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Abstract

We present a finite-horizon optimization algorithm that extends the established concept of Dual

Dynamic Programming (DDP) in two ways. First, in contrast to the linear costs, dynamics,

and constraints of standard DDP, we consider problems in which all of these can be polynomial

functions. Second, we allow the state trajectory to be described by probability distributions rather

than point values, and return approximate value functions fitted to these. The algorithm is in

part an adaptation of sum-of-squares techniques used in the approximate dynamic programming

literature. It alternates between a forward simulation through the horizon, in which the moments of

the state distribution are propagated through a succession of single-stage problems, and a backward

recursion, in which a new polynomial function is derived for each stage using the moments of the

state as fixed data. The value function approximation returned for a given stage is the point-

wise maximum of all polynomials derived for that stage. This contrasts with the piecewise affine

functions derived in conventional DDP. We prove key convergence properties of the new algorithm,

and validate it in simulation on two case studies related to the optimal operation of energy storage

devices with nonlinear characteristics. The first is a small borehole storage problem, for which

multiple value function approximations can be compared. The second is a larger problem, for

which conventional discretized dynamic programming is intractable.

Keywords: Control, Dual dynamic programming, Moment/SOS techniques, Long-term energy

storage management

1. Introduction

Dual Dynamic Programming (DDP) (Pereira & Pinto, 1991), also referred to as nested Benders

decomposition, is a means of solving multi-stage optimization problems in which constraints on

decision variables are coupled only across adjacent stages. The most common application is in a

linear, stochastic setting, where it is referred to as Stochastic Dual Dynamic Programming (SDDP).

The algorithm relies on a Benders decomposition argument to generate increasingly tight lower
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bounds on the optimal cost-to-go at each stage. Convergence to optimality of these bounds and

of forward state trajectories has been studied in Philpott & Guan (2008) for the linear case, and

Girardeau et al. (2015) for the general nonlinear case. Inexact approaches featuring suboptimal

cuts and/or forward state trajectories were studied in Zakeri et al. (2000) and Guigues (2018),

and a number of other extensions have been developed, notably for risk-averse decision making

(Guigues & Römisch, 2012) and multi-stage integer problems (Zou et al., 2018).

In a multi-stage setting, value functions allow single-stage decisions to be taken without explicit

consideration of the remainder of the time horizon. This is relevant in many energy applications

featuring storage of some kind, where short-term decisions must often be made in the presence of

long-term effects driven by slower, for example seasonal, dynamics (see Abgottspon, 2015; Dari-

vianakis et al., 2017). A locally-tight approximation of the cost-to-go allows relatively efficient

trade-offs between short- and long-term costs to be made, even when an exogenous disturbance,

or modelling error, may have caused the system state to deviate somewhat from a previously

computed trajectory. The value function approximations generated by (S)DDP often have this

property, and can therefore be well suited to this purpose.

However, a shortcoming common to many nested decomposition approaches, including (S)DDP,

is that they are only applicable to systems with linear dynamics, costs, and constraints, or with

“benign” (convex) nonlinearities (Girardeau et al., 2015). Many problems to which (S)DDP could

otherwise be applied feature nonconvex, in particular polynomial, relationships between variables.

Examples of polynomial nonlinearities in the energy domain include hydro storage planning with

head effects (Cerisola et al., 2012), district heating networks (Jiang et al., 2014), borehole man-

agement using heat pumps (Atam et al., 2015), and alternating-current (AC) power system opti-

mization (Taylor, 2015). Although in some cases it is possible to apply a convex approximation,

for example McCormick envelopes for bilinear functions Cerisola et al. (2012), this may not offer

acceptable modelling accuracy.

For low-dimensional nonlinear systems, it is possible in a very broad range of cases to compute a

near-optimal value function by discretizing the state and input spaces and performing the standard

Dynamic Programming (DP) recursion (Bertsekas, 1995). This approach has been applied to

seasonal borehole storage problems in De Ridder et al. (2011) and Atam et al. (2015), but it

becomes impractical for systems with more than only a few states and inputs due to exponential

memory and computation requirements. It is therefore desirable to extend the existing theory of

DDP to handle nonlinear systems, in order to take advantage of DDP’s relative scalability.

Other Approximate Dynamic Programming (ADP) (Powell, 2011) approaches address the draw-

backs of discretized DP by using relaxations of the dynamic programming principle, most com-

monly in an infinite-horizon setting. Recent approaches such as Wang et al. (2014), Summers
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et al. (2012), and Beuchat et al. (2017) propose tractable approximations to the Linear Program-

ming (LP) formulation of ADP (Hernández-Lerma & Hernández-Hernández, 1994), in which the

computation of a value function is cast as an (infinite-dimensional) LP. The authors of Savorgnan

et al. (2009), Kamoutsi et al. (2017), and Lasserre et al. (2008) formulate a Generalized Moment

Problem (GMP) over occupation measures, of which this LP formulation is a dual. They derive

tractable approximations of the GMP and LP formulation in the form of moment relaxations and

Sum-of-Squares (SOS) programs for approximate control synthesis of polynomial systems. In these

approaches, the optimal control problem is solved for a specified initial state distribution. It should

also be noted that GMPs have gained interest recently in the energy domain outside of DP, due to

their ability to find global solutions of the AC optimal power flow problem (Ghaddar et al., 2016;

Molzahn & Hiskens, 2015).

In this paper, we develop an approach that brings the advantages of the LP formulation of ADP

to DDP, in that it handles polynomial costs, dynamics, and constraints, and fits the value function

to trajectories emanating from an initial state distribution, in contrast to the single initial state used

in conventional DDP. As with conventional DDP, the algorithm performs an iterative sequence of

forward simulations and backward recursions. The forward simulation consists of moment problems

approximating the occupation measure of candidate trajectories, while the backward recursion is

composed of SOS programs, dual to the moment problems, that generate under-approximators of

the value function. The output of our proposed algorithm is a collection of functions for each stage,

the point-wise maximum of which under-approximates the true value function. This yields a richer

class of approximations than the Moment/SOS approaches of Lasserre et al. (2008) and Savorgnan

et al. (2009) for polynomial dynamical systems, which rely on a single, high-order polynomial to

increase accuracy. The methods developed in O’Donoghue et al. (2011) and Beuchat et al. (2017)

also generate a point-wise maximum under-approximation in an iterative fashion, but do not use

the primal side over moments of the occupation measure to refine the approximate value functions.

Specifically, we make the following contributions:

• We extend the well-known DDP framework to generic polynomial dynamical systems using

moment/SOS techniques. We define an algorithm, Moment DDP, that generates increasingly

tight lower bounds on each stage’s value function, and corresponding moments of the state

distribution at each stage. This algorithm generates value function estimates that are valid

for a probability distribution of initial states, encompassing the single initial state (or Dirac

distribution) from conventional DDP as a special case.

• We prove that (i) the upper and lower cost bounds generated by the algorithm converge to

at least the optimal cost of a relaxation of the finite-horizon decision problem and at most
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the optimal cost of the original GMP, and (ii) this relaxation becomes tight in the limit as

the order of the moment relaxation increases.

• We describe the stochastic extension of Moment DDP, and give conditions under which the

uncertainty can be accommodated within the same framework.

• We demonstrate Moment DDP numerically with a nonlinear seasonal geothermal borehole

dispatch problem based on real measurement data. Furthermore, we report successful appli-

cation of the algorithm to a higher-dimensional system that is computationally too demanding

for conventional discretized DP.

Section 2 states the class of finite-horizon polynomial problems considered in our framework,

and presents a finite-horizon discrete-time SOS approach to ADP inspired by recent optimal control

literature. Section 3 describes the Moment DDP algorithm, and Section 4 states and proves its key

convergence properties. Section 5 presents numerical results for two nonlinear borehole systems of

different state dimensions. Section 6 concludes and gives an outlook for future research.

1.1. Notation and preliminaries

The sets R, N and N+ denote the real numbers, non-negative and positive integers respectively.

For a compact real vector space S, let M(S) be the set of Borel measures on S and C(S) the

set of bounded continuous functions on S. Together they form a dual pair (M(S), C(S)) with

duality brackets 〈v, µ〉 =
∫
S vdµ for v ∈ C(S). If v is polynomial, we write the duality bracket as

an inner product 〈v,m〉, where the vector v contains the coefficients of v and the vector m the

corresponding moments of µ. M(S)+ denotes the set of positive Borel measures on S. A positive

Borel measure ϕ supported on S with ϕ(S) = 1 is called a Borel probability measure. A special

case of a Borel probability measure is a Dirac measure δx supported on a single point x ∈ S. The

operator ⊗ defines the cross product of two probability measures. The expected value with respect

to a Borel probability measure ϕ is defined as Eϕ(x) =
∫
S xdϕ. For a Borel set A, we define 1A(x)

as an indicator function equal to 1 if x ∈ A and 0 if x /∈ A.

Let R[x]k be the ring of polynomials of degree at most k in some variable x ∈ Rn, and let deg(p)

denote the degree of p. The notation Σ2k[x] stands for the Sum-of-Squares polynomials of degree at

most 2k in x. Polynomial p(x) ∈ Σ2k[x] if and only if there exist polynomials ξ1(x), . . . , ξNξ(x) such

that p(x) =
∑Nξ

i=1 ξi(x)2, which implies that p(x) ≥ 0 for all x. This is equivalent to there existing

a symmetric, positive semidefinite matrix P (we denote this P � 0) such that p(x) ≡ p̃(x)>Pp̃(x).

In this definition, p̃(x) := (1, x1, x2, . . . , x1x2, . . . , x
k
n) is the vector of all possible monomials in x,

of degree up to k. An optimization over the elements of P, with the linear matrix inequality (LMI)

constraint that P � 0, therefore yields parameterizations of SOS polynomials as solutions. We

refer to the degree of a SOS polynomial p(x) as 2k since deg(p) is always an even number.

4



The truncated quadratic module of degree k, generated by the polynomials hi(x) of a semi-

algebraic set S := {hi(x) ≥ 0, i = 1, . . . , Nh}, is defined as

Qk(S) := σ0(x) +

Nh∑
i=1

σi(x)hi(x), (1)

where σ0 ∈ Σ2k[x] and σi ∈ Σ2k[x], with the restriction that deg(σihi) ≤ 2k. Such polynomials are

guaranteed to be non-negative for all x ∈ S.

2. Problem statement and background

2.1. Finite horizon problem

We consider a finite-horizon decision problem of the form (2), and the corresponding optimal

value V ∗0 (x0) for given x0:

V ∗0 (x0) := min
{xt}Tt=1,{ut}

T−1
t=0

T−1∑
t=0

lt(xt, ut) +H(xT ) (2a)

s.t. xt+1 = ft(xt, ut), t = 0, . . . , T − 1, (2b)

gt,j(xt, ut) ≥ 0, j = 1, . . . , Ng,t, t = 0, . . . , T − 1, (2c)

gT,j(xT ) ≥ 0, j = 1, . . . , Ng,T . (2d)

Vector xt ∈ Rnx represents the state at stage t, ut ∈ Rnu is a vector of control inputs (or actions),

and t = 0, . . . , T is the time index over a prediction horizon of length T ∈ N+. Stage costs are

defined by functions lt : Rnx × Rnu → R and the terminal cost function is H : Rnx → R. The

dynamics are modelled by the function ft(xt, ut) : Rnx ×Rnu → Rnx , and the constraint functions

gt,j(xt, ut) : Rnx × Rnu → R encode conservation laws and technical bounds on variables at each

stage.

For later developments, we will assume that xt includes an auxiliary state xc,t on the interval

[0, T ] with update equation xc,t+1 = xc,t + 1, thus representing the current time step t as a state.

With a minor abuse of notation, we say that constraints (2c) that are uncoupled from ut define

the state space Xt := {xt ∈ Rnx : gt,j(xt) ≥ 0, j = 1, . . . , Ngx,t;xc,t = t}. Constraints (2c) that are

uncoupled from xt define the action space Ut := {ut ∈ Rnu : gt,j(ut) ≥ 0, j = Ngx,t + 1, . . . , Ngu,t}.
The feasible set of state and control decisions at time step t is defined as

Ct := {(xt, ut) ∈ Rnx × Rnu : gt,j(xt, ut) ≥ 0, j = 1, . . . , Ng,t;xc,t = t}.

For any xt ∈ Xt, the set of admissible controls is defined as Ut(xt) := {ut : (xt, ut) ∈ Ct}. Since

the sets Ct and Xt contain a constraint xc,t = t, and all problem constraints will be defined for
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states and inputs belonging to these time-indexed sets, we will drop the time subscripts from x

and u to maintain clean notation, without loss of clarity. We will also refer to xc,t as xc under the

same rationale.

Furthermore, we make the following assumptions:

Assumption 1. Functions lt(x, u), ft(x, u), gt,j(x, u) are polynomials for all t ∈ {0, . . . , T − 1},
as is H(x). The state and control decisions are bounded i.e., Ct and Xt are compact.

Assumption 2. For all t = 0, . . . , T − 1, for all x ∈ Xt there exists at least one u ∈ Ut(x) such

that ft(x, u) ∈ Xt+1.

The value function V ∗t : Xt → R represents the sum of all costs incurred in problem (2)

starting from state xt at time instance t, if optimal control decisions are taken at all times from t

to T − 1. It is defined recursively by the well-known Bellman optimality condition at each stage

t = 0, . . . , T − 1:

V ∗t (x) := min
u∈Ut(x)

{
lt(x, u) + V ∗t+1(ft(x, u))

}
, ∀x ∈ Xt, (3)

with the boundary condition V ∗T (x) = H(x) for all x ∈ XT .

2.2. Generalized moment problem

We now develop a finite-horizon discrete-time optimal control problem in the form of a GMP

(Lasserre, 2014). Our formulation, an infinite-dimensional linear program over occupation mea-

sures, is a finite-horizon problem related to the GMP developed in Savorgnan et al. (2009). An

occupation measure can be interpreted as a probability distribution describing the trajectory x

and u of a dynamical system starting from a known initial state distribution.

Consider the (nonstationary) Markov control model formed by the tuple (Xt,Ut,{U(x)t|x ∈
Xt}, ft(x, u), lt(x, u), H(x)) for which we wish to find an optimal control policy %∗. Note that for the

purposes of the derivations which follow, nonstationary Markov control models can be represented

using an equivalent stationary model using state augmentation (Hernández-Lerma, 1989, Section

1.3). Under Assumption 2, from (Hernández-Lerma & Lasserre, 2012, Theorem 3.2.1) there exists

an optimal policy % that is deterministic and can therefore be expressed in the form u = %∗(x).

The state-action occupation measure at time step t for a given policy % and initial state measure

ν0 is a Borel measure µt ∈M(Ct)+ on the feasible set Ct, defined by

µt(B) := E%ν0(1B(x, u)) (4)

for all Borel sets B of Ct. E%ν0 is the expected value under policy % given some initial distribution

ν0 of the state. Measure µt contains all information about the relationship between the state x

and control input u (which depends on x) at time step t.
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Let π : M(Ct)+ → M(Xt)+ be the projection from state-action space onto the state alone.1

Then the linear operator Lt : M(Ct)+ → M(Xt+1)+ maps the state-action occupation measure

at time step t to the occupation measure projected onto the state space Xt+1 at time step t + 1

under the dynamics ft(x, u):

πµt+1(A) = Ltµt(A) =

∫
Ct

1A(ft(x, u))dµt (5)

for all Borel sets A of Xt+1.
2 In words, the probability mass of the state distribution in set

A at time t + 1 is equal to the total contributions of mass brought into A by the dynamics,

across all infinitesimal elements of the state-action distribution µt. This operator therefore encodes

consistency with the dynamics of successive state-action distributions (µt, µt+1).

Using these definitions, the following linear constraint describes all state-action probability

measures µ0, µ1, . . . , µT−1 that are consistent with a control policy %, the dynamics ft(x, u), and a

free choice of terminal state measure (νT ⊗ δT ) ∈M(XT )+:

ν0 ⊗ δ0 +

T−1∑
t=0

Ltµt =

T−1∑
t=0

πµt + νT ⊗ δT . (6)

We use νt to denote a probability measure over all elements of vector x except the auxiliary time

index state xc, and δt to denote the Dirac measure supported on t for xc. Thus, measure ν0 ⊗ δ0
is an initial probability distribution on X0, where δ0 accounts for xc being supported on t = 0.

Similarly, νT ⊗δT is the terminal Borel probability measure on XT . Note that the sum of measures

on each side of (6) is supported on xc = 0, 1, . . . , T , thus the single constraint encodes all T -step

trajectories of the system.

We can now formulate the GMP (7), which is a T -step decision problem related to (2). Measures

µt and the terminal state measure νT fully specify the solution of (2) for a given distribution ν0 of

the initial state x0.

ρ∗ := min
{µt}T−1

t=0 , νT

T−1∑
t=0

∫
Ct

lt(x, u)dµt +

∫
XT

H(x)d(νT ⊗ δT ) (7a)

s.t. ν0 ⊗ δ0 +

T−1∑
t=0

Ltµt =
T−1∑
t=0

πµt + νT ⊗ δT , (7b)

µt ∈M(Ct)+, νT ⊗ δT ∈M(XT )+. (7c)

1For any Borel measure µt ∈M(Ct)+ this is formally defined by (πµt)(B) = µt((Rnu × B) ∩ Ct) for all Borel
subsets B of Xt.

2This operator was first defined in Lasota & Mackey (1994), and used for the infinite-horizon control application
in Savorgnan et al. (2009).
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Theorem 1. The optimal value ρ∗ of (7) is equal to the optimal cost V ∗0 (x0) of (2) when ν0 is a

Dirac measure on x0, and equal to the expected value Eν0(V ∗0 (x0)) when ν0 is a probability measure.

Proof. The finite-horizon problem (7), expressed as an equivalent stationary model (Hernández-

Lerma, 1989, Section 1.3), is a special case of the infinite horizon GMP from Hernández-Lerma &

Lasserre (2012) and Savorgnan et al. (2009). Problem (2) can be restated as an infinite-horizon

problem by setting the cost functions for t > T to zero. Since the support of any µt is limited

to values of auxiliary state xc on the interval [0, T − 1], by definition of the measure µt, we have∑∞
t=T+1 πµt = 0 and

∑∞
t=T Ltµt = 0. Thus, the infinite-horizon GMP presented in Savorgnan

et al. (2009) reduces to (7). Due to Assumption 1 (which implies continuity of lt(x, u) and ft(x, u),

and compactness of Ct and Xt), we have ρ∗ = Eν0(V ∗0 (x0)) by (Hernández-Lerma & Lasserre,

2012, Theorem 6.3.7).

2.3. Value function approximation

To facilitate the decomposition approach in Section 3, we rewrite (7) by introducing state

measures νt ⊗ δt ∈ M(Xt)+ for t = 1, . . . , T − 1, and replacing the single dynamical constraint

(7b) with T separate one-step constraints,

νt ⊗ δt + Ltµt = πµt + νt+1 ⊗ δt+1, t = 0, . . . , T − 1. (8)

The resulting GMP is equivalent to (7), since eliminating the measures νt ⊗ δt ∈ M(Xt)+ using

equalities (8) recovers constraint (7b). We now state the dual of this equivalent GMP, and show

that the component of its solution for t = 0 approximates the value function V ∗0 (x) of (3) over the

initial distribution ν0. Following the dualization process of Anderson & Nash (1987) for infinite-

dimensional linear programs, we obtain (9). This is another infinite-dimensional linear program, in

this case in the space of bounded continuous functions on Xt for each time step t, denoted C(Xt).

θ∗ := max
{Vt∈C(Xt)}T−1

t=0

∫
X0

V0(x)d(ν0 ⊗ δ0) (9a)

s.t. lt(x, u)− Vt(x) + Vt(ft(x, u)) ≥ 0, ∀(x, u) ∈ Ct, t = 0, . . . , T − 1, (9b)

Vt+1(x) ≥ Vt(x), ∀x ∈ Xt+1, t = 0, . . . , T − 2, (9c)

H(x) ≥ VT−1(x), ∀x ∈ XT . (9d)

The integral d(ν0 ⊗ δ0) reflects the initial state distribution ν0 and initial value of the auxiliary

state xc, which is always 0. Thus the objective integrates V0(x) over a “slice” of x-space at xc = 0.

Note that each function Vt(x) in (9) is constrained at time steps t and t + 1, and that

V0(x), . . . , VT−1(x), H(x) form a chain of coupled functions. Constraint (9b) is a relaxation of
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the Bellman optimality condition for each pair of points (x, f(x, u)) generated by an (x, u) pair

in Ct; since x and f(x, u) have time index states xc = t and xc = t + 1 respectively, Vt(x) is

constrained in how it changes between time steps t and t+ 1. Constraint (9c) upper-bounds Vt(x)

by the value of the “next” value function Vt+1(x), on x values with time index xc = t+ 1.

Since we have shown that the finite-horizon case is just a special case of the infinite-horizon

formulation and Assumption 1 holds, Problem (9) is in fact the LP formulation of the dynamic

programming problem for (2) and there is no duality gap between (7) and (9) (Hernández-Lerma

& Lasserre, 2012, Theorem 6.3.8). It is straightforward to show3 that for all feasible solutions of

(9), Vt(x) ≤ V ∗t (x) on Xt for t = 0, . . . , T − 1.

3. Moment DDP

We now present an algorithm, termed Moment DDP, to find approximate solutions to (2)

that are fitted to a probability distribution ν0 of values of x0. This is achieved by decomposing

the multi-stage problems (7) and (9) into single stages and solving finite approximations of these

problems. We first describe the backward recursion (Section 3.1) and forward simulation (Section

3.2), which are familiar concepts from existing DDP approaches, and then state the Moment DDP

algorithm as a whole in Section 3.3.

Moment DDP uses the same stage-wise decomposition principle as conventional DDP, in that

it simulates state trajectories in the forward simulation and then solves dual problems to generate

lower-bounding functions in the backward recursion. However it is different in two important re-

spects. First, the forward simulation consists of a sequence of single-stage problems over moments

of the occupation measure instead of the point values or sampled uncertainty realizations used in

conventional (S)DDP. These moments are a finite approximation of the original problem (7) over

occupation measures. Second, the backward recursion, comprising dual SOS problems, generates

polynomial rather than linear cuts, and under-approximates the value function most closely around

the state distribution computed by the forward simulation. Analogously to conventional DDP, the

cuts are used in the forward simulation as approximate cost-to-go functions to improve the candi-

date state trajectory. The sum of costs in the forward simulation (as estimated from the truncated

moment series) represents an upper bound on the optimal cost attainable under the moment/SOS

approximation, while the expected value (with respect to the given initial state distribution ν0) of

the value function obtained for t = 0 represents a lower bound. The difference between the upper

3The optimal solutions V̂t(x) of (9) are subsolutions of the Bellman equation (3), i.e. V̂t(x) ≤ lt(x, u)+ V̂t(ft(x, u))
on Ct and V̂t(x) ≤ V̂t+1(x) on Xt+1, with V̂T−1(x) ≤ H(x) on XT . As pointed out in Savorgnan et al. (2009), this
leads to the fact that V̂0(x), a maximizer, minimizes the quantity

∫
X0
|V ∗0 (x) − V̂0(x)|d(ν0 ⊗ δ0) =

∫
X0

V ∗0 (x) −
V̂0(x)d(ν0 ⊗ δ0).
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and lower bounds is used as a convergence criterion for terminating the algorithm.

Alongside our general description of Moment DDP, we will use problem (7) with horizon T = 2

to illustrate the decomposition into single-stage problems. The proof of convergence in Section

4 will also apply to the two-stage problem, with an induction argument used to extend this to

arbitrary T .

3.1. The backward recursion

The backward recursion creates a new polynomial lower bounding function Vt,z(x) for the value

function for t = T − 1, . . . , 0, analogous to the Benders cuts in conventional DDP. For each time

step t and iteration z, the single-stage subproblem uses the following data:

• The lower-bounding functions already generated from earlier backward recursions (including

the current one), Vt+1,i(x), i = 0, . . . , z, satisfying Vt+1,i(x) ≤ V ∗t+1(x) for all x ∈ Xt+1.

• The state measure νt ⊗ δt ∈M(Xt) from the last forward pass completed.

By the standard dynamic programming argument used in conventional DDP, the subproblem

corresponds to the first stage of a version of problem (2.3) starting at step t:

θt := max
Vt,z∈C(Xt)

∫
Xt

Vt,z(x)d(νt ⊗ δt) (10a)

s.t. lt(x, u)− Vt,z(x) + Vt,z(ft(x, u)) ≥ 0, ∀(x, u) ∈ Ct, (10b)

Vt,z(x) ≤

 max
{
Vt+1,0(x), . . . , Vt+1,z(x)}, ∀x ∈ Xt+1, if t ∈ {0, . . . , T − 2},

H(x), ∀x ∈ Xt+1, if t = T − 1.

(10c)

This problem is illustrated in Fig. 1. Constraint (10b) restricts the change in the value function

from time step t to time step t + 1 according to the Bellman principle, and (10c) upper-bounds

the value function at time step t + 1 by the lower bounds already derived for stage t + 1 of the

problem.

Problem (10) is intractable owing to its infinite-dimensional decision space, but can be approx-

imated using a polynomial parameterization of Vt,z(x). We note that, except for the case t = T −1,

constraint (10c) is equivalent to

Vt,z(x) ≤ y, ∀(x, y) ∈ (Xt+1 × R) ∩ {(x, y) : y ≥ Vt+1,0(x), . . . , y ≥ Vt+1,z(x)} ;
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x

xt

t+1

νt

(10c) max{Vt+1,0(x),...,Vt+1,z(x)}≥Vt,z(x) on Xt+1 

max∫Vt,z(x)d(νt⊗δt)

(10b) lt(x,u)≥Vt,z(x)-Vt,z(ft(x,u)) on Ct 

Vt*(x)

V*t +1(x)

Figure 1: Illustration of the infinite-dimensional LP (10). The function Vt,z(x) (blue) is maximized over the state
distribution νt (green) at time step t subject to constraints (10b) and (10c), in order to approximate the value
function V ∗t (x) (dashed blue). Constraint (10b) ensures Vt,z(x) ≤ V ∗t (x) by limiting the values of Vt,z(x) at time
step t such that transitions to step t + 1 incur costs that respect the Bellman inequality condition. Constraint
(10c) bounds Vt,z(x) from above at t+ 1 by the point-wise maximum (red) of lower-bounding functions computed in
previous iterations for time step t+1. These are in turn under-approximations of the optimal value function (dashed
red) at t+ 1.

this leads to the following SOS program for each time step t = T − 1, . . . , 0:

θt,z := max
Vt,z ,σt,z

〈Vt,z,qt,z〉 (11a)

s.t. lt(x, u)− Vt,z(x) + Vt,z(ft(x, u)) = Qk(Ct), (11b)

y − Vt,z(x) = Qk(Yt+1,z), (11c)

deg(Vt,z)κt ≤ 2k. (11d)

The polynomial Vt,z(x) is represented by its vector of monomial coefficients Vt,z, and the objective

(10a) can thus be expressed as 〈Vt,z,qt,z〉, where qt,z is a vector of moments of the state distribution

νt⊗δt returned at step t−1 of the last forward pass completed.4 The constraints (11b)-(11c) convert

(10c)-(10b) into equality constraints using Putinar’s Positivstellensatz (Putinar & Vasilescu, 1999)

for compact semi-algebraic sets, in which the slacks are written as quadratic modules Qk(Ct) and

Qk(Yt+1,z) that are non-negative by construction; see definition (1). The vector σt,z contains

all coefficients of the SOS polynomials introduced by the quadratic modules and is subject to

additional LMI constraints not shown explicitly here, ensuring that the coefficients form valid SOS

polynomials.5 Constraints (11b) and (11c) are implemented by matching the coefficients of each

4In our proposed implementation, the first backward pass takes place before the first forward pass, hence the
moments qt,0 of the state trajectory must be initialized. The uniform distribution may be an appropriate choice
when no information about the optimal state trajectory is available a priori.

5More precisely, σt,z is a concatenation of the vectorizations of the matrix of coefficients P, as described in Section
1.1, for all of the SOS polynomials σi within the quadratic modules Qk(Ct) and Qk(Yt+1,z).
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monomial on either side, i.e., using linear equality constraints linking the elements of V t,z and

σt,z. Since the definition of the quadratic module limits the degree of polynomial used to 2k,

and polynomials Vt are composed with polynomials ft(x, u) in (11b), the degree of Vt must be

restricted by (11d), where κt := maxi=1,...,nx(deg (ft,i(x, u))) is the highest-order polynomial found

in the dynamics.

In constraint (11c) we introduced a new epigraph set Yt+1,z. For each time step t = T, . . . , 1,

Yt,z is defined by the z lower-bounding functions generated so far for that time step, and an upper

bound y on the epigraph variable y:

Yt,z :=

 {(x, y) : x ∈ Xt; y ∈ R; y ≤ y; y ≥ Vt,i(x), i = 0, . . . , z}, t = 1, . . . , T − 1,

{(x, y) : x ∈ Xt; y ∈ R; y ≤ y; y ≥ H(x)}, t = T.

The parameter y ∈ R must be chosen in advance and ensures that, in combination with at least

one lower-bounding value function, the epigraph set is compact.6

Since the function parameterization in (11) is contained in the feasible set of (10), it follows

that θt,z is upper bounded by the optimal value of (10). The approximation accuracy is known to

improve as k increases (Korda et al., 2017).

Returning to the two-stage example, the backward recursion at iteration z for t = 1 is a SOS

problem of type (11):

θ1,z = max
V1,z ,σ1,z

〈V1,z,q1,z〉 (12a)

s.t. l1(x, u)− V1,z(x) + V1,z(f1(x, u)) = Qk(C1), (12b)

H(x)− V1,z(x) = Qk(X2), (12c)

deg(V1,z)κ1 ≤ 2k, (12d)

We add the optimal solution V̂1,z of (12) to the epigraph set Y1,z and solve a SOS problem for

6We acknowledge that this is not an epigraph in the strict sense of the word, since it includes an upper bound
on y. The value of y used to define Yt must be larger than the greatest sum of costs from time steps t to T that
can occur in any state trajectory. Since the state-input set is compact, the stage cost is bounded, and the number
of stages is finite, it is generally straightforward to obtain such a bound.
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t = 0:

θ0,z = max
V0,z ,σ0,z

〈V0,z,q0,z〉 (13a)

s.t. l0(x, u)− V0,z(x) + V0,z(f0(x, u)) = Qk(C0), (13b)

y − V0,z(x) = Qk(Y1,z), (13c)

deg(V0,z)κ0 ≤ 2k. (13d)

In the Moment DDP algorithm described in Section 3.3, the lower bound value θLB,z = θ0,z is used

in the termination criterion.

3.2. The forward simulation

The forward simulation finds, for each t = 1, . . . , T , an approximate solution to a single stage of

the GMP (7), in which the state occupation measure νt is inherited from the previous step’s solu-

tion, and the cost-to-go is under-approximated by the lower-bounding functions Vt+1,i(x) generated

in the backward recursions completed so far:

ρt := min
µt,νt+1

∫
Ct

lt(x, u)dµt +

∫
Xt+1

max
i=0,...,z−1

Vt+1,i(x)d(νt+1 ⊗ δt+1), (14a)

s.t. νt ⊗ δt + Lµt = πµt + νt+1 ⊗ δt+1, (14b)

µt ∈M(Ct)+, νt+1 ⊗ δt+1 ∈M(Xt+1)+. (14c)

As this problem is infinite-dimensional and therefore intractable, the approximation used is an

optimization over a finite vector of moments of the state-action occupation measure µt at time

step t, and the state occupation measure νt+1 at time step t+ 1.

We now explain how this finite-moment approximation of (14) is represented. Let µt,z be the

state-action occupation measure on Ct for a single time step t at iteration z, and let mαγ
t,z be its

(α, γ) moment for non-negative integer vectors α ∈ Nnx and γ ∈ Nnu , defined by

mαγ
t,z :=

∫
Ct

xαuγdµt,z . (15)

Following convention from related literature, the vector-valued exponents are interpreted as xα =

xα1
1 xα2

2 . . . x
αnx
nx and uγ = uγ11 u

γ2
2 . . . u

γnu
nu , with

∑nx
i=1 αi +

∑nu
i=1 γi ≤ 2k.

We use the epigraph set Yt+1,z−1 created in the previous backward recursion to accommodate

the maximum in the second term of (14a). For each time step t = 1, . . . , T and iteration z, we
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define the moments of the augmented state measure νt,z⊗ δt supported on the epigraph set Yt,z−1:

qαηt,z :=

∫
Yt,z−1

xαyηd(νt,z ⊗ δt), (16)

where xα = xα1
1 xα2

2 . . . x
αnx
nx and y is the scalar epigraph variable used in the definition of Yt,z−1,

with
∑nx

i=1 αi + η ≤ 2k. We collect these moments into vectors mt,z and qt,z respectively for each

iteration z of the DDP algorithm. The number of elements in mt,z is combinatorial, given by

nm =
(
nx+nu+k

k

)
. Similarly, the vector qt,z has size nq =

(
nx+1+k

k

)
. The moments (qα0t+1,z) of the

state distribution at time step t, recalling that the superscript 0 signifies that y is excluded, are

used as initial conditions in time step t+ 1.

As with conventional DDP, the forward problem in Moment DDP for each stage t = 0, . . . , T−1

is dual to the backward problem (11). It takes the form of a semidefinite program (SDP) in terms

of the moments (up to degree 2k) of µt,z and νt+1,z ⊗ δt+1:

ρt,z := min
mt,z ,qt+1,z

Lmt,z(lt) + Lqt+1,z(y) (17a)

s.t. Lmt,z

(
xα − ft(x, u)α

)
+ qα0t+1,z = qα0t,z , α ∈ Nnx ,

nx∑
i=1

αi ≤ b2k/κtc, (17b)

Mk−dgt,j (gt,jmt,z) � 0, j = 1, . . . , Ng,t, (17c)

Mk−dvt+1,s
(vt+1,sqt+1,z) � 0, s = 1, . . . , Ngx,t + z + 1, (17d)

Mk(mt,z) � 0,Mk(qt+1,z) � 0, (17e)

where f(x, u)α is shorthand for f1(x, u)α1f2(x, u)α2 . . . fnx(x, u)αnx .

In brief, the objective (17a) approximates the expected cost Eµt,z(lt) + Eνt+1,z(y) as a linear

combination of moments of µt,z and νt+1,z. The constraint (17b) represents a truncated form of the

infinite-dimensional constraint (7b), which means that the state update equation is transformed

into a set of linear equalities on the moments of the state-action measure µt,z and state measure

νt+1,z ⊗ δt+1. Constraints (17c) and (17d) jointly represent “moment relaxations” of the support

constraints (14c) on µt,z and νt+1,z, and constraints (17e) are used to ensure that the moment

vectors are compatible with valid measures. We now explain the elements of (17) in detail.

The operator Lmt,z : R[x, u]→ R is a linear mapping associated with a measure µt,z acting on

a polynomial h ∈ R[x, u]:

Lmt,z(h) :=
∑
αγ

hαγmαγ
t,z , (18)

where mαγ
t,z are the moments of µt,z as defined in (15) and hαγ represents the polynomial coefficient

of xαuγ , with vectors α and γ interpreted in the same manner as for (15). Analogously, Lqt,z :
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R[x, y]→ R is a linear mapping associated with the moments defined in (16):

Lqt,z(h) :=
∑
αη

hαηqαηt,z . (19)

These operators are used to approximate the expected cost (14a) in terms of moments, so that

Eµt,z(lt)+Eνt+1,z(y) =
∫
Ct
ltdµt,z+

∫
Yt+1,z−1

ydνt+1,z becomes Lmt,z(lt)+Lqt+1,z(y) =
∑

αγ l
αγ
t mαγ

t,z+

q01t+1,z.

The same linear operator is used in constraint (17b) to enforce consistency of the change in

moments from qα0t,z , which are fixed data from the previous stage, and qα0t+1,z under the dynamics.

The standard moment matrices Mk(mt,z) and Mk(qt,z) of degree k in (17e); and the localizing

matrices Mk−dgt,j (gt,jmt,z) and Mk−dvt+1,s
(vt+1,sqt+1,z) in (17c)-(17d) enforce a condition that

ensures the generic vectors of moments are consistent with finite Borel measures on compact set.7

They are derived by applying the linear mappings Lmt,z and Lqt,z to the square of any polynomial

h of degree k:

Lmt,z(h
2) = h>Mk(mt,z)h ≥ 0, Lqt,z(h

2) = h>Mk(qt,z)h ≥ 0, (20)

where h is the vector of coefficients of h. Thus, the moment matrix, which is linear in the elements

of mt,z or qt,z, is constrained to be a symmetric positive semi-definite matrix; the two constraints

of (17e) are therefore standard LMI constraints.

For notational convenience, we now write the constraints defining the epigraph set Yt,z−1

as vt,s(x, y) ≥ 0, s = 1, . . . , Ngx + z + 1. The localizing matrices (17c) and (17d), which are also

standard in moment problems, enforce a moment relaxation of the support constraints gt,j(x, u) ≥ 0

(which define set Ct) and vt+1,s(x, u) ≥ 0 (which define set Yt+1,z). These are positive semi-definite

and of the form

Lm(gt,jh
2) = h>Mk−dgt,j (gt,jmt,z)h ≥ 0,

Lq(vt+1,sh
2) = h>Mk−dvt+1,s

(vt+1,sqt+1,z)h ≥ 0,
(21)

where dgt,j = ddeg(gt,j)/2e and dvt+1,s = ddeg(vt+1,s)/2e.
Thus, (17) is a relaxation of (14), in which each of the constraints has been enforced on only

a finite series of moments of µt,z and νt+1,z. It therefore attains a lower optimal value than (14);

recall that its dual, the SOS program (11), is a restriction of the infinite-dimensional LP shown in

Fig. 1 and has a corresponding lower optimal value.

We now state a known result concerning the value of relaxation (17) as the order k is increased:

7In fact, this is a relaxation of the consistency condition, which is only guaranteed to hold for an infinite series of
moments (Lasserre, 2014, Theorem 3.8).
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Lemma 1. Let Assumption 1 hold, and let the feasible set Ct and epigraph set Yt+1,z satisfy

Putinar’s condition 8. If ρt is the optimal solution of the infinite-dimensional GMP (14) at time

step t, then as k →∞ the optimal value of (17) approaches ρt asymptotically from below.

Proof. Following Theorem 1 in Savorgnan et al. (2009), one can show that ρt,z, when evaluated

for increasing values of the relaxation degree k used in constraint (17b), is a monotone non-

decreasing sequence converging to ρt. This makes use of Putinar’s Positivstellensatz, and the fact

that measures on compact sets are uniquely determined by their infinite sequence of moments.

In case of example (7) with T = 2, we start the forward simulation by solving a moment

relaxation of degree 2k for t = 0, a SDP of type (17) that includes the epigraph set Y1,z−1 built

from all the value function under-approximators {V1,i(x)}z−1i=0 :

ρ0,z = min
m0,z ,q1,z

Lm0,z(l0) + Lq1,z(y) (22a)

s.t. Lm0,z

(
xα − f0(x, u)α

)
+ qα01,z = qα00 , α ∈ Nnx ,

nx∑
i=1

αi ≤ b2k/κ0c, (22b)

Mk−dg0,j (g0,jm0,z) � 0, j = 1, . . . , Ng,t, (22c)

Mk−dv1,s (v1,sq1,z) � 0, s = 1, . . . , Ngx,t + z + 1, (22d)

Mk(m0,z) � 0,Mk(q1,z) � 0, (22e)

where we note that moments qα00 (defined in the same way as (16)) are fixed data derived from the

initial state distribution ν0 ⊗ δ0. If (22) and (13) are strictly feasible, there is no duality gap and

ρ0,z = θLB,z.

The primal problem for t = 1 is a moment relaxation with the optimal solution q̂1,z of (22) as

input data:

ρ1,z = min
m1,z ,q2,z

Lm1,z(l1) + Lq2,z(H) (23a)

s.t. Lm1,z

(
xα − f1(x, u)α

)
+ qα02,z = q̂α01,z, α ∈ Nnx ,

nx∑
i=1

αi ≤ b2k/κ1c, (23b)

Mk−dg1,j (g1,jm1,z) � 0, j = 1, . . . , Ng,t, (23c)

Mk−dv2,s (v2,sq2,z) � 0, s = 1, . . . , Ngx,t, (23d)

Mk(m1,z) � 0,Mk(q2,z) � 0, (23e)

8One can ensure that the sets Ct and Yt+1,z satisfy Putinar’s condition (see Definition 3.4 in Lasserre et al. (2008))
by including an additional ball constraint. For instance one can add gNg+1(x, u) = R2 −

∑nx
i x2i −

∑nu
i u2

i ≥ 0 with
R ∈ R to the definition of Ct. The assumption that Ct and Yt+1,z are both compact makes it straightforward to
determine such an R in most cases.
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Algorithm 1 Moment DDP

Input: Horizon T , functions ft(x, u), lt(x, u), H(x), gt,j(x, u), tolerance ε, initial moments qt,0
Output: Upper bound ρUB,z, lower bound θLB,z, epigraph sets Yt,z, trajectory moments qt,z
Indices: Iteration z, time step t

1: z ← 0
2: Create set YT,0 parameterized by H(x)
3: for t = T − 1, · · · , 1 do . Initial backward recursion: Section 3.1
4: Solve (11) to obtain Vt,0(x)
5: Create set Yt,0 parameterized by Vt,0(x).

6: repeat . Repeat procedure until predefined tolerance ε is achieved
7: z ← z + 1
8: for t = 0, · · · , T − 1 do . Forward simulation: Section 3.2
9: Solve (17) to obtain state moments qt+1,z

10: Compute ρUB,z =
∑T−1

t=0 Lm̂t,z(lt) + Lq̂T,z(H) (optimal values of (17))
11: for t = T − 1, · · · , 0 do . Backward recursion: Section 3.1
12: Solve (11) to obtain Vt,z(x)
13: Yt,z ← Yt,z−1 ∩ {(x, y) : y ≥ Vt,z(x)}
14: Set θLB,z = θ0,z (optimal value of (11) for t = 0)
15: until ρUB,z − θLB,z < ε

The updated moments q̂1,z computed by (22) can then be used in a subsequent backward recursion

to generate a new approximate value function in the backward recursion. If (12) and (23) are

strictly feasible, there is no duality gap and ρ1,z = θ1,z. Using the optimal values of (22) and (23),

we define the upper bound as ρUB,z = Lm̂0,z
(l0) + Lm̂1,z

(l1) + Lq̂2,z
(H) for use in the termination

criterion of the algorithm described below.

3.3. Moment DDP algorithm

Moment DDP is stated formally in Algorithm 1, and we now remark on some aspects of its

implementation.

Firstly, we note that the degree of the under-approximating value functions can in practice be

chosen to be relatively low, since a single function need not be an active bound over the entire state

space. This is illustrated in Fig. 7 in the Appendix, which shows the lower-bounding functions

generated by a sequence of six backward recursions for the single storage example of Section 5,

alongside the approximation generated by discretized DP.

Secondly, it can be attractive to preserve convexity of the lower-bounding functions added in the

backward recursion, in order to reduce the cost of computing forward control actions. Following the

approach of Lasserre & Thanh (2013), convexity can be imposed on polynomials by constraining

the Hessian of the value function in (11) and adding additional variables to the primal (17). This

may of course cause an additional reduction in the tightness of the value function approximation.

Thirdly, if the problem input data remains constant over multiple time steps t, it becomes rela-
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tively straightforward to adapt a single stage of the forward and backward recursions in Algorithm

1 to span these steps. In this case, one can use a single polynomial to approximate a value function

over the relevant interval on the time coordinate xc. Value functions can then be extracted for a

time step within a stage by setting xc to the relevant value. Throughout this paper, however, we

maintain equivalence between problem stages and time steps t in (2) for clarity of notation.

3.4. Extension to stochastic dynamics

The Moment DDP approach can be extended to stochastic polynomial dynamics, in which the

state update is described by a function ft(x, u, w), without increasing the computational complexity

significantly. Vector w denotes an independent disturbance following the distribution ωt supported

on Wt, of which the statistical moments can be computed; and entering polynomially into the

state update.

If these conditions hold, moment and SOS relaxations can be formulated using the same pro-

cedure described for generic optimal control problems in Savorgnan et al. (2009). Specifically, the

operator Lt is replaced by a new linear operator L̃t :M(Ct)+ →M(Xt+1)+ defined as

πµt+1(A) = L̃tµt(A) :=

∫
Ct

∫
Wt

1A(ft(x, u, w))dωtdµt, (24)

for all Borel sets A of Xt+1. For simplicity of exposition, however, we have excluded stochastic dy-

namics from the derivations and numerical examples in the present paper, and the only uncertainty

we include arises from the initial state distribution.

4. Convergence properties

In this section, we analyze the convergence of Algorithm 1 using an instance of the GMP (7)

with T = 2, and argue subsequently that the results extend to longer horizons. Lemma 2 states

that if the upper bound is strictly larger than the lower bound, (a relaxation of) the epigraph

set strictly tightens from one iteration to the next. Lemmas 3 and 4 bound the values of θLB,z

and ρUB,z used in the termination criterion. Finally, Theorem 2 concludes that the Moment DDP

approach converges in finite iterations for any tolerance ε > 0.

To facilitate these derivations, we say the moments q̂1,z computed by the SDP relaxation (22)

are elements of the relaxed epigraph set, which we define as

Ỹ1,z := {q1,z ∈ Rnq : Mk(q1,z) � 0;

Mk−dgj,1 (gj,1q1,z) � 0, j = 1, . . . , Ngx ;

Mk−dV1,i ((y − V1,i)q1,z) � 0, i = 0, . . . , z − 1;

Mk−dy((y − y)q1,z) � 0}.

(25)
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Lemma 2. If θLB,z < ρUB,z at some iteration z, the relaxed epigraph set strictly tightens, i.e. Ỹ1,z ⊂
Ỹ1,z−1. Moreover θLB,z+1 ≥ θLB,z.

Proof. Let (m̂0,z, q̂1,z, m̂1,z, q̂2,z) be a solution computed by the moment relaxations (22) and (23)

during the forward simulation. Let 〈V̂1,z, q̂1,z〉 be the optimal value of the backward recursion

program (12). By definitions of θLB,z and ρUB,z, and strong duality between the second-stage

problems (23) and (12), we have

θLB,z = Lm̂0,z
(l0) + Lq̂1,z

(y) and ρUB,z = Lm̂0,z
(l0) + Lm̂1,z

(l1) + Lq̂2,z
(H)

= Lm̂0,z
(l0) + 〈V̂1,z, q̂1,z〉.

Thus, θLB,z < ρUB,z implies Lq̂1,z
(y) < 〈V̂1,z, q̂1,z〉. For the next iteration, we add the LMI

constraint Mk−dV̂1,z
((y− V̂1,z)q1,z) � 0 to Ỹ1,z, and it is straightforward to show (see (Molzahn &

Hiskens, 2015, eq. (14)) for a similar example) that the first diagonal element of this matrix is the

linear expression Lq1,z(y) − Lq1,z(V̂1,z) = q011,z − 〈V̂1,z,q1,z〉. Because this is on the diagonal of a

matrix that is constrained to be positive semidefinite, it must be nonnegative. Thus the new set

Ỹ1,z contains the constraint that Lq1,z(y) ≥ 〈V̂1,z,q1,z〉.
The old moment vector q̂1,z is now infeasible at iteration z + 1. Thus, Ỹ1,z must be a strict

subset of Ỹ1,z−1. Since (22) is a minimization over a subset of the previous feasible set, the cost

attained may be no lower than at the previous iteration.

Let ρ∗k be the optimal value of the undecomposed moment relaxation of (7) with T = 2:

ρ∗k := min
m0,q1,m1,q2

Lm0(l0) + Lm1(l1) + Lq2(H)

s.t. (22b)-(22e), (23b)-(23e)

(26)

The following lemmas bound the possible values of the lower and upper bounds returned by Algo-

rithm 1:

Lemma 3. At any iteration z, ρUB,z ≥ ρ∗k, the optimal value of the undecomposed moment relax-

ation (26).

Proof. Let (m̂0,z, q̂1,z, m̂1,z, q̂2,z) be a solution computed by the moment relaxations (22) and (23)

during the forward simulation. Examination of the constraints of (26) shows that this is a feasible

but in general suboptimal solution, thus ρUB,z = Lm̂0
(l0) + Lm̂1

(l1) + Lq̂2
(H) ≥ ρ∗k.

Lemma 4. At any iteration z, θLB,z ≤ ρ∗, the optimal value of the GMP (7).

Proof. By inserting the optimal solution V ∗1 (x) of the undecomposed LP (9) with T = 2 into the

epigraph of the first stage LP (10), it can be seen that the optimal value θt of (10) is bounded

19



from above by the optimal values θ∗ = ρ∗ of the undecomposed LPs (7) and (9) with T = 2. Since

the SOS approximation (13) of the first stage LP 10 is more restricted, we have θLB,z ≤ ρ∗.

Finally, we can state the following result concerning the convergence of Algorithm 1:

Theorem 2. Given a tolerance ε > 0, Algorithm 1 attains ρUB,z − θLB,z ≤ ε in a finite number

of iterations when applied to GMP (7) with T = 2. Moreover, the sequence {θLB,z} converges to a

value θ̂LB satisfying ρ∗k ≤ θ̂LB ≤ ρ∗, where ρ∗ is the optimal value of the original multi-stage GMP

(7) and ρ∗k is the optimal value of its degree-k moment relaxation (26).

Proof. Let {ρUB,z} and {θLB,z} be sequences over z iterations. Assumption 1 (continuity and

compactness) implies that the sequences {ρUB,z} and {θLB,z} are bounded. From Lemma 2, {θLB,z}
is a monotonically increasing sequence. By the monotone convergence theorem, {θLB,z} converges

to some accumulation point θ̂LB. By the Bolzano-Weierstrass theorem, there is a subsequence

{ρUB,i} that converges to an accumulation point ρ̂UB. Every subsequence of a convergent sequence

is also convergent, so we have limi→∞ θLB,i = θ̂LB.

Let X̃1 := {x1 ∈ Rnx : Mk(x1) � 0;Mk−dgj,1 (gj,1x1) � 0, j = 1, . . . , Ngx} be the relaxed state

space, where x1 is defined in the same manner as q1 but without the epigraph variable y. For

any state moment vector x1 ∈ X̃1, a sequence {y∗x1,z} can be constructed by solving the following

optimization problem at each iteration z:

y∗x1,z := min
q1

Lq1(y) (27a)

s.t. q1 ∈ Ỹ1,z (27b)

qα01 = xα1 , α ∈ Nnx ,
nx∑
i=1

αi ≤ b2k/κ1c. (27c)

In words, y∗x1,z is the relaxed epigraph value evaluated for the state moments xα1 with respect to the

relaxed epigraph set Ỹ1,z. For each x1 in X̃1, the sequence {y∗x1,z} is monotonically increasing (see

Lemma 2) and bounded, and thus by the monotone convergence theorem, the limit {y∗x1,z} → y∗x1,∞

always exists. At no iteration z of the algorithm can the backward recursion generate another

V̂1,z(x) such that 〈V̂1,z,q1,z〉 > y∗x1,∞ , where we choose x1 to have the same state moments as q1,z.

This implies that

lim
i→∞

Lm̂0,i
(l0) + Lq̂1,i

(y) = lim
i→∞

Lm̂0,i
(l0) + y∗x̂1,i

≥ lim
i→∞

Lm̂0,i
(l0) + 〈V̂1,i, q̂1,i〉 = ρ̂UB. (28)

As long as θLB,i ≤ ρUB,i−ε, that is, the termination criterion has not yet been satisfied, relation

(28) implies that the subsequence {ρUB,i} must also converge to θ̂LB. Thus, by virtue of Lemmas

3 and 4, we obtain ρ∗k ≤ ρ̂UB = θ̂LB ≤ ρ∗.
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Given ε/2 > 0, by the definition of a convergent sequence, there exists Z ∈ N+ and I ∈ N+

such that |θLB,z− θ̂LB| < ε/2 if z > Z and |ρUB,i− θ̂LB| < ε/2 if i > I. Thus there exists J ∈ N+

such that |ρUB,z − θLB,z| ≤ |ρUB,z − θ̂LB|+ |θLB,z − θ̂LB| < ε if z > J .

Based on Lemma 1, we can state that the higher the relaxation degree 2k, the closer the

undecomposed moment relaxation (26) and therefore ρ∗k to the true optimal value ρ∗ of the original

GMP (7) with T = 2, since problem (26) becomes an ever tighter relaxation of (7).

The extension of the convergence properties to the case of multiple stages can be inferred by

backward induction. If we add one new stage before the two-stage problem, the original two-stage

problem (26) can be seen as the nested second stage of a new upper-level two-stage problem. The

nested second stage converges according to Theorem 2 for given initial moments generated by

the first stage. We can then apply the same arguments used for the nested problem to show the

convergence of the new upper-level two-stage problem.

5. Numerical results

We evaluate the algorithm using a real-world long-term borehole storage problem. The Moment

DDP approach developed in Section 3 is compared with the DP approach using discretization of

the state/action space for the case of a small storage system in Section 5.1. The convergence of

the algorithm for a larger problem with multiple storage systems is then shown in Section 5.2.

5.1. Single storage system

We consider the system pictured in Fig. 2, similar to the setup in De Ridder et al. (2011),

comprising a borehole, a heat pump (HP), a chiller and a boiler. The objective is to satisfy the

heating and cooling demand, which vary by time of year, at minimum annual cost. Heating can be

supplied either by the boiler or by the HP that draws energy from the borehole. The efficiency of

the HP depends on the outlet temperature of the borehole. The cooling demand can be satisfied

by either running the chiller or by charging the borehole through a heat-exchanger.

This system is sufficiently small for the DP approach using discretization to be tractable. We

evaluate the quality of the approximate value function generated by the Moment DDP approach, as

well as the quality of the solution when the approximate value functions are used in a single-stage

optimal control problem in comparison with the discretized DP solution. We assume the heating

and cooling demand to be given and use measurements from the Empa Campus in Dübendorf

Switzerland (Fig. 8 in the Appendix) scaled for a single storage application. The characteristics of

the ground borehole are derived from a thermal response test conducted on the Empa campus. The

long-term Energy Storage Management Problem (ESMP) over the horizon of one year is formulated
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Figure 2: Schematic of the energy system with borehole storage

as follows:

min
{xt}Tt=1,{uin,t,uout,t,ub,t,uch,t}

T−1
t=0

T−1∑
t=0

ce(uout,t + uch,t) + cgub,t (29a)

s.t. xt+1 = xt + ∆t
1

mc
(λ(xt − T∞)− a(xt)uout,t + uin,t), t = 0, . . . , T − 1, (29b)

a(xt)uout,t + abub,t = dheat,t, t = 0, . . . , T − 1, (29c)

uin,t + achuch,t = dcooling,t, t = 0, . . . , T − 1, (29d)

T ≤ xt ≤ T , t = 1, . . . , T, (29e)

0 ≤ uout,t ≤ uout; 0 ≤ uin,t ≤ uin, 0 ≤ ub,t ≤ ub; 0 ≤ uch,t ≤ uch, t = 0, . . . , T − 1, (29f)

where xt is the ground temperature, uin,t the storage charge, uout,t the HP power when drawing

energy from the ground, uch,t the chiller power and ub,t the boiler power. The heating and cooling

demands are denoted as dheat,t and dcooling,t. The power rating limits are denoted by uout, uin,

uch and ub. The temperature of the borehole xt is specified to remain within [T , T ]. T∞ denotes

the boundary ground temperature, λ the thermal conductivity and mc the thermal inertia of the

ground. If ground temperatures are not available for measurement, the model provided in Atam

et al. (2015) can be used instead. We set T = 12 to obtain monthly value functions, leading to

∆t = 730 hours for (29b). A linear function a(xt) was fitted to the measurements of the coefficient

of performance (COP) of the HP in the Energy Hub of the NEST building on the Empa Campus

(see Fig. 9 in the Appendix ). The third column of Table 1 in the Appendix summarizes all

the numerical energy system data for (29). Due to the temperature-dependent COP, the storage

problem (29) is non-convex. After eliminating decision variables ub,t and uch,t using the equality

constraints (29c) and (29d), the problem has one state xt and two control input decision variables

uin,t and uout,t.

The following value function approximations are considered to solve (29):

22



• Discretized dynamic programming with 41 state grid points on [T , T ] and 1001 grid points

per control input on [0, u].

• Moment DDP with relaxation degree 2k = 2; this restricts the value function approximation

to affine functions. (Recall that the maximum degree of the polynomial approximation of the

value function is constrained by deg(Vt,z)κt ≤ 2k, where in this case the highest polynomial

degree found in the dynamics is κt = 2.)

• Moment DDP with relaxation degree 2k = 4; this permits quadratic value function approxi-

mations, however in this case we add constraints to restrict all quadratic terms to zero. As

a result, only affine function approximations are used.9

• Moment DDP with relaxation degree 2k = 4; using the full quadratic value function approx-

imations permitted by this relaxation degree.

The Moment DDP approach is implemented using YALMIP (Lofberg, 2004) and solved with

MOSEKTM. The discretized DP problem is implemented and solved using the dpm toolbox of

Sundström & Guzzella (2009) and MATLABTM. The problem data are scaled to be contained in

the unit box to improve the numerical performance of the Moment DDP approach.

First, we compare the accuracy of different value function bases for a uniform initial state

distribution. In Fig. 3, the approximate value functions are shown together with the reference

computed by discretized DP. The kinks in the DP value functions for the months of May to

August are caused by the additional cost incurred by using the chiller if the storage temperature is

too high for cooling. The kinks in March and April are due to two different operating modes: using

the HP to provide heat or both, the HP and the boiler. Affine and quadratic approximate value

functions generated by relaxation 2k = 4 are a close fit for most months. For the months May to

September, the lower sections of the approximate value functions are less accurate. Whereas the

slopes of the approximate functions are very close to discretized DP reference, the kink positions are

not. However, as subsequent results on the performance of the resulting control policy demonstrate,

using the borehole to provide cooling is still optimal. There is a considerable difference between

the discretized DP and the piecewise affine value function generated by the relaxation of order

2k = 2.

The convergence of the lower bound ρLB and the upper bound ρUB of the Moment DDP

algorithm for different polynomial basis functions is shown in Fig. 4. Affine basis functions make

the Moment DDP algorithm converge faster than quadratic basis functions. The total solver times

9For consistency, the primal problem over moments also has to be modified (relaxed) by removing some linear
equality constraints on higher-order moments arising from the dynamics (17b). For brevity we do not detail this
procedure here.
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Figure 3: Value function approximations using different basis functions in comparison to discretized DP.
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for a predefined convergence tolerance are reported in Table 2 in the Appendix . Note that as in

conventional DDP, problems (11) and (17) increase slightly in size at every iteration as we add

additional under-approximating value functions.

Finally, instead of (29), we solve a sequence of single-stage problems augmented with approxi-

mate value functions obtained by the Moment DDP approach. For each month t ∈ {1, . . . , 12}, we

solve:

min
xt+1,uin,t,uout,t,ub,t,uch,t

ce(uout,t + uch,t) + cgub,t

+ max{Vt+1,0(xt+1), . . . , Vt+1,z(xt+1)} (30a)

s.t. xt+1 = xt + ∆t
1

mc
(λ(xt − T∞)− a(xt)uout,t + uin,t) (30b)

a(xt)uout,t + abub,t = dheat,t, (30c)

uin,t + achuch,t = dcooling,t, (30d)

T ≤ xt+1 ≤ T , (30e)

0 ≤ uout,t ≤ uout; (30f)

0 ≤ uin,t ≤ uin; 0 ≤ ub,t ≤ ub; 0 ≤ uch,t ≤ uch (30g)

The start of the storage cycle is assumed to be the beginning of May because the cooling

overcomes the heating demand during this period (see Fig. 8). In Fig. 6, we show the total cost

of operating the system over the full horizon for a uniformly distributed number of initial states

when each month is solved as a single-stage problem (30). We use the generic nonlinear solver

IPOPT (Wachter & Biegler, 2006) to compute a locally-optimal solution. The affine value functions

perform almost as well as the forward simulation of discretized DP. The quadratic value functions

lead to sub-optimal results with a local optimization algorithm for some initial states. This might

be due to the non-convexity of the approximate value function in September (see Fig. 3).
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5.2. Multiple storage systems

We now evaluate the convergence of the Moment DDP approach for a higher dimensional

problem, namely an ESMP with three different storage systems:

min
{{xi,t}Tt=1,{uin,i,t,uout,i,t}

T−1
t=0 }3i=1,{ub,t,uch,t}

T−1
t=0

T−1∑
t=0

(
ceuch,t + cgub,t +

3∑
i=1

ceuout,i,t

)
(31a)

s.t. xi,t+1 = xi,t + ∆t
1

mc
(λi(xi,t − T∞) + uin,i,t − a(xi,t)uout,i,t),

t = 0, . . . , T − 1, i = 1, 2, 3, (31b)

3∑
i=1

a(xi,t)uout,i,t + abub,t = dheat,t, t = 0, . . . , T − 1, (31c)

3∑
i=1

uin,i,t + achuch,t = dcooling,t, t = 0, . . . , T − 1, (31d)

T ≤ xi,t ≤ T , t = 1, . . . , T, i = 1, 2, 3, (31e)

0 ≤ uout,i,t ≤ uout; 0 ≤ uin,i,t ≤ uin, t = 0, . . . , T − 1, i = 1, 2, 3, (31f)

0 ≤ ub,t ≤ ub; 0 ≤ uch,t ≤ uch, t = 0, . . . , T − 1, (31g)

With two additional boreholes, the discretized DP approach memory requirements become exces-

sive, since a grid must be spanned over a 9-dimensional decision space after elimination of the

boiler and chiller variables using (31c) and (31d). In addition to the energy system data of the

fourth column of Table 1, we use the heating and cooling demand of the single storage example of

the previous section multiplied by a factor 3 as input data. The convergence of affine and quadratic

approximate value functions for a uniform initial state distribution is shown in Fig. 5. All methods

converge in a reasonable number of iterations. Table 2 in the Appendix reports the total solver
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times for a predefined tolerance.

6. Conclusion and Future Work

This paper presented a novel value function approximation scheme for nonlinear multi-stage

problems that leverages sum-of-squares techniques within a DDP framework. The scheme is based

on a finite-horizon GMP for discrete-time dynamical systems. The primal, a moment problem, and

the dual, an SOS program, are used iteratively to refine the statistics of the forward state trajectory

and the approximate value functions respectively. Whereas DDP returns value functions that

apply locally around trajectories emanating from a single initial state, and generally only for linear

system dynamics and cost, the Moment DDP approach returns approximate value functions for

a distribution of initial states, and moreover achieves this for systems with polynomial dynamics,

costs, and constraints. Depending on the degree of polynomials used, the optimal policy obtained

by short-term problems augmented with approximate value functions returned by the Moment DDP

approach can be almost as cost-effective as that obtained by discretized DP. We also demonstrated

convergence of the Moment DDP approach for a case that is computationally too demanding for

discretized DP.

The computational complexity of the Moment DDP approach could be reduced by exploiting

any sparsity present in the problem data in (2) (Waki et al., 2006). This would draw on the

experience of Molzahn & Hiskens (2015) and Ghaddar et al. (2016), who successfully exploited the

sparse structure of electrical networks to obtain global solutions to the nonlinear optimal power flow

problem using moment relaxations. Alternative positivity certificates, such as the one proposed in

Ahmadi & Majumdar (2014), also offer the possibility of reduced computational complexity.
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Figure 7: Single storage example of Section 5: Cost of stored energy in the beginning of April (t = 11) approximated
using affine basis functions and 2k = 4, shown for six DDP iterations. New lower-bounding functions (LB function)
are shown in green. The point-wise maximum of all previous lower-bounding functions is shown in red.

31



May June July Aug Sept Oct Nov Dec Jan Feb Mar Apr

Months

0

1

2

3

4

E
n
er
gy

[k
W
h
]

#105

Cooling demand
Heating demand

Figure 8: Heating and cooling demand dheat,t and dcooling,t of the single storage application over a year
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Figure 9: Fitting of the inlet temperature-dependent COP a(xt) of the HP
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Table 1: Energy system data

Parameter Single storage Multiple storage

Grid Feeders

Power Cost ce: 0.096$/kWh 0.096$/kWh

Gas Cost cg: 0.063$/kWh 0.063$/kWh

Conversion

HPs COP a(xt): see Fig. 9 see Fig. 9

Capacity uout: 60kW 60kW

Boiler Efficiency ab: 0.7 0.7

Capacity ub: 285 kW 855 kW

Chiller COP ach: 5 5

Capacity uch: 150kW 450kW

Storage

Boreholes Conductivity λ: 0.621kW/◦C 0.621kW/◦C±10%

Inertia mc: 14805kWh/◦C 14805kWh/◦C

Capacity uin: 100kW 100kW

Ground T∞: 12◦C 12◦C

Range [T , T ]: [0,12]◦C [0,12]◦C

Table 2: Accumulated MOSEKTM solver time over all iterations of the Moment DDP approach obtained on a PC
with an Intel-i5 2.2GHz CPU with 8GB RAM for a tolerance of ε = 10−4 (after scaling the problem data to the unit
box)

Basis functions/Relaxation Single storage Multiple storage

Affine value functions, 2k = 2 4.77s 6.39s

Affine value functions, 2k = 4 5.77s 18.65min

Quadratic value functions, 2k = 4 25.23s 28.24min
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