent approximately 80 % of U.S. housing layouts. These 17 structures can be categorized 

into three types of residential buildings: 1) apartment homes, 2) attached homes, and 3) detached homes . 

The overall floor area ranges from 65 m2 to 275 m2 with three to fourteen compartments. Figures 1 shows 

examples of an apartment home (a), an attached home (b), and a detached home (c). The complete list of 

the 17 homes is given in Appendix C. The hallway in Fig. 1c is divided into three sections for data 

generation. Table 1 describes the floor area and interior details of the 17 homes.  

            

 
Figures 1. Examples of the building layout for a) a five-compartment apartment home (#2), b) a six-compartment attached 

home (#9), and c) a fourteen-compartment detached home (#17). 

To properly train and evaluate the scene-agnostic model, 17 representative home structures were 

carefully selected to include buildings with identical numbers of compartments but different layouts (i.e., 
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Home #4 and Home #6 in Table 1) and buildings with different numbers of compartments. The exploration 

of the extensive dwelling structures requires different research efforts and is beyond the scope of this paper.  

 

Table 1. Housing details for the seventeen selected homes for data generation.  

Home 

#  
Type* 

Total 

Compartment  

 Floor 

Area (m2) 

Living 

Room 

Kit-

chen 
Hall‡ 

Bed-

Room 

Bath-

Room‡ 

Dining 

Room 

Family 

Room 
Den 

Fire 

Cases 

1 APT 3 65 1 1 0  0 1 0 0 0 2000 

2 APT 5 65 1 1 1 1 1 0 0 0 3000 

3 APT 6 65 1 1 2 1 1 0 0 0 3000 

4 APT 7 65 1 1 2 2 1 0 0 0 4000 

5 APT 6 65 1 1 1 2 1 0 0 0 4000 

6 APT 7 65 1 1 1 2 2 0 0 0 4000 

7 APT 8 65 1 1 1 2 2 0 0 1 5000 

8 AH 5 95 1 1 1 1 1 0 0 0 3000 

9 AH 6 95 1 1 1 2 1 0 0 0 4000 

10 AH 7 95 1 1 1 2 1 1 0 0 5000 

11 DH 7 107 1 1 1 3 1 0 0 0 5000 

12 DH 7 107 1 1 1 2 1 1 0 0 5000 

13 DH 8 107 1 1 1 3 1 1 0 0 6000 

14 APT 8 130 1 1 2 2 2 0 0 0 4000 

15 APT 8 142 1 1 2 2 1 0 0 1 5000 

16 DH 13 275 1 1 3 4 2 1 1 0 8000 

17 DH 14 275 1 1 3 3 3 1 1 1 8000 

* Note that apartment home, attached home, and detached home are denoted as APT, AH, and DH, respectively. ‡ No fire in 

these compartments. In total, there are 78,000 cases for the seventeen different structures. 

2.2.2 Compartment configurations  

The compartment configurations are similar for the selected home structures. The overall ceiling height is 

2.4 m. The height and width for doors and doorways are 2.05 m and 0.9 m, respectively. The horizontal 

location of each window (shown as blue lines) is centred in a compartment wall as seen in Figs. 1. The 

width, height, and vertical locations of the windows are 1.8 m x 1.4 m x 0.6 m for the living room, 1.4 m x 

0.85 m x 1.2 m for the kitchen, 1.4 m x 1.4 m x 0.6 m for the dining room, 1.8 m x 1.4 m x 0.6 m for the 

family room, and 1.4 m x 1.4 m x 0.6 m for the bedrooms. The glazing material is consistent for all 

windows, taken as 3 mm single-pane float glass (Hurley et al. 2015). The thermal properties are shown in 

Table 2.  

Every compartment contains one heat detector, which generally is about 0.02 m below the ceiling and 

near doors or doorways as shown in red dots in Figs. 1. The thermal response time index for the heat detector 

is taken as 35 (m·s)0.5. Temperature data obtained from the heat detectors are used for model development. 

Regarding the interior finish, the walls and the ceiling are constructed with gypsum wallboards, and the 

floor is built with concrete. The thermal properties of the materials are depicted in Table 2.  

Table 2. Summary of thermal properties for building materials (Hurley et al. 2015, Reneke et al. 2019). 

Materials 
Conductivity 

W/(m-K) 

Specific Heat 

kJ/(kg-K) 

Density 

kg/m3 

Thickness 

m 

Emissivity 

(-) 

Glazing 0.80 0.80 2500 0.003 0.95 

Gypsum 0.16 1.00 480 0.025 0.90 

Concrete 1.60 0.75 2400 0.150 0.94 

2.2.3 Fire conditions 

In each numerical experiment, there is one fire initiated in one compartment except the hallways and 

bathrooms. The fire is located at the center of the compartment. Each compartment may have one of three 

furniture items: chairs, polyurethane foam mattresses, and cotton-based spring mattresses. Fire growth 

typically contains linear growth (smoldering fire), t-squared growth (flaming fire), peak, and decay, as 

shown in Fig.2. Table 3 illustrates the fire growth parameters of the three furniture items, including the 
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transition heat release rate (HRR) from smoldering to a flaming fire (Q1), peak HRR (Qmax), time to 

transition (t1), time to peak HRR (t2), peak time (t3 – t2), and decay time (t4 – t3).  

The peak HRR and time to peak HRR are obtained from (Reneke et al. 2019), and the fire growth rate 

is between 3.29E-4 kW/s2 and 4.14E-2 kW/s2, ranging from slow to fast fire growth rate. Transition HRR 

and time to transition HRR are selected based on examination of HRR data provided in (Cleary 2014). 

Since flashover usually occurs during the t-squared growth stage and peak stage, the exact value of the peak 

and decay times are not significant. One thousand different fire cases are assigned to each compartment, 

and the total number of fire cases for each building structure is shown in Table 1. 

 
Figure 2. Heat release rate in four stages of fire growth for a typical t-squared fire.   

Table 3. Heat release rate parameters for chair and mattresses (Reneke et al. 2019). 

Items Q1 (kW) Qmax (kW) t1 (s) t2 (s) t3-t2 (s) t4-t3 (s) 

Chair 10 – 30 270 – 3500 150 – 1200 295 – 675 1000 100 

Mattress (foam) 10 – 30 2275 – 4620 150 – 1200 305 – 435 1000 100 

Mattress (cotton) 10 – 30 130 – 1670 150 – 1200 360 – 1240 1000 100 

 

CData uses probability density functions (PDF) for samplings. The PDF is based on numerical 

experiments to include a wide range of fire growth behaviors and to provide sufficient cases that lead to 

flashover. Given the fact that a ML based model is intended to be developed for potential flashover 

prediction and since there will be a significant data imbalance associated with non-flashover related and 

flashover related data, a uniform PDF is used to sample peak HRR for the three different items, and a skew 

normal PDF is used to sample the calculated time to peak HRR. The motivation is that more flashover cases 

(i.e., more rapidly growing fires) can be included in the data set so that the ML based model will determine 

the important relationship about potential flashover conditions. For transition HRR, time to transition, peak 

time, and decay time, a uniform PDF is utilized.  

2.2.4 Vent opening conditions 

There are three types of vents in this study: interior doors such as bedroom and bathroom doors, exterior 

doors such as front doors, and windows. For interior doors, the current setting assumes all interior doors to 

be opened from the beginning of all tests. This simplification is made to reduce the complexity of the data 

behavior; this constraint will be removed in future studies. For front doors, there is a 50 % chance that the 

door is open at the beginning of a test; providing fresh air to sustain fire growth. In terms of CData 

specifications, a uniform PDF is used to sample the opening of a door. For windows, a temperature-trigger 

setting is used to allow the windows to be arbitrarily opened when a temperature set-point is reached. Based 

on (Hurley et al. 2015), breakage of a single-pane float glass is experimentally observed at temperatures 

between 100 °C and 200 °C. An average value of 150 °C is used as the temperature set-point. In order to 

adopt the window breakage phenomenon, a target is placed at the top of a window. The direction of the 

target is normal to the window surface and the target thermal properties are taken to be that of a 3 mm 

single-pane float glass as shown in Table 1. It is worth noting that although the current fire and vent opening 

conditions are relatively simple, the generated data do cover a wide range of realistic fire scenarios. Also, 

given the fact that data is generated for 17 different buildings, the data size is substantial. For the numerical 

https://doi.org/10.1016/j.engappai.2022.105258


Tam et al (2022) A Spatial Temporal Graph Neural Network Model for Predicting Flashover in Arbitrary Building Floorplans, 

Engineering Applications of Artificial Intelligence, 115, 105258. https://doi.org/10.1016/j.engappai.2022.105258 

7 

 

setting mentioned above, there are a total of 78000 cases considered here. A complete table of parameters 

used for data collection is provided in Appendix B. 

2.2.5 Sensor temperature profiles 

Figure 3a shows six heat detector local temperature readings for a synthetic fire case with a medium growth 

fire (~ 0.014 kW/s2) with high peak HRR (~ 3060 kW) occurring in the living room of an attached home as 

shown in Fig. 1b. The total simulation time for each numerical experiment is 3600 s, and the temperature 

output interval is 5 s. In this case, all interior and front doors are always open. Given sufficient oxygen, the 

fire continues to grow, and the detector temperature increases accordingly until the fire goes out. The 

temperature oscillation around 400 s is due to window breakage in the living room. It should be noted that 

the indicator (red dash line) is the upper layer gas temperature for the room of fire origin and is used to 

determine when the temperature threshold for the flashover condition is met. 

     
Figures 3. Temperature profiles of heat detectors in different compartments a) without sensor limits and b) with a sensor limit 

of 150 °C for case #9 as shown in Fig.1b. Temperature profiles are only shown up to 2500 s. 

A proper temperature criterion is carefully selected for flashover conditions. In (Peacock et al. 1999), 

the onset of flashover temperatures ranging from 450 °C to 771 °C. This wide range of values for the 

measurement criterion is due to the huge change of temperature during the transition to flashover. Yet, 

(Reneke 2013) observes that most of the values are in the 550 °C to 650 °C range. To be conservative and 

following the recommendations from (Hurley et al, 2015), an upper gas layer temperature of 600 °C is used 

as the threshold for the potential occurrence of flashover in this study. Flashover, of course, is also 

dependent on the presence of a sufficient quantity of oxygen. 

The loss of a heat detector temperature signal is a realistic fire damage condition that adds another layer 

of complexity to the current problem. In actual fire scenarios, heat detectors are very unlikely to survive at 

elevated temperatures (Pomeroy 2010) approaching flashover conditions and will fail at temperatures well 

below flashover occurrence. According to NFPA 72 (NFPA 2002), heat sensing fire detectors are 

categorized into seven different classes with temperature ranging from low to ultra-high and the maximum 

operational temperature ranging from 29 °C to 302 °C. In this study, a temperature cut-off of 150 °C is 

adapted. As an illustration, Fig. 3b depicts the temperature profiles as shown in Fig. 3a with a temperature 

cut-off at 150 °C. With less available temperature information, the prediction of potential flashover 

occurrence becomes more difficult. Therefore, in addition to being able to determine different building 

layouts, the model also needs learning capabilities to correlate complex temperature information from other 

compartments as well as flashover conditions in the room of fire origin.  

3 GENERIC FLASHOVER PREDICTION MODEL (FLASHNET) 

3.1 Overall Model Structure 

In this section, the overall structure of the generic flashover prediction model (FlashNet) is presented. As 

shown in Fig. 4, FlashNet is composed of two different modules. In the first module, the multivariate 

temperature inputs are transformed into graph representations and graph-structured data 𝒢 = (𝑋, 𝐴) are 

then formed where X is the node-attribute matrix and A is the adjacency matrix. For this study, the node-
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attribute matrix contains temperature information from the heat detectors. Consider Fig.1b as an example, 

there are six compartments. The current numerical setting assumes one heat detector in one compartment, 

𝑋 ∈ ℝ𝑀×𝑁×𝑂 where M is the length of the temporal temperature sequence, N is the number of 

compartments, and O is the number of attributes. Since only temperature is used, O is equal to one and N 

is equal to six for the building structure shown in Fig.1b. For the adjacency matrix, 𝐴 ∈ ℝ𝑁×𝑁 in which ai,j 

is non-zero if compartment i and compartment j are connected. In principle, ai,j indicates the strength of the 

connection. If there is no connection between the two compartments, then ai,j is zero. Additional discussion 

is provided in the following subsections to explain how the adjacency matrix is determined. 

 
Figure 4. Model structure of FlashNet. The framework consists of the graph-structured data formulation module and the 

computational module. 

In the second module, the graph data 𝒢 serves as inputs to the spatial temporal graph convolutional 

networks (ST-GConvN). The ST-GConvN block is used to capture the spatial and the temporal 

dependencies from the multivariate temperature data and consists of two temporal convolution layers and 

one spatial graph convolution layer. For each temporal convolution layer, there is a 1-D convolution 

following by a rectified linear unit (ReLU), and this operation provides additional non-linearity to the 

temporal convolution layer to learn important features/information (i.e., how fast the temperature increase, 

how much time it takes to reach a certain temperature condition, etc.) in the time domain. Mathematically, 

the relationship between the inputs and the outputs in the fire temporal convolution layer is given as:  

𝐻 = ℎ1(𝑍) = 𝑅𝑒𝐿𝑈(𝑍1 ∗ 𝑊𝑡
1 + 𝑏𝑡

1) (1) 

where 𝑍𝑖 ∈ ℝ𝑀×𝑁×𝐶𝑖 is the input in a general form, 𝐻 ∈ ℝ(𝑀−𝑘𝑡+1)×𝑁×𝐶𝑜 is the output, 𝑊𝑡
1 ∈ ℝ𝑘𝑡×𝐶𝑖×𝐶𝑜 is 

the weights, and 𝑏𝑡
1 ∈ ℝ𝐶𝑜 is the biases for the first temporal convolution layer. h is the temporal 

convolution operation and 𝐶𝑖 and 𝐶𝑜 are the node numbers for inputs and outputs, respectively. The 

temporal convolution layer uses a 𝑘𝑡-width kernel to perform temporal convolution operation and encodes 

temporal dependencies from 𝑘𝑡 neighbours of the input elements (i.e., 𝑡 − 2, 𝑡 − 1, and 𝑡 − 0). Following 

the suggestion in (Yu et al. 2017), the temporal convolution operation is conducted without paddings. For 

that, the length of the output sequences is reduced to a shorter length (i.e., from 𝑀 to 𝑀 − 𝑘𝑡 + 1). 

The outputs from the first temporal convolution layer are fed into the spatial graph convolution layer 

which extracts meaningful patterns and features in the spatial domain. This layer is particularly important 

when the heat detector from the room of fire origin stops functioning and the determination of flashover 

occurrence depends on detectors from other compartments. Defferrard et. al (2016) pointed out in their 

study that the computation of kernel in graph convolution can be expensive, the Chebyshev polynomials 

approximation is used to facilitate the convolution operation. The outputs of the spatial graph convolution 

layer (v) are computed as: 

𝑣(𝐻, 𝐴) = 𝑅𝑒𝐿𝑈(𝐷−
1
2𝐴𝐷−

1
2𝐻𝑊𝑔) (2) 
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where A is the adjacency matrix, D is the diagonal degree matrix with 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 , and 𝑊𝑔 ∈ ℝ𝑘𝑔×𝐶𝑖×𝐶𝑜
1
 

is the weights in the spatial convolution layer. The kernel size of the graph convolution is 𝑘𝑔. Finally, the 

complete ST-GonvN is formulated as: 

𝑓(𝒢) =  𝑓(𝑋, 𝐴) = ℎ2{𝑣[ℎ1(𝑋)], 𝐴]} (3) 

where ℎ1 and ℎ2 denote the first and second temporal convolution layers in the block, respectively. Identical 

kernel size for 𝑘𝑡 is used. The propose for the second temporal convolution layer is to obtain higher level 

temperature information from a larger receptive field which is important for slower fire cases that lead to 

flashover. Final feature representations are passed into the fully connected output layer to provide the 

prediction for the potential occurrence of flashover with lead times of 10 s and 30 s. Additional discussion 

is provided in Sec. 3.5 to obtain the optimal model structure and ablation study (see Sec. 4) is conducted to 

demonstrate the effectiveness of key components that contribute to the improved outcomes for the model. 

3.2 Adjacency Matrix (A) 

This section provides descriptions for the formulation of adjacency matrices, and there are three separate 

steps. Firstly, a floor plan of a building structure is converted into a graph representation with nodes and 

edges. Figure 5a shows the graph representation of the six-compartment attached home (refer to Fig. 1b). 

As shown in Fig. 5a, each compartment is represented by a node and the corresponding opening or 

connection between two compartments is represented by an edge. The same procedure is carried out to 

generate the graph representations for the rest of the sixteen building structures.  

In the second step, an adjacency matrix can be obtained for each of the building structures using the 

graph representations. It can be seen by visual inspection of the seventeen building structures from 

Appendix C that a building structure can be the combination of fifteen different compartments. Specifically, 

the combination can be a living room (L), kitchen (K), bedroom1 (BR1), bathroom1 (BA1), hall1 (H1), 

bathroom2 (BA2), bedroom2 (BR2), bathroom3 (BA3), den (Den), bedroom3 (BR3), family room (Fam), 

bedroom4 (BR4), hall2 (H2), hall3 (H3), or a dining room (D). Based on this combination, a square matrix 

with 15 elements can be formulated to describe the compartment relationship within a building structure. 

Figure 5b presents an adjacency matrix for the six-compartment attached home. The matrix elements, aij 

for i ≠ j, are determined based on the size of opening between two compartments (i.e., the height and the 

width of a door from a bedroom to the hallway). Since it is expected there will be an exchange of air from 

one compartment to another compartment in case of fire, the adjacency matrix is symmetric, indicating that 

temperature information is equally important. In principle, this adjacency matrix is denoted as an undirected 

graph (Zhou et al. 2020). For the diagonal elements, since the temperature information is crucial to correlate 

the potential occurrence of flashover, they are taken to be the maximum value of the non-diagonal elements. 

For the six-compartment building structure, the maximum value is 2.88 m2. It should be noted that the 

formulation of the adjacency matrix is based on pre-defined information. However, additional research is 

on-going to establish a latent learning layer to allow the adjacency matrix to be determined automatically 

based on the temperature information. In principle, this will help to eliminate the assumptions being made 

during the formulation of the adjacency matrix and to provide a more robust end-to-end prediction model. 

 
Figures 5. A schematic of a) a graph representation and b) an adjacency matric for the six-compartment home (see Fig.1b). 
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After the adjacency matrices (AM) for the seventeen building structures are formulated, the last step 

involves the development of a geometric average adjacency matrix. The need of the geometric average 

adjacency matrix (GAAM) is due to the fact that the GNN algorithm cannot use multiple adjacency matrices 

for learning. To the best of the authors’ knowledge, the current study is the first attempt to overcome the 

difficulty of having multiple adjacency matrices. Figure 6 shows the GAAM for the selected seventeen 

structures and each of the matrix elements is determined based on the statistical mean of the seventeen AM. 

The GAAM is used together with the temperature instances (inputs) to train the generic prediction model. 

 
Figure 6. The geometric average adjacency matrix for the seventeen building structures.  

3.3 Node Attributes (X) 

In this study, the data consists of temperature readings from the heat detectors, and the objective of the 

model is to predict if there will be a potential occurrence of flashover from a particular compartment within 

a building structure in the future. Considering a building structure with N heat detectors, the temperature 

data is denoted as 𝑇 =  [𝑇0, 𝑇5, … , 𝑇𝐹𝑂]. The data sampling interval is 5 s and the notation, FO, is the time 

stamp for the transition to flashover. In order to allow firefighters to have sufficient time to leave the 

compartment or take action, the model should provide the predictions of a potential occurrence of flashover 

ahead of time. For that, lead time, x, is considered. Since it will take 10 s for firefighters to travel about 3 m 

due to movement limitations and poor visibility (Dunn 2015), two lead times are selected, and they are 10 

s and 30 s. Figure 7a provides an illustration of the lead time being applied to the medium growth fire case 

(refer to Figs. 3). 

  
Figures 7. An illustration of a) using a rolling window with a lead time for a fire case and b) non-flashover and flashover 

instances using a window size of w. Note that the lead time region is not in scale. 
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As shown in Fig. 7a, a sliding window is applied to construct instances from raw temperature data. An 

instance from a fire event1 is denoted as 𝐼𝑖 =  {𝑆𝑖
1, 𝑆𝑖

2, … , 𝑆𝑖
𝑁} where 𝑆𝑖

𝑗
= (𝑇𝑡

𝑗
, … , 𝑇𝑡+𝑤

𝑗
) with i as the first 

time step of the sliding window and 𝑤 to be the window size. Motivated by Menon et. al (2017) and 

Arunabha Roy (2022), in order to examine the effect of window size on model performance, six window 

sizes are chosen as 60s, 90 s, 120 s, 180 s, 240 s, and 300 s. The maximum window size is selected due to 

limits associated with the existing fire protection devices. To account for heat detector failure at 150 °C, a 

failure moment (𝑡𝑏
𝑗
) for signal 𝑆𝑗 is identified. If time 𝑡 ≥  𝑡𝑏

𝑗
, the temperature reading, 𝑇𝑡

𝑗
, is replaced by a 

value of 0 °C, representing a loss of temperature signal. A masking layer is applied during the training 

process to neglect the zero values. Extracting all the 𝐼𝑖 from all fire events, the instance set of 

{𝐼0
1, 𝐼1

1, … , 𝐼𝑖
1, … , 𝐼0

𝐾, 𝐼1
𝐾 , … , 𝐼𝑖

𝐾} is obtained to be the node attributes (X) where K is the number of fire cases, 

and the exact number of instances being used to train the current model will be provided in the following 

subsection. It should be noted that padding is used to make the node attributes (i.e., a vector with 15 

elements) consistent with the adjacency matrix.  

3.4 Labelling 

Each instance is labelled to form the data samples2. Since the model is to predict the potential occurrence 

of flashover, the instance is either labelled as flashover or non-flashover based on the upper gas layer 

temperature. In this study, the threshold for the onset of flashover is selected to be 600 °C (Peacock et al. 

2019; Reneke 2013). Figure 7b provides an illustration of flashover and non-flashover instances. For 

predictions with a lead time of 10 s, there are two flashover instances before the flashover condition is met 

and they are 𝐼𝐹𝑂−10−𝑤 and 𝐼𝐹𝑂−5−𝑤. Given the fact that only about three-fifth of the fire cases (i.e., 41,129 

out of 78,000 cases) have flashover and a majority of the instances from a flashover fire case are non-

flashover, the current dataset has a data imbalance between flashover and non-flashover instances. In order 

to maintain data balance, two non-flashover instances are selected, and they are taken to be 𝐼𝐹𝑂−20−𝑤 and 

𝐼𝐹𝑂−15−𝑤. In total, there are 164,516 (i.e., 2 x 2 x 41,129) instances from 41,129 fire cases that have met 

the flashover condition. For predictions with a lead time of 30 s, since there are six non-flashover and 

flashover instances (12 for a fire), it yields a total of 493,548 instances. 

3.5 Training and Testing 

The dataset is divided into three subsets: training (60 %), validation (20 %), and testing (20 %) subsets. 

Specifically, a set of 8114 fire events worth of data samples are assigned to both validation and testing sets. 

The remaining 24681 (41129 - 16448) fire events are used for the training set. In order to facilitate the 

training process, the dataset is divided into batches, and the batch size is selected to be 50. Using the 

RMSProp with an initial learning rate of 10-3, the neural network weights and biases from the above 

equations are updated accordingly. Following the algorithms in Fu et. al (2021) and Xiao et. al (2021b), 

softmax cross-entropy is used as the loss function to compute the difference between the ground-truths (yj) 

and the corresponding prediction results (pj) and the loss function for binary classifications is written as:.  

𝐿𝑜𝑠𝑠 =  −
1

𝑁
∑ −[𝑦𝑗 ∙ 𝑙𝑜𝑔(𝑝𝑗) + (1 − 𝑦𝑗) ∙ 𝑙𝑜𝑔(1 − 𝑝𝑗)]

𝑁

𝑗=1
 (4) 

where N is the number of instances.   

Early-stopping with a patience (Abadi et al. 2016) of 5 is used, and Fig. 8 shows the validation loss and 

accuracy for a training process. As seen in the figure, even though the accuracy still increases slightly after 

epoch 43 and since the loss has not decreased for 5 consecutive epochs, the training stops to avoid 

overfitting. Numerical studies are conducted to select the optimized ST-GonvN model structure, and it is 

found that the model with a node size of 1, 32, and 16 for the temporal, spatial, and temporal convolutional 

                                                 
1 A fire event is considered as a fire case, and there are 78000 fire cases for seventeen different building structures in this study. 
2 Based on Hamins et. al (2015), firefighters need actionable information. This is because the fire situation changes rapidly and 

firefighters typically do not have enough time to interpret the model outputs. For that, the current study focuses on a classification 

task.  
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layer, respectively, provides the desired model performance. The kernel size of 3 is used for the spatial and 

temporal convolutions. With this model configuration, the ratio of training data to trainable parameters is 

about 27.7 times. The number of parameters is provided in below section. Appendix D presents a 

comparison of the results for 35 different ST-GonvN model structures.   

 
Figure 8. Validation loss and accuracy for a model training and the illustration of using the early-stopping with a patience of 5 

to avoid overfitting. 

4 RESULTS 

4.1 Model Performance of FlashNet 

Table 4 shows the results for the prediction of potential flashover occurrence with a lead time of 10 s from 

a rolling window size of 300 s. FlashNet is benchmarked against five state-of-te-art flashover prediction 

models. The baseline models include i) SVM – a support vector machine using a linear kernel (Wang et. al 

2020), ii) MLP – a feedforward multiple-layer perceptron (Yuen et. al 2006), iii) LSTM – a two-layer long 

short-term memory (Zhang et. al 2022), iv) BiLSTM-ATT – a bi-directional LSTM with attention 

mechanism (Fu et. al 2021), and v) CNN – a three-layer standard convolutional neural network. Each model 

is fine-tuned to obtain optimal model performance without overfitting. The following metrics: accuracy, 

precision, recall, and F1 score are used to evaluate the model performance. The mathematical expressions 

are given as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (5a) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5b) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5c) 

𝐹1 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (5d) 

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative, respectively. 

Ture positive is defined as correction prediction of flashover conditions when the label is flashover and 

false positive is defined as misprediction of flashover conditions when the label is flashover. Basically, 

these metrics offer additional insights about incorrect predictions, either positive or negative, and the effects 

of data imbalance. 

As shown in Table 4, FlashNet outperforms the existing machine learning based flashover prediction 

models. In general, it achieves an overall accuracy of about 85.2 %. Also, the scores from precision, recall, 

and F1 suggest that FlashNet is a well-balanced model which minimizes the false positive and the false 

negative. The main reason why FlashNet improves the model performance is that the nature for temperature 

data in flashover predictions accounting for different building structures with a wide range of fire and vent 

opening conditions is better suited for the modelling assumptions about temporal and spatial dependencies. 
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In terms of training time, most of models, except ANN and the linear SVM, require about 30 minutes for 

convergence. For testing, models generally take about 3 seconds to make predictions for testing subset. On 

average, one prediction uses about 3e-5 seconds-per-instance (i.e., 3/(493,548*0.2)). 

 
Table 4. Baseline comparison against five existing machine learning based flashover prediction models. 

Methods Accuracy Precision Recall F1 Training (s) Testing (s) Num. of Params 

SVM  53.6% 52.8% 66.6% 58.9% 37.5 0.01 NA 

MPL  62.1% 49.4% 74.3% 59.3% 710.6 2.42 9,457 

LSTM 66.6% 75.7% 49.7% 60.1% 1594.1 2.87 11,602 

BiLSTM-ATT 70.0% 66.6% 81.2% 73.2% 1834.8 2.93 12,217 

CNN 79.8% 85.0% 74.8% 79.5% 1351.0 2.38 13,322 

FlashNet 85.2% 83.5% 87.8% 85.6% 1657.3 2.91 10,687 

 

Ablation study is conducted to examine the effectiveness of key components that contribute to the 

improved outcomes for FlashNet. The full model of FlashNet is compared with four model variations: 

i) w/o GCNN – FlashNet without the graph convolution layer and it is being replaced with a 

linear layer,  

ii) ii) w/o TCNN – FlashNet without both of the temporal convolution layers and they are 

replaced with linear layers,  

iii) iii) w/o 1st TCNN – replacing the first temporal convolution layer with a linear layer, and  

iv) iv) w/o 2nd TCNN – replacing the second temporal convolution layer with a linear layer. 

Table 5 shows the accuracy, precision, recall and F1 scores for each of the models. The introduction of 

graph convolution layer significantly improves the results as it allows the model to learn the limited 

temperature information from different compartments. The effect of the sandwich structure of the two 

TCNN layers is evident as well; it validates that the use of two TCNN facilitates the selection of useful 

information from the time domain.  

 
Table 5. Ablation study for FlashNet. 

Methods FlashNet w/o GCNN w/o TCNN w/o 1st TCNN w/o 2nd TCNN 

Accuracy 85.2% 80.3% 83.7% 84.4% 84.2% 

Precision 83.5% 81.8% 81.6% 82.6% 83.5% 

Recall 87.8% 77.9% 86.8% 87.3% 85.3% 

F1 85.6% 79.8% 84.1% 84.9% 84.4% 

Table 6 shows the results of FlashNet for the prediction of potential flashover occurrence with two 

different lead times (10 s and 30 s) and six rolling window sizes (300 s, 240 s, 180 s, 120 s, 90 s, and 60 s). 

As shown in Table 6, the best overall model accuracy is ~ 92.1 % using temperature information from a 

300 s time window with a prediction lead time of 30 s.  For this case, the precision and recall scores are ~ 

91.2 % and ~ 92.4 %, respectively. Comparing precision and recall scores, it can be seen that there are more 

false positives than false negatives. And in practical firefighting applications, it is desired to minimize the 

number of false negatives. However, given the fact that only limited temperature information (i.e., up to 

150 °C and no prior knowledge about the exact building structure) is used as inputs for predictions, the 

current results are very encouraging. In Table 6, it can also be seen that model performance tends to decrease 

with a smaller time window and/or a smaller lead time. Physically, this observation is expected because 

less temperature information is used with a smaller time window and a smaller lead time yields a ~ 66% 

reduction for training and testing instances. It is interesting to note that there is about 3 % drop in model 

accuracy for a large reduction of the time window size from 300 s to 60 s for lead time of 30 s. This suggests 

that a long duration of temperature information might not be needed.  

 
Table 6. Overall FlashNet model performance for 17 different homes. 
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Time window Lead time Accuracy Precision Recall F1 

300 s 
10 s 85.2% 83.5% 87.8% 85.6% 

30 s 92.1% 91.2% 92.4% 91.8% 

240 s 
10 s 84.4% 82.1% 86.5% 84.2% 

30 s 91.8% 90.7% 92.9% 91.8%  

180 s 
10 s 83.1% 81.5% 85.6% 83.5% 

30 s 91.9% 90.6% 91.3% 90.9% 

120 s 
10 s 81.1% 76.4% 84.1% 80.0% 

30 s 91.5% 85.8% 91.7% 88.7% 

90 s 
10 s 80.4% 82.6% 78.6% 80.6% 

30 s 89.4% 85.8% 93.8% 89.6% 

60 s 
10 s 79.8% 80.7% 77.2% 78.9% 

30 s 89.1% 85.8% 93.8% 89.6% 

 

In order to understand the model performance as a function of instances for different homes, additional 

results are obtained. Table 7 shows the accuracy of the non-flashover instances (20 s before flashover and 

15 s before flashover) and the flashover instances (10 s before flashover and 5 s before flashover) with a 

prediction lead time of 10 s for 17 different homes using a 300 s time window. An important observation 

is found, and that is the prediction accuracy for instances associated with 20 s before flashover and 5 s 

before flashover (5 s BFO) are much higher than the prediction accuracy for instances associated with 15 s 

BFO and 10 BFO. It can be seen that the average accuracy for 15 s BFO and 10 BFO is about 11 % lower. 

In principle, this result tendency is due to the fact that the temperature signals used to make predictions 

from these two instances are relatively similar but the corresponding labels are completely different (i.e., 

15 s BFO as non-flashover and 10 s BFO as flashover. Similar behaviors are also observed in Table 8 which 

depicts the accuracy of the non-flashover and the flashover instances with a prediction lead time of 30 s for 

17 different homes using a 300 s time window. The average accuracy for 35 s BFO (non-flashover) and 30 

BFO (flashover) is significantly lower. However, as seen in both tables, the model predictions become more 

reliable for other instances, and the average accuracy is about 94 % and 98 % for predictions with a lead 

time of 10 s and 30 s, respectively. To provide more reliable actionable information to the firefighters about 

the potential occurrence of flashover, a larger lead time is preferred.  
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Table 7: Accuracy for non-flashover and flashover instances with a lead time of 10 s among 17 different homes using a 300 s time window. 

Accuracy for Different Homes (%) 

Instances # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 # 17 AVG. 

20 s 

before 
flashover 

80.0 100.0 93.6 93.5 94.2 94.1 93.4 94.8 93.8 95.6 94.5 94.3 94.3 94.0 94.7 93.9 94.3 93.7 

15 s 80.0 89.9 77.9 80.8 79.8 81.3 80.7 81.7 80.7 81.2 80.1 80.6 79.7 80.7 82.2 81.8 82.4 81.3 

10 s 100.0 80.7 82.6 79.1 82.2 83.0 84.7 83.2 81.6 82.8 81.2 81.0 82.6 80.6 80.9 78.7 82.7 82.8 

5 s 100.0 90.2 94.5 92.7 94.1 91.9 92.3 92.3 93.1 92.3 93.4 92.1 95.9 93.1 93.6 92.1 93.1 93.3 

 
Table 8: Accuracy for non-flashover and flashover instances with a lead time of 30 s among 17 different homes using a 300 s time window. 

Accuracy for Different Homes (%) 

Instances # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 # 17 AVG. 

60 s 

before 
flashover 

95.6 99.3 95.1 96.0 96.0 95.9 96.5 96.8 96.8 97.1 96.8 96.7 96.4 96.3 96.9 96.6 96.7 96.6 

55 s 95.6 99.2 95.0 95.2 95.6 94.6 96.4 96.2 96.1 96.7 95.6 95.4 96.5 95.9 95.9 96.3 96.1 96.0 

50 s 94.3 99.0 93.9 94.6 95.0 93.3 95.2 94.7 95.5 96.3 94.9 94.4 96.2 94.5 95.9 95.8 95.5 95.2 

45 s 94.1 98.9 93.1 94.6 95.0 94.2 94.9 95.2 95.8 95.8 94.5 94.8 95.2 94.3 95.4 95.6 95.2 95.1 

40 s 91.9 99.5 90.8 94.0 93.8 94.1 95.1 95.0 94.3 96.1 94.5 94.6 95.2 93.1 95.7 94.0 94.8 94.5 

35 s 72.2 82.8 71.1 84.1 76.2 81.0 84.8 85.0 75.7 85.5 83.9 85.1 85.3 84.3 85.1 75.6 84.6 81.3 

30 s 81.7 78.9 81.0 78.0 83.0 77.1 79.7 76.7 83.2 79.9 79.1 78.1 80.0 79.1 76.8 83.2 79.9 79.7 

25 s 97.3 95.1 96.0 95.2 98.2 95.8 96.5 95.5 97.9 96.5 95.9 95.3 96.6 95.8 95.9 98.4 97.1 96.4 

20 s 98.7 99.2 97.3 96.9 98.9 97.7 96.7 96.8 98.0 97.9 96.7 96.9 97.9 97.1 96.3 99.0 97.5 97.6 

15 s 98.6 99.5 98.8 97.3 99.1 97.9 97.4 97.5 98.1 97.8 97.5 97.8 98.0 97.1 96.5 99.2 97.5 98.0 

10 s 99.1 99.6 98.6 97.7 99.2 97.9 97.7 97.8 98.3 98.0 97.9 97.9 98.0 97.3 96.9 99.2 97.6 98.2 

5 s 99.1 99.6 98.4 98.4 99.4 98.0 97.7 98.4 98.6 98.2 98.1 97.9 98.2 97.9 97.7 99.3 97.7 98.4 
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4.2 The Effect of Geometric Average Adjacency Matrix 

The effect of adjacency matrix to the model performance has never been explored because the use of GNNs 

for studies related to flashover and/or other hazard predictions is limited in the fire research and other 

engineering communities. In order to understand the effectiveness of the geometric average adjacency 

matrix, a case study is conducted. Since a baseline adjacency matrix is not available in existing literature, 

an all-one adjacency matrix is used to carry out this study. The all-one adjacency matrix has a dimension 

of 15 x 15 and each of the matrix elements is equal 1. Physically, the all-one adjacency matrix includes the 

inherent assumption that the effect of the actual opening areas between different compartments is 

negligible.  

Two models are obtained separately using the geometric average adjacency matrix (GAAM) and the 

all-one adjacency matrix (All-One AM). Data with a lead time of 10 s and a time window of 90 s are utilized 

to facilitate the model training process. The data is divided into three subsets (i.e., a training, validation, 

and a testing set) with the data ratio of 0.6, 0.2, and 0.2, respectively. Both models are trained using a 

smaller neural network structure with node size of 1, 16, and 32 for the three different convolutional layers. 

Figure 9 shows the validation loss and accuracy for models using All-One AM and GAAM with the 

node size of 1-16-32. As shown in the figure, the use of GAAM yields a notably lower loss (or errors), and 

the relative difference at epoch 25 is about 29 %. In terms of accuracy, the model using GAAM has an 

overall accuracy of about 82.8 %. In comparison to the model using All-One AM, the model performance 

is about 7.7 % more accurate. Additional results are obtained to investigate the model performance in the 

testing set. Tables 9 show the prediction accuracy of non-flashover and flashover instances for the two 

different models. As seen in Table 9a, the model using of All-One AM tends to have lower prediction 

accuracy in flashover instances. For 10 s BFO instances, the accuracy is only about 56 %. For 5 s BFO 

instances, although the accuracy reaches about 84 %, the model performance is still significantly lower than 

the model using GAAM, and the difference is more than 10 %. Another important observation seen in Fig. 9 

is that model complexity will need to be largely enhanced in order to have better model performance. Using 

the All-One AM, the validation loss is reduced, and accuracy becomes higher when the node size increases 

to 1-32-64. Even though better model performance is achieved, the increase in model complexity is not 

necessary. The drawback is that the required training time is increased by ~ 19 % and the numerical 

efficiency (i.e., making a prediction) is reduced by ~ 32.2 %. Therefore, a properly designed adjacency 

matrix, such as GAAM, should be used to develop a robust model. 

 
Figure 9. Validation loss and accuracy for three different STGCN models using: i) all-one AM with 1-16-32 nodes, ii) GAAM 

with 1-16-32 nodes, and iii) all-one AM with 1-32-64 nodes. 
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5 CONCLUSIONS AND FUTURE WORK 

This paper proposes a novel fire scene-agnostic model (FlashNet) for early flashover prediction based on 

graph neural networks. As a first attempt to tackle building structure invariance in flashover prediction, 

different channels of the sensor inputs are transformed to a graph according to the building structure and 

presented to the graph neural networks. A geometric average adjacency matrix is formulated based on 

multiple common home structures. With this adjacency matrix, FlashNet effectively captures the spatial 

and temporal dependencies from the multivariate temperature data. To train a well-performing FlashNet, 

over 41,000 flashover cases with a wide range of fire conditions are used from 17 different home structures 

with different floorplans. Results show that FlashNet can predict flashover in a realistic setting, where the 

available temperature information is limited (up to 150 °C) and no prior knowledge is accessible about 

building structure, fire locations, or vent conditions. The overall accuracy is about 92.1 % with a possible 

forecast lead time of 30 seconds. With the current model structure, FlashNet can provide rapid predictions 

and a single prediction takes less than a second. Parametric studies are also conducted to understand the 

impact of lead time, time window, and the formulation of adjacency matrix on the overall model 

performance. The evaluation suggests that a decrease in lead time and/or time window generally yields a 

lower model accuracy and a well formulated adjacency matrix, such as GAAN, provides a more robust 

model. 

Even though FlashNet is numerically efficient and accurate, there can still be improvement. The first 

improvement can be made to adapt a graph learning layer. This is due to the fact that the current model 

requires a pre-defined graph and the pre-defined graph is determined based on the authors’ domain expertise 

on the fundamental understanding of fire dynamics and the observations made from full-scale fire 

experiments. Although results show that the geometric average adjacency matrix provides well-established 

relationships to describe compartment connections, the inclusion of a graph learning layer is likely to 

provide better modeling generality for more complex data behavior and/or to establish a more robust 

adjacency matrix to facilitate model training. 

Another possible improvement is that the modeling structure can be expanded to make use of additional 

sensor signals available from existing smart homes, such as temperature from thermostats and carbon 

Table 9a: Accuracy for the model using All-One AM. 

 Home 

Accuracy 

20 s 15 s 10 s 5 s 

before flashover 

#1 81.1% 79.0% 51.4% 67.8% 

#2 91.7% 87.5% 45.8% 70.8% 

#3 91.1% 86.7% 59.0% 87.7% 

#4 93.2% 86.3% 57.6% 85.1% 

#5 91.8% 81.8% 55.6% 82.2% 

#6 94.3% 86.8% 52.3% 79.9% 

#7 95.5% 87.5% 59.3% 88.5% 

#8 95.0% 87.5% 57.4% 85.0% 

#9 93.7% 87.4% 54.6% 84.3% 

#10 95.9% 88.0% 59.4% 89.7% 

#11 94.2% 87.5% 58.4% 87.2% 

#12 93.8% 87.0% 57.5% 86.3% 

#13 95.7% 88.0% 59.6% 89.6% 

#14 94.4% 87.7% 58.0% 87.0% 

#15 95.1% 86.6% 55.3% 82.7% 

#16 92.9% 85.6% 51.8% 84.1% 

#17 95.2% 87.3% 59.2% 88.5% 

AVG. 93.2% 86.4% 56.0% 83.9% 

 

Table 9b: Accuracy for the model using GAAM. 

Home 

Accuracy 

20 s 15 s 10 s 5 s 

before flashover 

#1 84.9% 78.8% 81.1% 86.6% 

#2 91.7% 83.3% 79.2% 91.0% 

#3 92.4% 80.4% 78.8% 92.7% 

#4 91.4% 80.9% 77.7% 95.2% 

#5 93.1% 78.8% 77.4% 94.2% 

#6 92.0% 78.2% 79.3% 92.0% 

#7 94.3% 83.5% 78.5% 96.6% 

#8 92.8% 79.9% 78.0% 94.4% 

#9 93.0% 82.1% 78.0% 94.8% 

#10 95.0% 84.4% 79.2% 96.9% 

#11 93.0% 82.2% 77.3% 96.1% 

#12 92.4% 81.4% 76.7% 95.8% 

#13 94.7% 84.4% 79.5% 96.7% 

#14 93.1% 82.4% 77.1% 95.9% 

#15 93.0% 79.9% 79.9% 93.7% 

#16 93.7% 81.0% 79.4% 95.3% 

#17 94.1% 83.5% 78.6% 96.5% 

AVG. 92.6% 81.5% 78.6% 94.4% 
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monoxide and carbon dioxide signals from fire protection devices, to address other fire events, such as 

occupant tenability. The use of multi-sensor signals from one compartment and the capability of providing 

multiple outputs/predictions will be beneficial to search and rescue tasks for firefighters. Additional efforts 

are on-going to achieve the abovementioned improvements. Taken together, this study and the future work 

will contribute to the development of a real-life flashover prediction model and paves the way to data-

driven firefighting with smart systems. 
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Appendix A: Model Validation Against Full-Scale Experiments 

 

In order to make sure that CData can be used to generate the corresponding temperature data for different 

fire scenarios, model validation is carried out. Specifically, temperature measurements obtained from two 

full-scale gas burner experiments reported in (McKinnon et al. 2020), where a fire initiated in the living 

room within the single-story residential structure is used to benchmark the synthetic data. The fire location 

and the heat release rate (HRR) of the gas burner fires are the same for the two tests (Exp 1 and Exp 2). 

Yet, opening conditions of each of doors and windows are different. It should be noted that natural gas 

burners are used in these pre-run experiments. The reason is that the HRR of the fire can be fully controlled 

by regulating how much natural gas is being burned. By doing so, the simulation conditions and the 

experimental conditions can be adjusted to have identical settings. 

Figures A1 show the upper gas layer temperature profiles for the two experiments. The blue solid lines 

represent the synthetic temperature data obtained from CFAST. The red dash lines are the estimated upper 

gas layer temperature for the experiments. It can be seen that the magnitudes and trends of the temperature 

profiles match the experimental data for different vent opening events. This observation indicates that 

CFAST, the simulation engine of CData, is capable of capturing both the corresponding effect of fire and 

vent openings in the single-story multi-compartment structure. In terms of uncertainty, the absolute root 

mean squared error is about 30 °C and 10 °C for Exp 1 and Exp 2, respectively. Comparisons are also made 

for the other compartments and the overall agreement is very good. Therefore, it can be expected that the 

generated temperature data can be reliably used for model development. 

 

   

Fig. A1. CFAST validation against measurement for a) Experiment 1 and b) Experiment 2. 
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Appendix B: Table of Parameters Used for Data Collection  

 

  
Parameters Lower Upper 

Distribution 

Function 
Value/Mean Variance 

Fire 

Flaming Smoldering HRR (Q1) 10 30 Uniform -- -- 

Flaming Smoldering Time (t1) 150 1200 Uniform -- -- 

T-squared Growth HRR (Qmax) 130 4620 Log-Normal 3250 1000 

T-squared Growth HRR (t2) 50 330 Uniform   

Time for Peak HRR (t3)  -- -- Constant 1000 -- 

Decay HRR  -- -- Constant 0 -- 

Decay Time (t4) -- -- Constant 200 -- 

Vents 

Window Opening Fraction 0 1 Binary -- -- 

Window Breakage Threshold -- -- Constant 150 -- 

Front Door Opening Fraction 0 1 Binary -- -- 

Front Door Opening Time -- -- Constant 0 -- 

Front Door Opening Probability -- -- Constant 50 -- 
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Appendix C: Overall Floorplans of the Seventeen Homes 
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It should be noted that the red lines are for visualization to identify the hallways in different building structures. 
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Appendix D: Model Performance for Different Neural Network Structures 

Table D1: Model performance for different two-layer graph neural network structures. 

T-Conv S-Conv Accuracy Precision Recall F1 

1 4 63.4% 60.1% 79.8% 68.6% 

1 8 68.3% 67.8% 69.5% 68.7% 

1 16 82.2% 81.0% 84.2% 82.5% 

1 32 78.9% 82.7% 73.1% 77.6% 

1 64 81.6% 86.8% 74.5% 80.2% 

Note that the first layer is the temporal convolutional layer (T-Conv) and the second layer is the spatial convolutional layer (S-Conv). 

Table D2: Model performance for different three-layer graph neural network structures. 

T-Conv S-Conv T-Conv Accuracy Precision Recall F1 

1 4 1 57.3% 57.4% 56.1% 56.8% 

1 4 4 64.0% 65.0% 60.6% 62.7% 

1 4 8 71.5% 72.3% 69.6% 70.9% 

1 4 16 75.9% 72.5% 83.6% 77.6% 

1 4 32 83.5% 82.4% 85.1% 83.8% 

1 4 64 83.5% 82.3% 85.3% 83.8% 

1 8 1 50.1% 57.9% 0.0% 0.1% 

1 8 4 64.5% 61.6% 77.0% 68.5% 

1 8 8 77.4% 78.6% 75.4% 76.9% 

1 8 16 77.0% 72.8% 86.3% 79.0% 

1 8 32 80.1% 80.6% 79.4% 80.0% 

1 8 64 85.2% 82.7% 89.0% 85.7% 

1 16 1 57.1% 57.2% 56.3% 56.7% 

1 16 4 71.8% 72.4% 70.5% 71.5% 

1 16 8 78.9% 79.0% 78.9% 78.9% 

1 16 16 84.8% 84.5% 85.3% 84.9% 

1 16 32 80.7% 85.5% 74.0% 79.3% 

1 16 64 86.5% 88.1% 84.5% 86.2% 

1 32 1 57.7% 55.7% 74.9% 63.9% 

1 32 4 74.5% 78.1% 68.2% 72.8% 

1 32 8 81.1% 77.2% 88.4% 82.4% 

1 32 16 85.2% 83.5% 87.8% 85.6% 

1 32 32 85.1% 83.9% 86.9% 85.4% 

1 32 64 86.8% 85.8% 88.2% 87.0% 

1 64 1 57.8% 59.0% 51.3% 54.9% 

1 64 4 77.8% 79.2% 75.6% 77.3% 

1 64 8 82.2% 78.7% 88.3% 83.2% 

1 64 16 85.7% 85.8% 85.7% 85.7% 

1 64 32 85.8% 8.4% 87.8% 86.1% 

1 64 64 85.9% 84.0% 88.7% 86.3% 

Note that the first, second, and third layers are the temporal, spatial, and temporal convolutional layer, respectively. 
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