
Batch Delivery Scheduling with Batch Delivery Cost on

a Single Machine

Min Ji1 2

Email: jimkeen@math.zju.edu.cn

Yong He1

Email: mathhey@zju.edu.cn

T. C. E. Cheng2

Corresponding author. Email: LGTcheng@polyu.edu.hk

1Department of Mathematics, State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027,
P.R.China

2Department of Logistics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

This is the Pre-Published Version.

Abstract

We consider a scheduling problem in which n independent and simultaneously available jobs are to

be processed on a single machine. The jobs are delivered in batches and the delivery date of a batch

equals the completion time of the last job in the batch. The delivery cost depends on the number of

deliveries. The objective is to minimize the sum of the total weighted flow time and delivery cost.

We first show that the problem is strongly NP-hard. Then we show that, if the number of batches

is B, the problem remains strongly NP-hard when B ≤ U for a variable U ≥ 2 or B ≥ U for any

constant U ≥ 2. For the case of B ≤ U , we present a dynamic programming algorithm that runs

in pseudo-polynomial time for any constant U ≥ 2. Furthermore, optimal algorithms are provided

for two special cases: (i) jobs have a linear precedence constraint, and (ii) jobs satisfy the agreeable

ratio assumption, which is valid, for example, when all the weights or all the processing times are

equal.

Keywords. Single machine scheduling; Batch delivery cost; Optimal algorithm; Computational

complexity

1

1 Introduction

Modern production technologies such as flexible manufacturing make it possible to process jobs

in batches. Scheduling models in this area have given rise to the batch scheduling problem that

combines partitioning jobs into batches and sequencing jobs in each batch. Most of the results in

batch scheduling focus on the problem of scheduling jobs in batches on a single machine to minimize

the total weighted flow time. In this problem, there is a common set-up time between consecutively

scheduled batches, and the flow time of a job is equal to the completion time of its batch. Albers and

Brucker [1] proved that this problem is NP-hard but polynomially solvable when the job sequence

is predetermined. Polynomial time algorithms have also been presented for the cases where all job

weights are equal (Coffman et al. [7]), all job processing times are equal (Albers and Brucker [1]), and

both weights and processing times are equal (Nadeff and Santos [11], Coffman et al. [6], Shallcross

[14]).

In this paper we study a problem that falls into a different category of the batch scheduling prob-

lem, namely the batch delivery problem, which was first introduced by Cheng and Kahlbacher [2].

This problem is significant and relevant to logistics and supply chain management as it addresses the

issue of striking a proper balance between the rate of inventory turnover and the speed of delivery.

Cheng and Kahlbacher [2] studied single machine batch delivery scheduling to minimize the sum of

the total weighted earliness and delivery cost. Cheng and Gordon [3] provided a dynamic program-

ming algorithm to solve the general problem. Cheng et al. [4] further showed that this problem can

be formulated as a classical parallel machine scheduling problem, and thus the complexity results

and algorithms for the corresponding parallel machine scheduling problem can be easily extended

to the problem. Cheng et al. [5] studied the single machine batch delivery problem to minimize the

sum of the total weighted earliness and mean batch delivery time.

While the objectives of all the prior batch delivery scheduling studies are related to job earliness,

our objective is to minimize the total weighted flow time and delivery cost. To the best of our

knowledge, only Wang and Cheng [16] have studied a similar problem where the objective is related

to job flow time (i.e., equal weights). They studied parallel machine scheduling with batch delivery

cost. They showed that the problem to minimize the sum of the total flow time and delivery cost

is strongly NP-hard, and provided a dynamic programming algorithm. The algorithm is pseudo-

polynomial when the number of machines is constant and the number of batches has a fixed upper

bound. They also provided two polynomial time algorithms to solve the special cases where the job

assignment is given or the job processing times are equal.

The problem in this paper can be formally stated as follows. We are given n independent non-

preemptive jobs J = {J1, J2, · · · , Jn}, which must be sequenced for processing on a single machine,

and partitioned into several batches for delivery. Each job Jj has an integer processing time pj > 0

and a weight wj ≥ 0, which may be a noninteger. All the jobs are available for processing at time

zero. Jobs in a batch are delivered to customers together. The batch delivery date is equal to the

2

completion time of the last job in the batch. Thus the flow time of a job is equal to the batch delivery

date on which it is delivered. Given a partition of the jobs into B (B ≤ n) batches and a job sequence

for each batch, the job flow times F1, F2, · · · , Fn and the batch delivery dates D1, D2, · · · , DB are

easily determined. The nonnegative delivery cost α(B) is assumed to be a non-decreasing function of

the number of batches B, with α(0) = 0. Let Sk be a sequence of the jobs in batch k, k = 1, 2, · · · , B.

We denote the corresponding schedule as | S1 | S2 | · · · | Sk |. The goal is to find simultaneously the

number of batches B, i.e., a partition of the jobs into batches, and the job sequence in each batch

such that the objective function

f(S1, S2, · · · , SB) = α(B) +
n∑

i=1

wiFi

is minimized. Using the three-field notation introduced by Graham et al. [9], we denote our problem

as 1/bd/(α(B) +
∑

wiFi).

Notice that when the delivery cost is negligible, the general problem simply reduces to the

classical problem 1//
∑

wiFi. It is well-known that 1//
∑

wiFi is solved by scheduling jobs in the

weighted shortest processing time (WSPT) order, i.e., in nondecreasing order of the ratios pi/wi [15].

However, from the following Example 1, we can see that this order cannot guarantee yielding an

optimal solution for the problem 1/bd/(α(B) +
∑

wiFi). Lemma 1 of Wang and Cheng [16] shows

that if there exists an optimal schedule for their considered problem, then all jobs assigned to the

same machine have to be scheduled in the shortest processing time (SPT) order. So we can conclude

that all the work of Wang and Cheng [16] cannot be straightforwardly transformed to tackle our

considered problem.

Example 1 : Let p1 = 1, p2 = 3, p3 = 2; w1 = 2, w2 = 5, w3 = 3; α(B) = 10B. The WSPT

order is p1

w1
< p2

w2
< p3

w3
. Enumerate all the feasible schedules satisfying the WSPT order, we obtain

that the minimal objective value is 66, which is achieved by the schedule | J1, J2 | J3 |. On the other

hand, the schedule | J1, J3 | J2 | yields an objective value of 65.

Batch delivery is characteristic of many practical systems in which jobs are transported and ulti-

mately delivered to customers in containers such as boxes or carts. For such systems, an important

performance objective is to minimize the work-in-process (WIP) inventories, which are related to

the total weighted flow time. Furthermore, as there are always costs associated with each delivery,

we face a situation that can be modelled as the above batch delivery problem.

The rest of the paper is organized as follows. In Section 2, we prove that the general problem

is strongly NP-hard, and that it remains strongly NP-hard when B ≤ U for a variable U ≥ 2 or

B ≥ U for any constant U ≥ 2. A pseudo-polynomial algorithm based on the dynamic programming

is also presented for the case when B ≤ U for any constant U ≥ 2. In Section 3, we identify some

polynomially solvable cases. In the final section, we present some concluding remarks and suggest a

few topics for future research.

3

2 NP-hardness and dynamic programming

Besides the general problem 1/bd/(α(B)+
∑

wiFi), we denote 1/bd, θ/(α(B)+
∑

wiFi) as the family

of problems under study, in which θ ⊂ {∅, B ≤ U,B ≥ U, pj = p, prec} indicates the batch constraint

and job characteristics. Here, B ≤ U and B ≥ U means that the number of batches is bounded from

above or from below, respectively, by a number U ; pj = p denotes that all the processing times are

equal to p; prec indicates that there are precedence relations ≺ between each pair of jobs. Moreover,

for the case where all the weights are equal to w, we denote it as 1/bd/(α(B) + w
∑

Fi).

In this section we prove that the general problem 1/bd/(α(B) +
∑

wiFi), the problem 1/bd,B ≤
U/(α(B) +

∑
wiFi) for a variable U ≥ 2, and the problem 1/bd,B ≥ U/(α(B) +

∑
wiFi) for any

constant U ≥ 2, are strongly NP-hard. We also show the problem 1/bd,B ≤ U/(α(B) +
∑

wiFi) is

ordinary NP-hard for any constant U ≥ 2.

The following two lemmas can be easily established.

Lemma 1 Let yk > 0 for 1 ≤ k ≤ r, then
∑r

i=1 y2
i ≥ 1

r (
∑r

i=1 yi)
2, and the equality holds if and only

if yk = 1
r

∑r
i=1 yi for 1 ≤ k ≤ r.

Lemma 2 For any optimal schedule, the sequence of jobs within each batch is immaterial.

Define the function g1(r) =
(

r
2m(m−1) + r+1

2r

)
(mA)2 − r over r ∈ (0,∞), where A ≥ √

2(m− 1).

We have the following lemma.

Lemma 3 For any positive integer z, g1(z) ≥ g1(m), and the equality holds if and only if z = m.

Proof. The derivative of the function g(r) is g′1(r) =
[

1
2m(m−1) − 1

2r2

]
(mA)2 − 1. Let r0 =√

(m−1)(mA)2

mA2−2(m−1)
, then we get g′1(r0) = 0, g′1(r) > 0 for r > r0, and g′1(r) < 0 for 0 < r < r0.

Thus we conclude that g1(r) is strictly decreasing from 0 to r0 and strictly increasing from r0. We

prove below that m− 1 < r0 ≤ m and g1(m− 1) > g1(m), which complete the proof.

It is clear that r0 =
√

(m−1)(mA)2

mA2−2(m−1)
>

√
(m−1)(mA)2

mA2 =
√

m(m− 1) > m−1. Since A ≥ √
2(m− 1),

we can easily verify that r0 ≤ m similarly. Finally, by direct calculation, we have g1(m−1)−g1(m) =

1 > 0. 2

Theorem 1 The problem 1/bd/(α(B) +
∑

wiFi) is strongly NP-hard even when α(B) is a simple

linear function of B.

Proof. We show that the decision version of our problem is strongly NP-hard by a reduction from

the 3-Partition problem, which is strongly NP-complete (Garey and Johnson [8]). An instance I of

the 3-Partition problem is formulated as follows:

Given positive integers a1, a2, · · · , a3m and A such that A
4 < aj < A

2 for j = 1, 2, · · · , 3m and
∑3m

j=1 aj = mA, does there exist a partition of the set X = {1, 2, · · · , 3m} into m disjoint subsets

X1, X2, · · · , Xm such that
∑

j∈Xk
aj = A for k = 1, 2, · · · ,m?

4

In the above instance, we can assume that A ≥ √
2(m− 1) without loss of generality, since each

aj and A can be multiplied by a sufficiently large positive integer to ensure that the condition is

met.

For any given instance I of the 3-Partition problem, we construct a corresponding instance II

of our problem as follows:

– Number of jobs: n = 3m.

– Job processing times: pj = aj , j = 1, 2, · · · , n.

– Job weights: wj = aj , j = 1, 2, · · · , n.

– The batch delivery cost: α(B) = cB, where c = (mA)2

2m(m−1) − 1 is a constant.

– The threshold: G = g1(m) = m2+m−1
2m(m−1)(mA)2 −m.

It is clear that the reduction can be done in polynomial time. We prove that instance I has a

solution if and only if instance II has a solution with an objective value no greater than G.

If I has a solution, then we can construct a schedule with m batches, where the kth batch consists

of the jobs in the set {Jj | j ∈ Xk}, k = 1, 2, · · · ,m. Thus, we obtain a feasible schedule with an

objective value

cm +
n∑

j=1

wjFj = cm +
m∑

k=1

 ∑

j∈Xk

wj

 ∑

j∈X1∪···Xk

pj

= cm + (A ∗A + A ∗ 2A + · · ·+ A ∗mA) = G.

On the other hand, suppose II have a solution with an objective value no greater than G. We

assume that the jobs are partitioned into r batches in the solution. Let Yk be the set of jobs that are

processed in the kth batch, and yk =
∑

Jj∈Yk
pj , k = 1, 2, · · · , r. Then we also have yk =

∑
Jj∈Yk

wj ,

since pj = wj for the constructed instance, and
r∑

k=1

yk =
n∑

j=1

pj = mA.

Therefore, the objective value of the solution of instance II is

f(Y1, Y2, · · · , Yr) = α(r) +
n∑

j=1

wjFj

= cr +
r∑

k=1

 ∑

Jj∈Yk

wj

 ∑

Jj∈Y1∪···∪Yk

pj

= cr +
r∑

k=1

yk

k∑

j=1

yj

= cr +
r∑

k=1

y2
k +

∑

1≤i<j≤r

yiyj

= cr +
r∑

k=1

y2
k +

1
2

(
r∑

k=1

yk

)2

−
r∑

k=1

y2
k

5

= cr +
1
2

(
r∑

k=1

yk

)2

+
1
2

r∑

k=1

y2
k.

Combining the above result with Lemma 1, we obtain

f(Y1, Y2, · · · , Yr) ≥ cr +
1
2

(
r∑

k=1

yk

)2

+
1
2

1

r

(
r∑

k=1

yk

)2

=

(
(mA)2

2m(m− 1)
− 1

)
r +

r + 1
2r

(
r∑

k=1

yk

)2

=

(
(mA)2

2m(m− 1)
− 1

)
r +

r + 1
2r

(mA)2

=
(

r

2m(m− 1)
+

r + 1
2r

)
(mA)2 − r,

where the equality holds if and only if yk = 1
r (

∑r
i=1 yi) = 1

m(mA) = A, k = 1, · · · , r.
By Lemma 3, we have f(Y1, Y2, · · · , Yr) ≥ g1(m) = G, and the equality holds if and only if r = m.

Hence, by the assumption that instance II has a solution with an objective value no greater than

G, we conclude that all the jobs are partitioned into m batches, and the total processing time of

each batch satisfies yk = A, k = 1, · · · ,m. This yields a solution for instance I, which completes the

proof of Theorem 1. 2

By applying a similar method of reduction, we conclude that the problem 1/bd,B ≥ U/(α(B) +
∑

wiFi) is strongly NP-hard if U is a constant no smaller than 2, and the problem 1/bd,B ≤
U/(α(B) +

∑
wiFi) is strongly NP-hard, too, if U is a variable no smaller than 2. For the former

problem, the only modification of the above proof is that we set U as any integer satisfying U ≤ m

in constructing instance II. For the latter problem, the proof is completely the same. The following

theorem shows that the latter problem remains NP-hard in the ordinary sense even if U = 2.

Theorem 2 The problem 1/bd,B ≤ U/(α(B) +
∑

wiFi) is NP-hard for any constant U ≥ 2 even

when α(B) is a simple linear function of B.

Proof. The proof is similar to that of Theorem 1. A reduction from the NP-hard Partition problem

(Garey and Johnson [8]) is used. An instance I of the Partition problem is formulated as follows:

Given positive integers a1, a2, · · · , an and A such that
∑n

j=1 aj = 2A, does there exist a partition

of the set X = {1, 2, · · · , n} into 2 disjoint subsets X1, X2 such that
∑

j∈Xk
aj = A for k = 1, 2?

In the above instance, we assume that A ≥ √
2 without loss of generality. For any given instance

I of the Partition problem, we construct a corresponding instance II of our problem as follows:

– Number of jobs: n.

– Job processing times: pj = aj , for j = 1, 2, · · · , n.

– Job weights: wj = aj , for j = 1, 2, · · · , n.

6

– The batch delivery cost: α(B) = cB, where c = A2 − 1 is a constant.

– The upper bound of the batch number: U , which is an arbitrary constant no less than 2.

– The threshold: G = 5A2 − 2.

It is clear that the reduction can be done in polynomial time. It can be shown similarly that

instance I has a solution if and only if instance II has a solution with an objective value no greater

than G. 2

We next present a pseudo-polynomial time algorithm BDP based on dynamic programming,

which shows that the problem 1/bd,B ≤ U/(α(B) +
∑

wiFi) is NP-hard in the ordinary sense only.

Define Hj(y1, y2, · · · , yB) as the minimum objective value, given (i) we have assigned jobs

J1, J2, · · · , Jj to B batches, and (ii) the total processing time of the jobs in the kth batch is equal

to yk for k = 1, 2, · · · , B. Set Tj =
∑j

k=1 pj for j = 1, 2, · · · , n. We provide a formal description of

algorithm BDP as follows.

Algorithm BDP :

Step 1 (Initialization) For B = 1, 2, · · · , U , set Hj(y1, y2, · · · , yB) = ∞ for j = 0, 1, · · · , n, and

0 ≤ yk ≤ Tn, k = 1, 2, · · · , B. Set H0(0) = 0 and j = 1.

Step 2 (Recursion) For B = 1, 2, · · · ,min{j, U}, the recursion is

Hj(y1, y2, · · · , yB) = min
{k|1≤k≤B}

min

Hj−1(y1, · · · , yk−1, yk − pj , yk+1, · · · , yB) + wj(y1 + y2 + · · ·+ yk), if pj < yk ≤ Tj ,
Hj−1(y1, · · · , yk−1, yk+1, · · · , yB) + wj(y1 + y2 + · · ·+ yk) + α(B)− α(B − 1), if yk = pj ,
∞ if pj > yk.

(1)

If j = n, go to Step 3. Otherwise, set j = j + 1 and repeat Step 2.

Step 3 (Output) The optimal value is determined as

H∗ = min
B=1,2,···,U

{Hn(y1, y2, · · · , yB) | 0 ≤ yk ≤ Tn, k = 1, 2, · · · , B} ,

and backtracking can be used to find the corresponding optimal solution.

Some remarks should be made about algorithm BDP . From Lemma 2, we know that arranging

the order of jobs in advance in the initialization step is unnecessary. The three quantities on the

right-hand side of (1) represent three possible scheduling choices when we assign job Jj to batch k:

(i) add job Jj to the existing batch k; (ii) form a new batch k consisting of the sole job Jj ; (iii)

do not assign job Jj to batch k. Therefore, at each stage of the algorithm we only need to decide

whether to add job Jj to batch k, and if so, whether batch k is new or not. Based on the dynamic

programming justification for scheduling problems (Rothkopf [12]; Lawler and Moore [10]), it is easy

to see that algorithm BDP solves our problem 1/bd,B ≤ U/(α(B) +
∑

wiFi) optimally.

We establish the time complexity of algorithm BDP as follows. In each iteration of Step 2, only

B − 1 of the values y1, y2, · · · , yB are independent, since y1 + y2 + · · ·+ yB = Tj when we take into

account job Jj . Hence, in the iteration of Step 2 for Jj , the number of different tuples (y1, y2, · · · , yB)

7

for B = 1, · · · , U is at most UTU−1
j . For each tuple (y1, y2, · · · , yB), the right-hand side of (1) can be

calculated in O(B) time. Thus, Step 2 takes O(nU2TU−1
n) time, which is the overall time complexity

of algorithm DBP , too. Therefore we conclude that the problem 1/bd,B ≤ U/(α(B) +
∑

wiFi) is

indeed only ordinary NP-hard for any constant U ≥ 2.

3 Polynomially solvable cases

In this section we consider some special cases of the general problem. We first show that the strongly

NP-hard problem 1/bd/(α(B)+
∑

wiFi) becomes polynomial time solvable when all the jobs have a

linear precedence constraint. In fact, by appropriately modifying the algorithm provided by Coffman

et al. [7] and the algorithm presented by Albers and Brucker [1], the problem 1/bd, prec/(α(B) +
∑

wiFi) can be solved in O(n) time. These two algorithms, which are based on the backward

dynamic programming method and run in linear time, can solve the batch scheduling problem

where the job sequence is predetermined. We show that, for the general problem with the agreeable

ratio assumption, i.e., pi ≤ pj implies wi ≥ wj , there is an optimal solution with all the jobs being

scheduled in the WSPT order. Therefore, this special case reduces to the case where all the jobs

have a linear precedence constraint, and thus can be solved in O(n log n) time. Finally, it is valid to

conclude that the case where all the job weights are equal or all the job processing times are equal

can be solved in O(n log n) time, too.

Without loss of generality, we assume that the linear precedence constraint of the jobs is J1 ≺
J2 ≺ · · · ≺ Jn. Define βj = pj +pj+1 + · · ·+pn and γj = wj +wj+1 + · · ·+wn for j = 1, 2, · · · , n. For

any k < l ≤ n + 1, let H(k, l) and Ek be the objective value and the batch number in an optimal

schedule for Jk, Jk+1, · · · , Jn with job Jl being the first job of the second batch, i.e., the optimal

schedule is in the form of | Jk · · ·Jl−1 | Jl · · ·. The second batch is empty if l = n+1 and | Jk · · ·Jn |
is the schedule corresponding to H(k, n + 1). We define Zk = minl>k H(k, l) for k = 1, 2, · · · , n, and

set Zn+1 = 0, βn+1 = 0, En+1 = 0. Our goal is to compute Z1. We obtain the following recursion

formula

H(k, l) = Zl + γk(βk − βl) + α(El + 1)− α(El), l > k,
Zk = minl>k H(k, l) = minl>k{γk(βk − βl) + Zl + α(El + 1)− α(El)},
Ek = El0 + 1 if Zk = H(k, l0).

k = 1, 2, · · · , n. (2)

Noting that the increment in the objective value is γk(βk − βl) + α(El + 1) − α(El) if we add a

new batch consisting of Jk, Jk+1, · · · , Jl−1, so the first equation in (2) is true. The validity of the

remaining part of the equation is trivial.

Based on (2), we can construct a standard dynamic programming algorithm. However, such a

solution solves our problem in time quadratic in n, since for any fixed k, k = n, n− 1, · · · , 1 we need

to calculate H(k, l), l = k + 1, k + 2, · · · , n + 1. In the remainder of this section, we give a linear

time optimal algorithm based on the backward dynamic programming method.

8

Lemma 4 Let k < l < m, with m ≤ n + 1. If H(k, l) ≤ H(k, m), then H(j, l) ≤ H(j, m) for any

1 ≤ j ≤ k.

Proof. From (2), we obtain

g2(k) .= H(k, m)−H(k, l)

= γk(βl − βm)− (Zl − Zm) + (α(Em + 1)− α(Em))− (α(El + 1)− α(El)). (3)

Because βl > βm and −(Zl − Zm) + (α(Em + 1) − α(Em)) − (α(El + 1) − α(El)) is constant with

regard to k, the function g2(k) increases as k decreases. Thus the conclusion follows. 2

Setting (3) to zero, we define the ”threshold” by solving γk as

δ(l, m) =
⌈
(Zl − Zm) + (α(El + 1)− α(El))− (α(Em + 1)− α(Em))

βl − βm

⌉
. (4)

By Lemma 4, we conclude that H(k, l) ≤ H(k, m) for any k with γk ≥ δ(l, m) (we say that m is not

better than l with respect to k), and H(k, l) > H(k, m) for all k with γk < δ(l, m) (we say that m

is better than l with respect to k).

Lemma 5 Let k < l < m, with m ≤ n + 1. If δ(k, l) ≤ δ(l, m), then for any j, j ≤ k, either l is

not better than k or m is better than l, with respect to j.

Proof. If γj ≥ δ(k, l), then l is not better than k with respect to j. On the other hand, if γj < δ(k, l),

then γj < δ(l, m) and m is better than l with respect to j. 2

The above two lemmas are crucial for our algorithm. We now explain the algorithm, which is

described in the following. We calculate Zk for all k = 1, 2, · · · , n. Starting with job Jn, we scan all

the jobs in decreasing order of their indices. When Zk for some k needs to be computed, the values

of Zl, l = j + 1, j + 2, · · · , n, have already been calculated and therefore it suffices to determine an

immediate successor l > k as the index of the first job of the second batch for jobs Jk, · · · , Jn. Such

a job index l is computed with the help of a queue q.

In this algorithm, we have two (n+1)-element vectors zj and qj , 1 ≤ j ≤ n+1. zj is the objective

value yielded by the algorithm right after jobs Jj , · · · , Jn have been processed. It is obvious to define

zn+1 = 0, which is the objective value of an empty sequence. The algorithm calculates zj , 1 ≤ j ≤ n,

in decreasing order of their indices. Theorem 3 below verifies that zj = Zj , 1 ≤ j ≤ n. We use

q as a queue. Right before zk is computed, it contains indices exceeding k, which are candidates

(possible indices) for the first job of the second batch in an optimal solution for Jk, Jk+1, · · · , Jn. At

any time, the elements of q are stored as qt, qt+1, · · · , qh, in which we call qh the head and qt the tail

of the queue q. In general, elements are removed from both ends of q, while new elements are only

appended to the tail end. We denote | q |= h − t + 1 as the length of q. Initially, q contains the

single element n+1. We also have two other n-element vectors ηj and δj , 1 ≤ j ≤ n. ηj records the

index of the first job of the second batch in an optimal solution right after jobs Jj , Jj+1, · · · , Jn have

9

been scheduled. Then from the algorithm, the optimal solution can be recovered from η: η1 indexes

the first job of the second batch, then ηj with j = η1 indexes the first job of the third batch, and so

on. δj is only a denotation, which is defined as δj = δ(qj , qj+1), t ≤ j ≤ h− 1, if | q |> 1.

Algorithm LBDP .

Step 1 (Initialization) βn+1 = 0, γn+1 = 0, zn+1 = En+1 = 0, qn+1 = n + 1, h = t = n + 1. For

j = n, n− 1, · · · , 1, do βj = βj+1 + pj and γj = γj+1 + wj .

Step 2 (Recursion) k = n;

while (k > 0), do

begin

(1) while (t < h and γk ≥ δh−1), do h = h− 1. {delete the head of q}
(2) zk = H(k, qh), Ek = Eqh

+ 1, ηk = qh. {compute the objective value and the batch

numbers for Jk, · · · , Jn, and set the index of the first job of the second batch}
(3) if δ(k, qt) ≤ γ1, then

begin

(i) while (t < h and δ(k, qt) ≤ δt), do t = t + 1. {if k is a new candidate, then delete

the elements from the tail of q, if any, that can no longer be candidates (by

Lemma 5)}
(ii) t = t− 1, qt = k, δt = δ(qt, qt+1). {append k to q and set δt}

end

k = k − 1.

end

Step 3 (Output) z1 is the optimal value, and we can use backtracking to find the corresponding

optimal solution.

Theorem 3 In algorithm LBDP, zk = Zk, k = 1, 2, · · · , n, and ηk, k = 1, 2, · · · , n, indexes the first

job of the second batch in an optimal schedule for Jk, · · · , Jn. Thus the problem 1/bd, prec/(α(B) +
∑

wiFi) is solved by algorithm LBDP in O(n) time.

Proof. The indices are deleted from the head and the tail of the queue, and appended only to the

tail, so right after step 2(3) we have

k < qt < qt+1 < · · · < qh ≤ n + 1,

and hence

γk > γqt > γqt+1 > · · · > γqh
. (5)

In step 2(3)(i), if t < h and δ(k, qt) ≤ δt, we conclude by Lemma 5 that qt can never be the best

candidate. Hence, deleting it from the tail of q is appropriate. The algorithm continues to delete

10

the tail of q in step 2(3)(i) by the same reason until δ(k, qr) > δr for some r > 1 or q contains only

qh. So right after step 2(3)(ii), we ensure that

γ1 ≥ δt > δt+1 > · · · > δh−1 ≥ γn+1. (6)

In step 2(1), if t < h and γk ≥ δh−1, then by Lemma 4, we have H(i, qh−1) ≤ H(i, qh) for all i ≤ k.

It follows that qh can never be the best candidate, and hence deleting it from q is appropriate. The

algorithm continues to delete the head of q in step 2(1) by the same reason until finally γk < δr for

some r ≥ t, or r = t and q contains only qt. Right after step 2(1), we have h = r+1, ηk = qh = qr+1,

and

δt > δt+1 · · · > δh−1 > γk, (7)

because of (6). Combining (5) and (7), we obtain

δt > δt+1 · · · > δh−1 > γk > γqt > γqt+1 > · · · > γqh
, (8)

right after step 2(1), which implies

H(k, qv) > H(k, qv+1) for v = t, · · · , h− 1.

It follows that q is ordered by the better-than relation with respect to k from the head to the tail.

Thus, among all the indices stored in q, qh is the best one for indexing the first job of the second

batch for Jk, · · · , Jn right after step 2(1). So we obtain

zk = H(k, qh) = min
l∈q

H(k, l). (9)

From the initialization, we immediately have zn = Zn and ηn = n + 1, as desired, right after

step 2(2) is executed for the first time. In order to verify zk = Zk for 1 ≤ k < n, as we have already

obtained (9), it suffices to show that there is no l /∈ q, k < l ≤ n + 1, such that H(k, l) < H(k, qh)

right before the (n − k + 1)th iteration of step 2(2). To see this, let l0 > k be an index that

minimizes H(k, l) and suppose l0 /∈ q when computing zk in step 2(2). We first claim that l0 6= n+1.

If l0 = n + 1, then l0 is initially in q. Because l0 /∈ q when zk is calculated, l0 must be deleted from

the head of q in some iteration of step 2 and therefore l0 can never be a candidate by Lemma 4.

This contradicts the assumption that l0 minimizes H(k, l). If l0 < n + 1, one reason why l0 /∈ q is

because it is never appended to q. By step 2(3), this means that in the (n − l0 + 1)th iteration,

δ(l0, qt) > γ1, which by Lemma 4, implies that l0 can never be the best candidate with respect to

k, for all 1 ≤ k < l0. That is to say, H(k, l0) > H(k, m), where m = qt when zk is calculated. This

contradicts the assumption that l0 minimizes H(k, l), too. This completes the proof that zk = Zk,

k = 1, 2 · · · , n, and therefore ηk indexes the first job of the second batch in an optimal schedule for

jobs Jk, · · · , Jn.

We now investigate the complexity of the algorithm. Each index 1 ≤ k ≤ n is added and deleted

at most once from q. Therefore, the operations in step 2 are performed at most n times, and we

conclude that algorithm LBDP runs in linear time. 2

11

The following example illustrates the algorithm in detail:

Example 2 : p1 = p2 = 2, p3 = p4 = 5, p5 = p6 = 10; w1 = 1, w2 = w3 = 2, w4 = w5 = w6 = 3;

α(B) = 20B. Initially, we have t = h = 7, q = (qt, · · · , qh) = (7), and z7 = E7 = 0. The recursions

are as follows:

k = 6 The first iteration begins with q = (q7) = (7).

z6 = H(6, 7) = γ6(β6 − β7) + z7 + α(1)− α(0) = 50, E6 = E7 + 1 = 1, η6 = 7,

δ(6, 7) =
⌈

z6−z7
β6−β7

⌉
=5, t = t− 1 = 6, q6 = 6.

6 is appended to the queue since δ(k, qt) ≤ γ1 and hence qt = 6 is a new candidate.

δ6 = δ(6, 7) = 5.

k = 5 h = h− 1 = 6, q7 is deleted from the head of the queue since γ5 ≥ δ6 and hence q6 is

better than q7.

z5 = H(5, 6) = γ5(β5 − β6) + z6 + α(2)− α(1) = 130, E5 = E6 + 1 = 2, η5 = 6,

δ(5, 6) =
⌈

z5−z6
β5−β6

⌉
=8, t = t− 1 = 5, q5 = 5.

5 is appended to the queue with δ5 = δ(5, 6) = 8.

k = 4 h = h− 1 = 5, q6 is deleted from the head of the queue similarly.

z4 = H(4, 5) = γ4(β4 − β5) + z5 + α(3)− α(2) = 195, E4 = E5 + 1 = 3, η4 = 5,

δ(4, 5) =
⌈

z4−z5
β4−β5

⌉
=13, t = t− 1 = 4, q4 = 4.

4 is appended to the queue with δ4 = δ(4, 5) = 13.

k = 3 z3 = H(3, 5) = γ3(β3 − β5) + z5 + α(3)− α(2) = 260, E3 = E5 + 1 = 3, η3 = 5,

δ(3, 4) =
⌈

z3−z4
β3−β4

⌉
= 13 ≤ δ4, t = t + 1 = 5.

q4 = 4 is deleted from the tail of the queue by the step 2(3)(i) of the algorithm.

t = t− 1 = 4; q4 = 3.

3 is appended to the queue, and δ4 = δ(3, 5) =
⌈

z3−z5
β3−β5

⌉
= 13.

k = 2 h = h− 1 = 4, q5 is deleted from the head of the queue similarly.

z2 = H(2, 3) = γ2(β2 − β3) + z3 + α(4)− α(3) = 306, E2 = E3 + 1 = 4, η2 = 3,

δ(2, 3) =
⌈

z2−z3
β2−β3

⌉
= 23 > γ1.

So 2 is not appended to the queue.

k = 1 z1 = H(1, 3) = γ1(β1 − β3) + z3 + α(4)− α(3) = 336, E1 = E3 + 1 = 4, η1 = 3,

δ(1, 3) =
⌈

z1−z3
β1−β3

⌉
= 19.

Therefore, we get

k : 6 5 4 3 2 1
q at the end of the (n− k + 1)th iteration : (6, 7) (5, 6) (4, 5) (3, 5) (3) (3)

ηk : 7 6 5 5 3 3
Ek : 1 2 3 3 4 4.

Using backtracking, we obtain an optimal schedule | J1, J2 | J3, J4 | J5 | J6 |, and the corresponding

optimal value is 336.

12

We now consider the general problem under the agreeable ratio assumption, i.e., pi ≤ pj implies

wi ≥ wj .

Lemma 6 For the general problem 1/bd/(α(B) +
∑

wiFi) under the agreeable ratio assumption,

there is an optimal schedule in which all the jobs are sequenced in the WSPT order.

Proof. It is clear that in an optimal schedule, batch completion times occur only at job completion

times. So it is routine to verify that, if job Jj is scheduled after Ji and pj

wj
< pi

wi
, then interchanging

Ji and Jj does not increase the objective value. Iterating such interchanges leads to the conclusion.

2

Combining Theorem 3 and Lemma 6, we obtain the following theorem.

Theorem 4 The general problem 1/bd/(α(B) +
∑

wiFi) under the agreeable ratio assumption is

solved in O(n log n) time.

Proof. From Lemma 6, we reduce the special case to 1/bd, prec/(α(B) +
∑

wiFi) in O(n log n)

time. Then applying algorithm LBDP solves the problem in linear time. 2

For the case where all the job weights are equal or all the job processing times are equal, Theorem

4 directly implies the following corollary.

Corollary 1 The special cases 1/bd/(α(B) + w
∑

Fi) and 1/bd, pj = p/(α(B) +
∑

wiFi) are solved

in O(n log n) time.

Proof. It is easy to verify that the problems 1/bd/(α(B)+w
∑

Fi) and 1/bd, pj = p/(α(B)+
∑

wiFi)

satisfy the agreeable ratio assumption. So by Theorem 4, we obtain the conclusion trivially. In fact,

equation (2) becomes simpler here and the same for algorithm LBDP . 2

4 Conclusions

We showed that the problems 1/bd/(α(B) +
∑

wiFi), 1/bd,B ≤ U/(α(B) +
∑

wiFi) for a variable

U ≥ 2, and 1/bd,B ≥ U/(α(B) +
∑

wiFi) for any constant U ≥ 2 are strongly NP-hard. We also

showed that the problem 1/bd,B ≤ U/(α(B) +
∑

wiFi) for any constant U ≥ 2 is NP-hard in the

ordinary sense. We presented a pseudo-polynomial time algorithm based on dynamic programming

for the case with a limited number of batches. For the case where the jobs have a linear precedence

constraint, we designed a linear time algorithm to solve it. We presented an algorithm with O(n log n)

running time for the case where the jobs satisfy the agreeable ratio assumption, which is valid, for

example, when all the job weights or all the job processing times are equal.

For future research, it will be worth considering the design of efficient and effective heuristics for

the general problem. It is also worth extending the existing model to models with multiple machines

and develop solution methods for them.

13

Acknowledgement

This research was supported in part by the Hong Kong Polytechnic University under grant

number G-T997, the Teaching and Research Award Program for Outstanding Young Teachers in

Higher Education Institutions of the MOE, China, and the National Natural Science Foundation of

China (10271110, 60021201).

References

[1] S. Albers, P. Brucker, The complexity of one-machine batching problems, Discrete Applied

Mathematics, 47 (1993) 87-107.

[2] T.C.E. Cheng, H.G. Kahlbacher, Scheduling with delivery and earliness penalties, Asia-Pacific

Journal of Operational Research, 10 (1993) 145-152.

[3] T.C.E. Cheng, V.S. Gordon, Batch delivery scheduling on a single machine, Journal of the

Operational Research Society, 45 (1994) 1211-1215.

[4] T.C.E. Cheng, V.S. Gordon, M.Y. Kovalyov, Single machine scheduling with batch deliveries,

European Journal of Operational Research, 94 (1996) 277-283.

[5] T.C.E. Cheng, M.Y. Kovalyov, B.M.T. Lin, Single machine scheduling to minimize batch de-

livery and job earliness penalties, SIAM Journal on Optimization, 7 (1997) 547-559.

[6] E.G.Coffman, A. Nozari, M. Yannakakis, Optimal scheduling of products with two subassem-

blies on a single machine, Operations Research, 37 (1989) 426-436.

[7] E.G. Coffman, M. Yannakakis, M.J. Magazine, C. Santos, Batch sizing and sequencing on a

single machine, Annals of Operations Research, 26 (1990) 135-147.

[8] M.R. Garey, D.S. Johnson, A guide to the theory of NP-completeness, W.H. Freeman, San

Francisco, CA, 1979.

[9] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approxima-

tion in deterministic sequencing and scheduling: a survey, Annals of Operations Research, 5

(1979) 287-326.

[10] E.L. Lawler, J.M. Moore, A functional equation and its application to resource allocation and

sequencing problems, Management Science, 16 (1969) 77-84.

[11] D. Naddef, C. Santos, One-pass batching algorithms for the one-machine problem, Discrete

Applied Mathematics, 21 (1988) 133-146.

[12] M.H. Rothkopf, Scheduling independent tasks on parallel processors, Management Science, 12

(1966) 437-447.

[13] C. Santos, M.J. Magazine, Batching in single operation manufacturing systems, Operations

Research Letters, 4 (1985) 99-104.

14

[14] D. Shallcross, A polynomial algorithm for a one machine batching problem, Operations Research

Letters, 11 (1992) 213-218.

[15] W. E. Smith, Various optimizers for single-stage production, Naval Research Logistics Quarterly,

3 (1956), 59-66.

[16] G.Q. Wang, T.C.E. Cheng, Parallel machine scheduling with batch delivery costs, International

Journal of Production Economics, 68 (2000) 177-183.

