Choices and kernels in bipolar valued digraphs

Raymond Bisdorff

Faculty of Law, Economics and Finance, University of Luzembourg, Avenue de la
Faiencerie 162a, L-1511 LUXEMBOURQG.

Marc Pirlot

Faculté Polytechnique de Mons, 9, rue de Houdain, B-7000 Mons, Belgium.

Marc Roubens

Faculté Polytechnique de Mons, 9, rue de Houdain, B-7000 Mons, Belgium.

Abstract

We explore the extension of the notion of kernel (independent, dominant or ab-
sorbent, non-empty subset) of a digraph to valued graphs (or valued relations). We
define various natural extensions and show the relationship between them. This work
has potential interest for applications in choice decision problems.
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1 Introduction

Dominant kernels have been initially proposed as solutions of games by von
Neumann and Morgenstern (1944). Roy (1968) has suggested to use them as
a set of potentially good candidates among which to choose when facing a
decision problem. In the latter context, the preference relation on the set of
alternatives is usually built using some sort of a majority rule with vetoes
(Roy and Bouyssou, 1993), which results in a relation that is not necessarily
transitive or complete and may have cycles.
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In some versions of this process, the preference (outranking) relation is a valued
(or fuzzy) one. The value attached to an arc (a,b) may express for instance
the degree with which a is preferred to b, a credibility index assigned to the
preference of a over b, etc. In the perspective of generalizing to valued relations
the methods used for choosing among a finite set of alternatives on the basis of
crisp ({0, 1}-valued) relations, one can think of a generalization of the notion
of kernel of valued graphs or relations.

As is usual when studying valued (fuzzy) counterparts of notions that have first
been introduced for ordinary (crisp) sets, there are several ways of generalizing
the notion of kernel. The main goal of this paper is to explore the relationship
between various natural definitions of kernels for valued graphs and see also
how they relate to kernels of crisp graphs. Our analysis is restricted to finite
graphs.

In section 2, we recall the definitions of kernels in the crisp case, relating mainly
the set-theoretic definition (in terms of independent, dominant or absorbent,
non-empty subset) and the algebraic one by means of the so-called kernel
equation system. Note that we consider two sorts of kernels, the dominant and
the absorbent one, that are just dual of one another in the sense that the
absorbent kernels of a graph are the dominant kernels of the graph obtained
by reversing the orientation of the arcs of the original one.

Section 3 introduces a valuation of the arcs by degrees belonging to an ordered
set L; this set is equipped with a negation (an antitone one-to-one operation).
If L contains an odd number of elements, there is an element that is equal to
its negation; this plays the role of an undetermined level “0” that may be used
for instance for coding lack of information, like a missing arc in the graph. One
distinguishes the levels of L that are above “0” (positive) and those below “0”
(negative). We then assume a graph with arcs assigned a value in L. If L has
a “‘0”, we may suppose, without loss of generality, that the graph is complete,
assigning the value 0 to the missing arcs. This graph is also a valued relation
and we use indifferently both terminologies.

The first idea for generalizing kernels, is to cut the relation above 0, yielding
a crisp relation or graph, and to make profit of the set-theoretic definition of
the kernels of the obtained crisp graph. We call such kernels L-independent,
dominant (or absorbent) choices, reserving the term “kernel” for the solutions
of the kernel equation system. A variety of “degrees of qualification” are defined
and associated to these subsets; they may be interpreted as characterizing their
quality as a set of good alternatives (for dominant subsets) or as a set of bad
alternatives (for absorbent subsets). We show that L-independent, dominant
(resp. absorbent) choices can be defined alternatively by means of their degree
of qualification as a set of good (resp. bad) alternatives.



The generalization of the kernel equation system yields solutions, i.e. kernels,
that are valued (fuzzy) sets. We identify a subset of solutions, the mazimally
sharp ones, and we show in section 4 that they correspond to the set of L-
independent dominant (or absorbent) choices that were initially defined. The
proof—using fixpoint argument—is constructive, enabling to find the L-valued
kernels starting from the independent dominant (or absorbent) choices. The
degree of sharpness of the former is shown to be equal to the degree of goodness
(or badness) of the latter. From a theoretical point of view, this is rather
satisfactory since the various generalizations of the kernel lead to essentially
the same notion, though in a non-trivial way, as the reader will see. One
should add that there are perspectives, using L-valued kernels, to contribute
to methods for choosing among a set of alternatives, but such developments
are left for another publication.

2 Kernels of crisp binary relations

2.1 Independent dominant and absorbent choices

In this section, we consider a finite set X = {a,b,¢,d,...} of alternatives
endowed with a binary relation R. This relation is interpreted as a preference
relation; we do not assume any particular property, such as transitivity, of
R; the preference may thus result from the aggregation of multiple attribute
information through some kind of a majority rule or according with some form
of a concordance-discordance principle like they are implemented for instance
in the ELECTRE methods (Roy, 1968; Roy and Bouyssou, 1993).

We denote by a Rb the fact that the pair (a,b) belongs to the relation R ; we
phrase a Rb as “a is preferred to b” (this not excluding that b may also be
preferred to a; R is not supposed to be an asymmetric relation).

The set X endowed with the relation R can also be viewed as a directed
graph (digraph, for short) G = (X, R) where X represents the set of vertices
and (a,b) is an arc of the graph if and only if (a,b) € R.

It has been suggested in the ELECTRE I method (Roy, 1969) to use inde-
pendent dominant subsets of X as potential good choice if the relation R is
acyclic.

Definition 1 (Independent dominant and absorbent choices).
A choice set in the digraph G = (X, R) is a non empty subset Y of X.

An independent choice or independent subset in GG is a choice set K C X such



that Va #b € K, (a,b) € R.

A dominant choice or dominant subset in G is a choice set K C X such that
Va ¢ K, 3be K, (b,a) € R.

An absorbent choice or absorbent subset in G is a choice set K C X such that
Va ¢ K, 3b€ K, (a,b) € R.

Example 1. The graph G; = (X1, R1), where X; = {a,b,¢,d} and R, =
{(a,b), (a,c), (a,d),(b,c),(b,d)} is illustrated in figure 1. There is a unique
independent dominant choice (“good choice”) that is the singleton {a}; the
unique independent absorbent choice (“bad choice”) is {¢, d}.

Figure 1. Graph of the preference relation in example 1

Example 2. The graph Gy = (X3, R5), where Xy = {a,b,¢,d} and Ry =
{(a,b), (b, ¢), (c,d),(d,a)} is illustrated in figure 2. In this example, {a, ¢} and
{b,d} are two independent choices that are both dominant and absorbent.

Figure 2. Graph of the preference relation in example 2

If a relation R is acyclic, then it has a unique dominant (resp. absorbent)
choice. If, in addition, the relation is transitive, it is a partial order and the
set of alternatives that have no predecessor (resp. successor) in the graph forms
an independent dominant (resp. absorbent) choice. The above existence and
uniqueness property is a motivation for choosing among the alternatives that
belong to the independent dominant choice. In case one aims at eliminating
“bad” alternatives, a symmetric argument would lead to choosing them in the
independent absorbent choice set, again for acyclic digraphs. We loose such
an appealing interpretation in case R is not acyclic, as we can see in example
2 above.



2.2 Dominant and absorbent kernels

We now introduce an algebraic definition of a independent dominant (resp.
absorbent) choice. Each subset K C X is associated its characteristic (row)
vector Y : X — {0, 1} with

1 if K
Yg)={  ~ €7 (2.1)
0 otherwise.

for all a € X.

Definition 2 (Dominant and absorbent kernels).
A dominant kernel (Bisdorff and Roubens, 1996a) is a characteristic vector Y
that is a solution of the following system of Boolean equations:

(Yo R)(a)=-Y(a), forallaelX, (2.2)
where Y o R is the maz min product of the Boolean matrices Y and R, i.e.

(Yo R)(a)= riljxmin (Y(b), R(b,a)), forallae X
and — is the ordinary negation, i.e. =Y (a) = 1—Y (a). The system of equations
(2.2) reads more explicitly as:

max min (Y(b), R(b,a)) =1—Y(a), forallae X. (2.3)

b#a

We call absorbent kernel a characteristic vector Y, solution of the system of
Boolean equations: for all a € X,

(RoY")(a) = maxmin (R(a,b),Y (b)) = =Y (a) =1 —Y(a), (2.4)

b#a
where Y denotes the transposed (column) characteristic vector.

We denote K9 (G) (K*>(G)) the possibly empty set of dominant (resp. ab-
sorbent) kernels in G, i.e. the solutions of the system of equations (2.2) (resp.

(2.4)).

Proposition 1.
The set of independent dominant (resp. absorbent) choices of X endowed with
the relation R) is the set of dominant (resp. absorbent) kernels of G = (X, R).

Proof. Let K be a non-empty subset of X and let Y be the characteristic
vector of K. We denote by Yy (resp. Y3), the part of vector Y corresponding
to alternatives in K (resp. out of K). We split similarly the binary matrix



Rrepresenting the relation Rinto four parts Rxx, Ry%, Ry, Rezx; for in-
stance Ry corresponds to the cases R(a,b) in which both a and b belong to
K; the three other parts are defined similarly. The system of equation (2.2) is
rewritten as

Rxx Rpge| — —

Rgx Brr
One verifies easily that vector Y exactly characterizes a subset K that is
independent and dominant if and only if the above system of equations is
satisfied. A similar argument applies to independent absorbent choices and
absorbent kernels. O

In the sequel we shall use indifferently the terms “independent dominant (resp.
absorbent) choices” and “dominant (resp. absorbent) kernels”.

2.8 Historical note

Following the observation that the independent absorbent choice in an acyclic
graph corresponds to the kernel of the associated Grundy function, Riguet
(1948) introduced the name “noyau” (kernel) for such a choice set. (Absorbent)
kernels were in the sequel extensively studied by Berge (1958, 1970) in the con-
text of modeling the Nim game. More results on (absorbent) kernels, concern-
ing solutions of different games, have been reported by Schmidt and Stréhlein
(1985, 1989). Recently, Bang-Jensen and Gutin (2001) reviewed the link be-
tween kernel-solvability and perfect graphs.

Internally stable and dominating choices, i.e. dominant kernels were originally
introduced by J. von Neumann and O. Morgenstern under the name “game
solution” in the context of game theory (von Neumann and Morgenstern,
1944). B. Roy proposed the same concept in the context of the multicriteria
ELECTRE decision aid methods (Roy, 1968, 1985; Roy and Bouyssou, 1993).
Ambiguous choices, i.e. both dominant and absorbent choices at the same
time, were proposed by Bisdorff (2002a) as potential cluster candidates in the
context of multicriteria clustering.

In the general (non-oriented) theory of graphs, kernels appear under the name
of independent dominating sets in Haynes et al. (1998). Our oriented dominant
(resp. absorbent) version is there identified as an “inside (resp. outside) semi-
dominating set” or sometimes more simply as an “inkernel” (resp. “outkernel”).

The absorbent version of the kernel equation system (2.4) was first introduced
by Schmidt and Strohlein (1985, 1989) in the context of their thorough explo-
ration of relational algebra. The dominant version (equation system 2.2) was



introduced by Kitainik (1993) and subsequently used by Bisdorff and Roubens
(1996a,b); Bisdorff (1997).

3 Kernels in valued digraphs

3.1 L-valued binary relations

Let X be a finite set of alternatives and R, a valued binary relation on X.
We assume that the values assigned by R to each pair of alternatives belong
to a finite ordered set L : {cg,c1,...,cp} with ¢g < ¢ < ... < cpr. The value
R(a, b) € L is often interpreted as the degree of credibility of the assertion
“a is preferred to b’(or “a is at least as good as b”). We call such a relation a

L-valued binary relation (or shortly L-vbr).

The set L is endowed with a negation operator — that maps ¢; onto cy,_; for
all ¢ = 0,..., M. This operator has a fixpoint ¢, iff M is equal to 2m, with
m a positive integer. Bisdorff (2002a) has forcefully argued that one should
take M an even number in practice; the median credibility level c,, is then
interpreted as a logically undetermined value; it may encode a missing arc. In
case M is odd the negation has no fixpoint at all and there is thus no logically
undetermined value. From now on, for notational simplicity, we map the set L
monotonically onto the following sets of integers, endowed with their natural
order:

—-m,—(m—1),...,—1,0,1,....m—1,m if M =2m
—-m,—(m—1),...,—1,1,....om—1m if M =2m—1;

(3.1)

we use or not the value 0 depending on whether |L| is odd or even, respectively;
in case |L| is odd (i.e. M = 2m = |L| — 1), the “median credibility level” ¢,,
is mapped onto 0. Since this mapping is an order isomorphism, the operators
max and min can be seen as acting indifferently on L or its image on the
integers; moreover, the negation operator — on L corresponds with taking the
opposite of an integer in the image set. We henceforth identify L with the sets
of integers defined in (3.1), endowed with their natural order and the negation
operator, which is just “taking the opposite”. We define the subset of positive
levels L~? (resp. negative levels L<°) as being the set of positive integers
{1,2,...,m} (resp. negative integers {—m, ..., —1}); the set of nonnegative
levels L=0 (resp. nonpositive levels L=Y) is defined as the complement of L<°
(resp. L”Y). Of course, there is no difference between L% and L=° (or between
L=<%and L=°) unless |L| is odd (i.e. M is even); in the latter case, the difference
consists of the median credibility level “0”. In the sequel, for x € L, we shall
write z > 0 (resp. < 0,>0,<0) for x € L>° (resp. L<°, L=0, L=9).



Interpreting the elements of L as truth values or logical levels, as suggested by
Bisdorff (2002a), leads to call the elements of L>°, “true levels” and those of
L=°, “false levels”. If R(a,b) > 0 we could say that the proposition “(a,b) € R”
is L-true. If, on the contrary, R(a,b) < 0, the proposition “(a,b) € R’ is
L-false. 1If R(a,b) = 0, i.e. the median level, we say that the proposition
“(a,b) € R’ is L-undetermined. The credibility level of a conjunction (resp.
a disjunction) of L-valued propositions is obtained by using the “min” (resp.
the “max”) operator defined on L.

Two simple special cases of L are the following. If L has only two elements, we
get back to the classical Boolean lattice Ly = {¢g, 1} = {—1,1}; ¢o or —1 is the
symbol for “false”, while ¢; or +1 is the symbol for “true”. The three-valued
lattice Ly (M = 2m = 2) corresponds to the case in which —1 represents
“false”, 0 represents a logically undetermined level and +1 represents “true”.

3.2 Independent dominant or absorbent choices in a L-valued graph

We denote by G = (X, R) a complete L-valued digraph with vertex set X; an
arc (a,b) of G is assigned the value R(a,b). The simplest way of generalizing
the notions of independent dominant (resp. absorbent) choice in G is through
using a cut. Define the application 7 mapping the lattice L onto the Boolean
lattice Lo as follows: the set of levels L~° are all mapped onto +1 (“true”) while
the levels of L= are all mapped onto —1 (“false”). This application extends to
a transformation of the L-valued graph G = (X, R) into the ordinary graph
TG = (X,7R); (a,b) is an arc of the relation 7R iff R(a,b) > 0; otherwise,
there is no arc (a,b) in the graph 7G.

Definition 3 (Independent dominant or absorbent choices in G*). The set
K C X is an independent dominant (resp. absorbent) choice in G* = (X, R)
if it is an independent dominant (resp. absorbent) choice in 7G = (X, TR).

Note that with this definition an independent dominant (resp. absorbent)
choice in G = (X, R) is an ordinary subset of X and not a “fuzzy” subset of
X.

Using the values in L, we can define various L-valued qualification degrees
attached to any non-empty subset K of X.

Definition 4 (Degrees of qualification of choices). Let K be a non-empty
subset of X. The degree of independence of the choice K is defined as

Aind (K) —

{m if | K| =1,
(3.2)

mingz, mingex{— R(a,b)} otherwise.
bEK



K is considered to be L-independent if A™(K) > 0.

The degree of dominance of a choice K corresponds to

if K =X
Adom () =" R (3.3)
minggx maxyex {R(b,a)} otherwise.
K is considered to be L-dominant if A®™(K) > 0.
The degree of absorbence of a choice K is equal to
, if K = X,
Aabs(K) — m. ! . (34)
min,gx maxyex {R(a,b)} otherwise.

K is considered to be L-absorbent if A*(K) > 0.

The qualification of K as being an independent and dominant choice corre-

sponds to . _
Q™ (K) = min(A™M(K), AY™(K)). (3.5)

The qualification of K as being an independent and absorbent choice, corre-

sponds to _ .
Q" (K) = min (A™(K), A*™(K)) (3.6)

Definition 5 (Potentially good and bad choices). The set K C X is a po-
tentially good choice if Q9™ (K) € LY i.e. if K is L-independent and L-
dominant. The set K C X is a potentially bad choice if Q'=*(K) € L, i.e.
if K is L-independent and L-absorbent.

We denote by CP~8°°4(GE) (respectively CP~Pad(GL)) the (possibly empty)
set of potentially good (respectively potentially bad) choices in G*. The cor-
respondence between potentially good choices (resp. potentially bad choices)
and independent dominant (resp. absorbent) choices of G (definition 3) is not
entirely straightforward due to the possible existence of the “undetermined”
median level 0.

Proposition 2 (L. Kitainik, 1993).
Let G* = (X, R) be an L-valued digraph and let 7G = (X, TR) be its associ-
ated crisp digraph. We have:

Cifdom(GL) g ]Cdom(TG)

and .
leabs(GL> g ]CabS(TG>.

Proof. Consider K # () such that A"(K) e L>°.



AM(K) € L7 < min min (- R(a, b)) > 0
b#a acK
beK

sVa#be K: R(a,b) <0
=Va#be K :(a,b) ¢ TR

< K is an independent choice in 7G = (X, TR).

Consider now K # () such that A%™(K) > 0.

A*™(K) € L7° < min max R(b,a) >0
agK beK

&Vag K,3be K: R(bya) >0
&Vag K,3be K : (b,a) € TR
& K is a dominant set in 7G.

Using the same arguments,

A (K) > 0 < K is an absorbent set in 7G.

The proposition is an immediate consequence of the previous results. O

From the first part of the previous proof (independence), it clearly appears
that the sets CP~8°°4(G*) and K4 (7G) may be different only if R(a, b) takes
the logically undetermined value 0; there may indeed exist sets K’ C X that are
independent dominant choices of 7G but have a qualification Q"9°™(K) equal
to 0. A similar remark holds for independent absorbent choices. The follow-
ing corollary establishes the precise correspondence between potentially good
(resp. potentially bad) choices and independent dominant (resp.absorbent)
choices in 7G (which are also the dominant (resp. absorbent) kernels in 7G,
as established in proposition 1).

Corollary 1.

The set of potentially good (resp. potentially bad) choices in G = (X, R) is
the set of independent dominant (resp. absorbent) choices K in 7G = (X, TR)
for which Q™4™ (K) > 0, i.e. such that R(a,b) # 0 for all a,b € K.
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Proof.
Consider the first part of the proof of proposition 2. We have

AM™(K) € I”™ < K is an independent set in 7G

iff R(a,b) # 0 for all a,b € K. The rest of the proof follows that of proposition
2. [

Example 3. The following example (see figure 3) has been suggested by
Bernard Roy (Lausanne, 1995; see Bisdorff (2000)). Let G be such that X =
{a,b,c}, L = {=5,...,0,...,5} and R : {R(a,b) = =5, R(b,a) = R(c,a) =
R(c,b) =1, R(b,c) = R(a,c) = 5}.

Figure 3. Graph of the preference relation in example 3

Table 1
Degrees of qualification of all choices in example 3

choice Aind  Adom  Aabs Qi—dom Qi—abs

{a} 5 -5 1 -5 1
(b} 5 1 -5 1 -5
{c} 5 1 5 1 5
{a,b} -1 5 1 -1 -1
{a,c} -5 1 5 -5 -5
(b, c} 5 1 5 5 -5
{a,b,¢} =5 5 5 ) -5

Table 3 shows the degrees of qualification for all choices in G*. All single-
tons are L-independent. All choices, except {a}, are L-dominant and all are
L-absorbent, except {b}. Therefore, the singletons {b} and {c} give poten-
tially good single choices whereas {a} and {c} give potentially bad single
choices. Choices consisting of pairs, as well as the choice consisting of X, are
neither potentially good nor potentially bad, as they all lack the required
L-independence condition. Although the relation R often takes the undeter-
mined value 0, CP~8°°4(GF) = KM (7G) and CP~P24(GE) = K3 (7G).

11



One may argue that the indices Q7™ and Q'~2"* can be used to select a
“good choice” among several possible ones; for instance, in example 3, one sees
from table 3 that {b} is a more convincing potentially good choice than {c}
since {c} is also a potentially bad choice. We refer the reader to Bisdorff and
Roubens (2004) for further developments of this idea.

Proposition 2 suggests a way of computing the “good choices” (and the “bad”
ones) of L-valued graphs: compute the independent dominant choices of 7G;
then verify, by computing their degree of independence A" and checking
whether A" > (, that they are potentially good choices.

3.8 L-valued dominant and absorbent kernels

We now address the generalization of the kernel equation systems (2.2) and
(2.4). Choices and kernels of L-valued relations can be defined as fuzzy sets;
the degree of membership of an element a of X to such a set belongs to the
set L.

A characteristic vector Y of a fuzzy subset of X is an application from X onto
L, i.e. a row vector [Y(z),z € X]. If Y is to be interpreted as a choice and
depending on the context, )7(@), for any @ € X, may be interpreted as the
degree of truth or the credibility of the assertion “element a belongs to the
choice Y. Values of ?(a) above 0 are interpreted as meaning that a tends
more to belong to Y than not; the converse interpretation holds when Y (a) is
below 0; Y (a) = 0 represents an undetermined situation.

It is rather straightforward to extend the kernel equation systems (2.2) and
(2.4) to the case in which R is L-valued and we accept solutions that are
L-valued. These equations become: for all a € X:

(Y o R)(a) = max [ min (Y(b), R(b,a))] = =Y (a) = =Y (a), (3.7)
(RoY!)(a)= max [min (R(a, b), f/(b)” = Y (a) = —Y(a). (3.8)

Applying the negation operator to the above equations yields the following
formulation that will be used in the sequel:

Y (a) :Ilgéicrll[max(—Y(b), —R(b,a))], VaeX (3.9)
Y (a) :Ilgéicrll[max(—R(a, b), =Y (b))], Vae€X. (3.10)

12



We denote by Y©m(GE) (resp. Y*(GT)) the set of solutions of equation
system 3.7 (resp. 3.8).

Example 4. Consider G = (X, R) with X = {a,b,c}, L = {-5,...,0,...,5}
(M = 2m = 10) and R = {R(a,b) = =3}, R(a,c) =4, R(b,a) =1, R(b,c) =
5, R(c,a) =2, R(c,b) = 3} (see figure 4).

Figure 4. Graph of the preference relation in example 4

The corresponding dominant kernel equation system is:

Its solutions are shown in table 2. Solution Yj is completely L-undetermined;
Table 2
Solutions of Equation System (3.11). The starred solutions are maximally sharp.

solution  Y(a) Y(b) Y(c)

Yo 0 0 0
y, -1 1 -1
Y, -1 2 =2
vy o -1 3 -3
Vi -1 -1 1
Yy -2 =2 2

it doesn’t characterize any choice at all and we may ignore it. If we apply
the operator 7 to the fuzzy characteristic vectors, solutions }71, Y, and }73*
yield the same crisp choice {b}, whereas solutions Y; and }75* yield the same
crisp choice {c}. Note that both subsets of solutions are organized as chains
of more and more logically determined solutions, i.e. coming increasingly close
to the values —5 and +5 that represent the maximal degree of falseness and
truth, respectively. In each group of solutions, we shall focus on the maximal
solutions, }73* and }75*, with respect to this determinateness.
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We formalize the remarks made about the example into precise definitions. We
call an L-function any L-valued function defined on X. We mainly consider
L-functions Y such that Y'(a) # 0, for all a € X; the set of such L-functions
is denoted by L .

Definition 6 (Sharpness). Let Y, Z be two functions in £, . We say that Y
is at least as sharp as Z, which we denote by Z < Y, iff, for all a € X, either
Y(a) < Z(a) <0 or 0 < Z(a) < Y(a). The asymmetric part < of < is
defined as follows: ¢ < b iff a < b and not b < «a.

The “sharpness” relation < is a partial order (asymmetric and transitive rela-
tion) on the set of L-functions in L .

To each function Y in £, we associate a crisp subset of X, which we denote
by Ky and define by:

Ky = 7Y = {a € X such that Y (a) > 0}. (3.12)
We call Ky the strict median cut choice associated with Ky.

For any L-function Y € L, , the degree of sharpness QSharp(}N/) of Y is defined
as:

QP(Y) = min(min ¥ (a), min —Y (a)). (3.13)

This index interprets as a degree of sharpness of Y since we have

V<7 = Qi) < ghee(Z), (3.14)

Of course, we may have Q**®(Y) < Q*®(Z) and neither Y < Znor Z Y.

Definition 7 (L-valued dominant and absorbent kernels).
We call L-dominant (resp. L-absorbent) kernel a L- valued characteristic vec-
tor Y that satisfies the following three conditions:

e Y is a solution of equation system (3.7) (resp. (3.8));

e it is maximal with respect to the sharpness relation < in the set Y°m(G¥L)
(resp. Y**5(GT)) of admissible solutions of (3.7) (resp. (3.8)), i.e. there is no
other solution Z such that Y < Z;

e it belongs to £y , i.e. Y(a) #0, for all a € X

We denote by Fim(GE) (resp. F***(G*)) the (possibly empty) set of L-
dominant (L-absorbent) kernels of G*.

Revisiting example 4, we have Y;* and YZ* (see Table 2) as L-dominant kernels
of G*; defuzzyfying Y3 using the operator 7 yields 7Yy = {b}. In a similar
way, we get 7Y = {c}. Those sets are the two dominant kernels of 7G.
A similar computation, using the corresponding absorbent kernel equation
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systems yields the solutions [Y(a) = 2,Y(b) = —1,Y(¢) = —2] and [Y(a) =
—4,Y (b) = —4,Y (c) = 4] as the L-absorbent kernels in G*.

In example 3, the digraph G* admits the set Fi=dm(GL) = {V;* Y3} of L-
dominant kernels and the set FP4(GF) = {Vy,Y;} of L-absorbent kernels
(see table 3). Applying the operator 7 to these L-valued kernels yields the
choice sets that were already obtained for example 3 in section 3.2.

Table 3
L-valued kernels in the digraph of Example 3

kernel Y(a) Y(b) Y(c)

L-dominant
vy -1 5 =5
Yy -1 -1 1

L-absorbent
Yy 1 -1 -1
Yy -5 =5 5

From the latter example, it appears that L-valued kernels and potentially good
or potentially bad choices of a valued graph are strongly related. In the next
section, we show the formal correspondence between those notions.

4 Relating L-valued kernels and potentially good and bad choices

In this section, we shall only deal with the “dominant case”; our results extend
mutatis mutandis to the “absorbent case”. It is easy to establish a link between
a subset of solutions of the dominant kernel equation system (3.7) and a subset
of dominant kernels of 7G that we define below.

Definition 8 (Determined solutions of the dominant kernel equation system).
A solution Y of the dominant kernel equation system (3.7) is said determined
if it belongs to Lo i.e. Y(a) # 0, for all ¢ € X. We denote by Yo (G") the
set Ydm(GL)N Ly of determined solutions of (3.7).

Definition 9 ( R-determined subsets). A subset K of X in the valued graph
GY = (X, R) is R-determined if R(a,b) # 0 for all a,b € K.

Lemma 1. If Y belongs to £, and is a solution of the dominant kernel

equation system (3.7), then 7Y = K is a R-determined dominant kernel of
7G.
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Proof. Using the fact that Y is a solution of the dominant kernel equation
system, we apply 7 to both sides of (3.7), yielding

—7Y(a) = Iilgx[min(TY(b), TR(b, a))l,
which is exactly (2.2) with ¥ = 7Y. It remains to be proven that Ky is
R-determined. Assume that there are a,z € Ky with R(a,z) = 0. Since Y/
belongs to Ly by hypothesis, Y(a), Y (z) > 0. Using the “negative form” (3.9)
of the kernel equation system, we have for that particular a € Ky

0 < Y(a) <max(=Y(z),—R(x,a)) =0,

a contradiction. O
4.1 A useful transformation

The elements of Y3°™(G¥) i.e. the determined solutions of the dominant kernel
equation system can be viewed as the fixpoints of a transformation 7' that
operates on Ly .

Definition 10 (The transformation 7'). The transformation 7" maps a func-
tion U € Ly , onto TU defined by:

TU(a) = min max(—U(z), —R(z,a)), Vae€ X.

r#a

The fixpoints of T' in Ly are the solutions of (3.9) or, equivalently, of (3.7),
since

TU=U <« Ul(a)=minmax(—U(z), —R(x,a)), Yae€X.

T#a

Lemma 2. If K is a R-determined dominant kernel of 7G and Ue Ly is
such that Ky = K, then TU € Ly and Kppz = K. Moreover, for all a € Ky,
we may compute U(a) as follows:

TU(a) = < min —R(x,a)) A <min max(—U(z), —R(x,a))) (4.1)

x#a;z€Ky xZ Ky
and for all a ¢ K, we have:

TU(a) = min max(—U(z), —R(x,a)) (4.2)

LL‘EK&

Proof. If a € K, TU(a) > 0 because
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o for + € K, R(z,a) < 0 and thus, for z € K, max(~U(z), —R(z,a)) =
—R(x,a) (this also proves that(4.1) is equivalent to (3.9), for a € K);
e for all z ¢ K, max(—U(z), —R(x,a)) > =U(x) > 0.

Ifa ¢ K, T~~(a) < 0 because there is x € K such that R(x,a) > 0; for such
an z, max( U(r), —R(r,a)) < 0 and hence Ul(a) < 0. Moreover, for all z not
in K, max(—U(z), —R(z,a)) > 0, hence (4.2) is valid. O

Corollary 2. Let Y € £, . The function Y is a solution of equation system
(3.9) (or equivalently of (3.7)), iff Y satisfies

r#a;z€Ky zZ Ky

Y(a) = ( min —R(x,a)) A (min max(—Y (z), —R(x,a))) , (4.3)

for all @ € Ky, and

Y (a) = min max(-Y(z), —R(z, a)), (4.4)

CEEK{/

for all a & K.

Proof.

[=] Lemma 1 indicates that 7Y = Ky is a R-determined dominant kernel
of 7G; therefore Y fulfills the hypotheses of lemma 2 yielding the result.

[<<]  We prove that K is a R-determined dominant kernel of 7G. In view of
(4.3) and the fact that Y(a) > 0 whenever a € Ky, we deduce that R(z,a) < 0
for all a,z € Ky. Similarly, for all a ¢ Ky, we deduce from )7(@) < 0 and
equation (4.4) that there exists at least one x in Ky such that R(x,a) > 0.
Henceforth, Ky is a R-determined dominant kernel of 7G. Using the fact that
Ky is a kernel of 7G, lemma 2 yields that TY can be computed using (4.1)
and (4.2); by hypothesis, Y satisfies (4.3) and (4.4); therefore Y is a fixpoint
of T, hence Y belongs to V5o (G"). O

4.2  Obtaining a L-dominant kernel from a R -determined dominant kernel

of TG

We use transformation 7" to obtain a L-dominant kernel from a R -determined
dominant kernel of 7G. The main result we need is the fact that T respects
the relation “at least as sharp as’ on any subset of L-functions Y such that
7Y is a R-determined dominant kernel.

Lemma 3. Let K be a R-determined dominant kernel of 7G and U,V e L
be such that Ky = Ky = K and U X V. Then TU S TV.
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Proof. For any a € K,

TV (a) = < min —R(x,a)) A <min max(—V(x),—R(:c,a))).

r#a;z€Ky T¢ Ky

Since the functions min and max are nondecreasing and for all z ¢ K,
—V(z) > =U(z), we get TV (a) > TU(a).

For any a ¢ K, TV (a) = Milger,, max(—V (z), —R(x,a)). Since the functions
min and max are nondecreasing and for all z € K, —V(z) < =U(x), we get
TV (a) <TU(a). O

Starting from the characteristic function of a R-determined dominant kernel
of 7G' and applying iteratively T to this function, one obtains, after a finite
number of iterations, an element of Y3°™(G¥)that is at least as sharp as any

other element Y of Yo (G%)such that Ky = K.

Proposition 3. Let K be a R-determined dominant kernel of 7G and U € £,
be defined by U(a) = m if a € K and —m otherwise. For some finite integer
n, T"U = T""'U and Z = T"U is an element of Y™ (G*)such that K; = K;
we have furthermore Y < Z for all element Y of Ydo™(G*)with Ky = K.

Proof. The function U defined in the proposition belongs to £y . Since, by
lemma 2, K7 = K, it is obvious from the definition of U that TU < U.
Applying lemma 3, we get T U < T'U, for all 4. Due to the finiteness of L
and X, there is a finite number n such that 771U is not strictly less sharp
than 7"U, which means that T"*'U = T"U. For such a n, Z = T"U is an
element of Y°™(G¥). It is moreover a maximal element w.r.t. the relation
< in the subset of elements Y of Ydo™(G¥)such that Ky = K. Let Y be
such an element. We have 7Y = Y and Y < U. Applying lemma 3, we get

™Y < T”U, which means that Y < Z. OJ

It was not evident at first sight that, for all R-determined dominant kernels
K of TG, there are solutions Y of (3.9) with Ky = K. Tt was not evident either
that the set of solutions Y of (3.9) with Ky = K, when non-empty, admits a
unique maximally sharp element. Putting together lemma 1 and proposition 3,
we establish the existence of a bijective correspondence between R-determined
dominant kernels of 7G and determined L-dominant kernels of G*.

Theorem 1. K is a R-determined dominant kernel of 7G iff there is a de-

termined L-dominant kernel Y such that Ky = K. This L-dominant kernel is
unique.
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4.3 Qualification of a dominant kernel

There is a link between the qualification Q4™ (K) of a dominant kernel K
of 7G and the sharpness qualification of all elements Y of Y5o™(G*)such
that Ky = K. We first prove that the degree of sharpness of an element of

dom (GL)is not larger than the qualification of the corresponding R-determined
dominant kernel.

Lemma 4. If K is a R-determined dominant kernel of 7G, any determined
solution Y of the kernel equation system (3.7) is such that the choice Ky = K
in 7G verifies:

Qsharp(?) < Qi—dom(K) (45)

Proof. Assume that Q*"(Y) > Q4™ (K). Let QP (Y) = r and Q*%™(K) =
k, with r > k > 0. The qualification Q™4°™(K) = k is equal either to —R(b, a)
for some a,b € K or to max,cx R(x,y), for some y ¢ K.

In the former case, using (4.3), we get r < Y (a) < —R(b,a) = k, a contradic-
tion.

In the latter case, there is @ € K such that R(a,y) = max,cx R(z,y) =
k. Therefore, for all z € K, R(z,y) < k. Using (4.4), we have Y(y) =
MiNef, max(—Y (z), —R(z,y)). Forallz € K, =Y (z) < —r < —k < —R(z,y) T,
therefore Y(y) > —k. But, by definition of Q%P (Y), Y(y) < —r hence

—r > Y (y) > —k, a contradiction. O

We finally prove that the sharpness of the L-dominant kernel Y corresponding
to a R-determined dominant kernel K is equal to the qualification of K.

Theorem 2. For any R-determined dominant kernel K, the L-dominant
kernel Z corresponding to K is such that QP (Z) = Q4™ (K).

Proof. In view of lemma 4, it suffices to prove that tharp(f/) > QoM (K).
Let Q™4°™(K) = k, with k > 0. Define the L-function W € L, as

. k ifae K
%74
—k ifad K.

By lemma 2, TW belongs to £y and K, = Ky = K. Using (4.1) and (4.2),

it obtained applying the negation — to Y (z) > >k > R(z,y)
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we show that W < TW. Indeed, for a € K,

TW(a) = ( min —R(x,a)) A (min max(—W(z), —R(z,a)) > k)

r#a;weKy;, €Ky,

and, for a ¢ K,

TW (a) = min max(—W (z), —R(x,a))

CEEKVV

= max(—k, mIglfl{Il —R(z,a))
w

< —k.

Remember the definition of U € £, that was used in proposition 3: U(a) = m
ifa € K and —m otherwise. We have W < U and, using lemma 3, T'W < T'U,
for all 4+ = 1,2,.... Since, for some n, T"U = Z, the L-dominant kernel
corresponding to K, we have:

WT'W<T'U=72Z

and, using (3.14), QP (W) = k < Q**»(2). O

44

Remarks

The above results prompt the following remarks.

(1)

The undetermined value 0, when such a value appears in the set L, plays
a special role and has to be carefully dealt with. In lemma 2 for instance,
if we either drop the restriction that the dominant kernel K of 7G is a
R-determined one or that U(z) # 0 for all € X, we can no longer
make sure that TU(a) > 0 for all a € K. This means that the trans-
formed characteristic function TU would not satisfy K,; = K. Since
we are interested in determined solutions of the kernel equation system,
we did not pay attention to undetermined solutions, and correlatively, we
considered only the R-determined dominant choices of 7G.

Throughout this paper, we have assumed that both the set X and the set
L are finite. Our results extend without difficulty to the case in which L
is infinite, while the set X of alternatives remains finite. In such a case,
the number of values taken by the relation R is at most | X| x (| X|—1);
let m denote the maximum of |R(a,b)|, for a,b € X; the construction of
a fixpoint of T as described in proposition 3 remains valid, since TU will
only take values also taken by R or their opposite, hence a finite subset
of L. In case the number of alternatives X is infinite and L is an interval
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of the real numbers (for instance the interval [—1,1]), the construction
of the fixpoint as in proposition 3 still works but the convergence might
take an infinite number of steps.

5 Conclusion

This paper aims at exploring the relationship between independent dominant
(resp. absorbent) choices and solutions of the kernel equation system in the
case of valued relations. We have shown that there is a one-to-one correspon-
dence between L-dominant (resp. L-absorbent) kernels of a valued graph and
the ( R-determined) independent dominant (resp. absorbent) choices of the
strict median cut digraph 7G. Furthermore, starting with an independent
dominant (resp. absorbent) choice of TG, the technique of proof provides a
way of building the corresponding L-dominant (resp. L-absorbent) kernel as
the fixpoint of a transformation. This has an important consequence from the
algorithmic point of view: finding L-valued kernels is not more difficult than
finding the kernels of a crisp graph. Indeed, starting with a ( R-determined)
kernel of 7G and applying the transformation (definition 10) at most m|X|
times yields the fixpoint. Of course, this does not make the determination of
the L-valued kernels an easy task since we know that finding all kernels of
a crisp relation is a computationally hard problem (this was proven by V.
Chvéatal; see Garey and Johnson (1979), p.204).

Theorem 2 also has interest in its own: the degree of sharpness of a L-dominant
kernel Y is equal to the degree of potential goodness Q9™ of the associated
crisp kernel K. The comparison of crisp kernels (or equivalently of indepen-
dent dominant or absorbent choices of 7G) done at the end of section 4 about
examples 3 and 4 can thus be transposed to L-valued kernels.

References

Bang—Jensen J. and Gutin, G., Digraphs: Theory, algorithms and applications.
Springer—Verlag, London, 2001.

Berge, C., Théorie des graphes et ses applications. Dunod, Paris, 1958.

Berge, C., Graphes et hypergraphes. Dunod, Paris, 1970.

Bisdorff, R. and Roubens, M., On defining fuzzy kernels from L-valued simple
graphs. In: Proceedings Information Processing and Management of Uncer-
tainty, IPMU’96, Granada, July 1996, 593-599.

Bisdorff, R. and Roubens, M., On defining and computing fuzzy kernels from
L-valued simple graphs. In: Da Ruan et al., eds., Intelligent Systems and Soft

21



Computing for Nuclear Science and Industry, FLINS’96 workshop. World
Scientific Publishers, Singapoure, 1996, 113-123.

Bisdorff, R., On computing kernels from L-valued simple graphs. In: Proceed-
ings Sth European Congress on Intelligent Techniques and Soft Computing
EUFIT’97, (Aachen, September 1997),vol. 1, 97-103.

Bisdorff, R., Logical foundation of fuzzy preferential systems with application
to the ELECTRE decision aid methods, Computers € Operations Research,
27, 2000, 673-687.

Bisdorff, R., ELECTRE-like clustering from a pairwise fuzzy proximity index.
FEuropean Journal of Operational Research, 138/2, 2002, 320-331.

Bisdorff, R. and Roubens, M., Le temps des noyaux .... In: Bair, J. and
Henry, V. (ed.) Regards croisés sur les méthodes quantitatives de gestion.
Les Editions de I'Université de Liége, Liége (Belgium), 2004, pp. 41-54.

Garey, M.R. and Johnson, D.S., Computers and intractability, A guide to the
theory of NP-Completeness. Freeman and Co., New York, 1979.

Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Fundamentals of domination
in graphs. Marcel Dekker Inc. New-York, 1998.

Kitainik, L., Fuzzy decision procedures with binary relations: towards a unified
theory. Kluwer Academic Publ., Boston, 1993.

Riguet, J., Relations binaires, fermetures, correspondances de Galois. Bull.
Soc. Math. France, 76, 1948, 114-155.

Roy, B., Classement et choix en présence de points de vue multiples. RIRO 8,
57-75.

Roy, B., Algebre moderne et théorie des graphes. Dunod, Paris, 1969.

Roy, B., Méthodologie Multicritéere d’aide a la décision. Economica, Paris,
1985.

Roy, B. and Bouyssou, D., Aide multicritére a la décision: Méhodes et cas.
Economica, Paris, 1993.

Schmidt, G. and Strohlein, Th., On kernels of graphs and solutions of games:
a synopsis based on relations and fixpoints. SIAM, J. Algebraic Discrete
Methods, 6, 1985, 54-65.

Schmidt, G. and Strohlein, Th., Relationen und Graphen. Springer-Verlag,
Berlin, 1989. English version: Relations and graphs, Springer—Verlag, Berlin,
1993.

von Neumann, J. and Morgenstern, O., Theory of games and economic behav-
tour. Princeton University Press, Princeton 1944.

22



