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In some versions of this pro
ess, the preferen
e (outranking) relation is a valued(or fuzzy) one. The value atta
hed to an ar
 (a, b) may express for instan
ethe degree with whi
h a is preferred to b, a 
redibility index assigned to thepreferen
e of a over b, et
. In the perspe
tive of generalizing to valued relationsthe methods used for 
hoosing among a �nite set of alternatives on the basis of
risp ({0, 1}-valued) relations, one 
an think of a generalization of the notionof kernel of valued graphs or relations.As is usual when studying valued (fuzzy) 
ounterparts of notions that have �rstbeen introdu
ed for ordinary (
risp) sets, there are several ways of generalizingthe notion of kernel. The main goal of this paper is to explore the relationshipbetween various natural de�nitions of kernels for valued graphs and see alsohow they relate to kernels of 
risp graphs. Our analysis is restri
ted to �nitegraphs.In se
tion 2, we re
all the de�nitions of kernels in the 
risp 
ase, relating mainlythe set-theoreti
 de�nition (in terms of independent, dominant or absorbent,non-empty subset) and the algebrai
 one by means of the so-
alled kernelequation system. Note that we 
onsider two sorts of kernels, the dominant andthe absorbent one, that are just dual of one another in the sense that theabsorbent kernels of a graph are the dominant kernels of the graph obtainedby reversing the orientation of the ar
s of the original one.Se
tion 3 introdu
es a valuation of the ar
s by degrees belonging to an orderedset L; this set is equipped with a negation (an antitone one-to-one operation).If L 
ontains an odd number of elements, there is an element that is equal toits negation; this plays the role of an undetermined level �0� that may be usedfor instan
e for 
oding la
k of information, like a missing ar
 in the graph. Onedistinguishes the levels of L that are above �0� (positive) and those below �0�(negative). We then assume a graph with ar
s assigned a value in L. If L hasa � `0�, we may suppose, without loss of generality, that the graph is 
omplete,assigning the value 0 to the missing ar
s. This graph is also a valued relationand we use indi�erently both terminologies.The �rst idea for generalizing kernels, is to 
ut the relation above 0, yieldinga 
risp relation or graph, and to make pro�t of the set-theoreti
 de�nition ofthe kernels of the obtained 
risp graph. We 
all su
h kernels L-independent,dominant (or absorbent) 
hoi
es, reserving the term �kernel� for the solutionsof the kernel equation system. A variety of �degrees of quali�
ation� are de�nedand asso
iated to these subsets; they may be interpreted as 
hara
terizing theirquality as a set of good alternatives (for dominant subsets) or as a set of badalternatives (for absorbent subsets). We show that L-independent, dominant(resp. absorbent) 
hoi
es 
an be de�ned alternatively by means of their degreeof quali�
ation as a set of good (resp. bad) alternatives.2



The generalization of the kernel equation system yields solutions, i.e. kernels,that are valued (fuzzy) sets. We identify a subset of solutions, the maximallysharp ones, and we show in se
tion 4 that they 
orrespond to the set of L-independent dominant (or absorbent) 
hoi
es that were initially de�ned. Theproof�using �xpoint argument�is 
onstru
tive, enabling to �nd the L-valuedkernels starting from the independent dominant (or absorbent) 
hoi
es. Thedegree of sharpness of the former is shown to be equal to the degree of goodness(or badness) of the latter. From a theoreti
al point of view, this is rathersatisfa
tory sin
e the various generalizations of the kernel lead to essentiallythe same notion, though in a non-trivial way, as the reader will see. Oneshould add that there are perspe
tives, using L-valued kernels, to 
ontributeto methods for 
hoosing among a set of alternatives, but su
h developmentsare left for another publi
ation.2 Kernels of 
risp binary relations2.1 Independent dominant and absorbent 
hoi
esIn this se
tion, we 
onsider a �nite set X = {a, b, c, d, . . .} of alternativesendowed with a binary relation R . This relation is interpreted as a preferen
erelation; we do not assume any parti
ular property, su
h as transitivity, of
R ; the preferen
e may thus result from the aggregation of multiple attributeinformation through some kind of a majority rule or a

ording with some formof a 
on
ordan
e-dis
ordan
e prin
iple like they are implemented for instan
ein the Ele
tre methods (Roy, 1968; Roy and Bouyssou, 1993).We denote by a R b the fa
t that the pair (a, b) belongs to the relation R ; wephrase a R b as �a is preferred to b� (this not ex
luding that b may also bepreferred to a; R is not supposed to be an asymmetri
 relation).The set X endowed with the relation R 
an also be viewed as a dire
tedgraph (digraph, for short) G = (X, R) where X represents the set of verti
esand (a, b) is an ar
 of the graph if and only if (a, b) ∈ R.It has been suggested in the Ele
tre I method (Roy, 1969) to use inde-pendent dominant subsets of X as potential good 
hoi
e if the relation R isa
y
li
.De�nition 1 (Independent dominant and absorbent 
hoi
es).A 
hoi
e set in the digraph G = (X, R ) is a non empty subset Y of X.An independent 
hoi
e or independent subset in G is a 
hoi
e set K ⊆ X su
h3



that ∀a 6= b ∈ K, (a, b) 6∈ R .A dominant 
hoi
e or dominant subset in G is a 
hoi
e set K ⊂ X su
h that
∀a 6∈ K, ∃ b ∈ K, (b, a) ∈ R .An absorbent 
hoi
e or absorbent subset in G is a 
hoi
e set K ⊂ X su
h that
∀a 6∈ K, ∃ b ∈ K, (a, b) ∈ R .Example 1. The graph G1 = (X1, R 1), where X1 = {a, b, c, d} and R 1 =
{(a, b), (a, c), (a, d), (b, c), (b, d)} is illustrated in �gure 1. There is a uniqueindependent dominant 
hoi
e (�good 
hoi
e�) that is the singleton {a}; theunique independent absorbent 
hoi
e (�bad 
hoi
e�) is {c, d}.

a

b c

dFigure 1. Graph of the preferen
e relation in example 1Example 2. The graph G2 = (X2, R 2), where X2 = {a, b, c, d} and R 2 =
{(a, b), (b, c), (c, d), (d, a)} is illustrated in �gure 2. In this example, {a, c} and
{b, d} are two independent 
hoi
es that are both dominant and absorbent.

a

b c

dFigure 2. Graph of the preferen
e relation in example 2If a relation R is a
y
li
, then it has a unique dominant (resp. absorbent)
hoi
e. If, in addition, the relation is transitive, it is a partial order and theset of alternatives that have no prede
essor (resp. su

essor) in the graph formsan independent dominant (resp. absorbent) 
hoi
e. The above existen
e anduniqueness property is a motivation for 
hoosing among the alternatives thatbelong to the independent dominant 
hoi
e. In 
ase one aims at eliminating�bad� alternatives, a symmetri
 argument would lead to 
hoosing them in theindependent absorbent 
hoi
e set, again for a
y
li
 digraphs. We loose su
han appealing interpretation in 
ase R is not a
y
li
, as we 
an see in example2 above. 4



2.2 Dominant and absorbent kernelsWe now introdu
e an algebrai
 de�nition of a independent dominant (resp.absorbent) 
hoi
e. Ea
h subset K ⊆ X is asso
iated its 
hara
teristi
 (row)ve
tor Y : X → {0, 1} with
Y (a) =







1 if a ∈ K

0 otherwise. (2.1)for all a ∈ X.De�nition 2 (Dominant and absorbent kernels).A dominant kernel (Bisdor� and Roubens, 1996a) is a 
hara
teristi
 ve
tor Ythat is a solution of the following system of Boolean equations:
(Y ◦ R )(a) = ¬Y (a), for all a ∈ X, (2.2)where Y ◦ R is the max min produ
t of the Boolean matri
es Y and R , i.e.

(Y ◦ R )(a) = max
b6=a

min (Y (b), R (b, a)), for all a ∈ Xand ¬ is the ordinary negation, i.e. ¬Y (a) = 1−Y (a). The system of equations(2.2) reads more expli
itly as:
max
b6=a

min (Y (b), R (b, a)) = 1 − Y (a), for all a ∈ X. (2.3)We 
all absorbent kernel a 
hara
teristi
 ve
tor Y , solution of the system ofBoolean equations: for all a ∈ X,
(R ◦ Y t)(a) = max

b6=a
min (R(a, b), Y (b)) = ¬Y (a) = 1 − Y (a), (2.4)where Y t denotes the transposed (
olumn) 
hara
teristi
 ve
tor.We denote Kdom(G) (Kabs(G)) the possibly empty set of dominant (resp. ab-sorbent) kernels in G, i.e. the solutions of the system of equations (2.2) (resp.(2.4)).Proposition 1.The set of independent dominant (resp. absorbent) 
hoi
es of X endowed withthe relation R ) is the set of dominant (resp. absorbent) kernels ofG = (X, R ).Proof. Let K be a non-empty subset of X and let Y be the 
hara
teristi
ve
tor of K. We denote by YK (resp. Y

K
), the part of ve
tor Y 
orrespondingto alternatives in K (resp. out of K). We split similarly the binary matrix5



R representing the relation R into four parts RKK , R
KK

, R
KK

, R
KK

; for in-stan
e RKK 
orresponds to the 
ases R(a, b) in whi
h both a and b belong to
K; the three other parts are de�ned similarly. The system of equation (2.2) isrewritten as

[YK Y
K

] ◦







RKK R
KK

R
KK

R
KK





 = [Y K Y
K

]. (2.5)One veri�es easily that ve
tor Y exa
tly 
hara
terizes a subset K that isindependent and dominant if and only if the above system of equations issatis�ed. A similar argument applies to independent absorbent 
hoi
es andabsorbent kernels.In the sequel we shall use indi�erently the terms �independent dominant (resp.absorbent) 
hoi
es� and �dominant (resp. absorbent) kernels�.2.3 Histori
al noteFollowing the observation that the independent absorbent 
hoi
e in an a
y
li
graph 
orresponds to the kernel of the asso
iated Grundy fun
tion, Riguet(1948) introdu
ed the name �noyau� (kernel) for su
h a 
hoi
e set. (Absorbent)kernels were in the sequel extensively studied by Berge (1958, 1970) in the 
on-text of modeling the Nim game. More results on (absorbent) kernels, 
on
ern-ing solutions of di�erent games, have been reported by S
hmidt and Ströhlein(1985, 1989). Re
ently, Bang-Jensen and Gutin (2001) reviewed the link be-tween kernel-solvability and perfe
t graphs.Internally stable and dominating 
hoi
es, i.e. dominant kernels were originallyintrodu
ed by J. von Neumann and O. Morgenstern under the name �gamesolution� in the 
ontext of game theory (von Neumann and Morgenstern,1944). B. Roy proposed the same 
on
ept in the 
ontext of the multi
riteriaEle
tre de
ision aid methods (Roy, 1968, 1985; Roy and Bouyssou, 1993).Ambiguous 
hoi
es, i.e. both dominant and absorbent 
hoi
es at the sametime, were proposed by Bisdor� (2002a) as potential 
luster 
andidates in the
ontext of multi
riteria 
lustering.In the general (non-oriented) theory of graphs, kernels appear under the nameof independent dominating sets in Haynes et al. (1998). Our oriented dominant(resp. absorbent) version is there identi�ed as an �inside (resp. outside) semi-dominating set� or sometimes more simply as an �inkernel� (resp. �outkernel�).The absorbent version of the kernel equation system (2.4) was �rst introdu
edby S
hmidt and Ströhlein (1985, 1989) in the 
ontext of their thorough explo-ration of relational algebra. The dominant version (equation system 2.2) was6



introdu
ed by Kitainik (1993) and subsequently used by Bisdor� and Roubens(1996a,b); Bisdor� (1997).3 Kernels in valued digraphs3.1 L-valued binary relationsLet X be a �nite set of alternatives and R̃, a valued binary relation on X.We assume that the values assigned by R̃ to ea
h pair of alternatives belongto a �nite ordered set L : {c0, c1, . . . , cM} with c0 < c1 < . . . < cM . The value
R̃(a, b) ∈ L is often interpreted as the degree of 
redibility of the assertion�a is preferred to b�(or �a is at least as good as b�). We 
all su
h a relation a
L-valued binary relation (or shortly L-vbr).The set L is endowed with a negation operator ¬ that maps ci onto cM−i forall i = 0, . . . , M . This operator has a �xpoint cm i� M is equal to 2m, with
m a positive integer. Bisdor� (2002a) has for
efully argued that one shouldtake M an even number in pra
ti
e; the median 
redibility level cm is theninterpreted as a logi
ally undetermined value; it may en
ode a missing ar
. In
ase M is odd the negation has no �xpoint at all and there is thus no logi
allyundetermined value. From now on, for notational simpli
ity, we map the set Lmonotoni
ally onto the following sets of integers, endowed with their naturalorder:

−m,−(m − 1), . . . ,−1, 0, 1, . . . , m − 1, m if M = 2m

−m,−(m − 1), . . . ,−1, 1, . . . , m − 1, m if M = 2m − 1;
(3.1)we use or not the value 0 depending on whether |L| is odd or even, respe
tively;in 
ase |L| is odd (i.e. M = 2m = |L| − 1), the �median 
redibility level� cmis mapped onto 0. Sin
e this mapping is an order isomorphism, the operators

max and min 
an be seen as a
ting indi�erently on L or its image on theintegers; moreover, the negation operator ¬ on L 
orresponds with taking theopposite of an integer in the image set. We hen
eforth identify L with the setsof integers de�ned in (3.1), endowed with their natural order and the negationoperator, whi
h is just �taking the opposite�. We de�ne the subset of positivelevels L>0 (resp. negative levels L<0) as being the set of positive integers
{1, 2, . . . , m} (resp. negative integers {−m, . . . ,−1}); the set of nonnegativelevels L≥0 (resp. nonpositive levels L≤0) is de�ned as the 
omplement of L<0(resp. L>0). Of 
ourse, there is no di�eren
e between L>0 and L≥0 (or between
L<0 and L≤0) unless |L| is odd (i.e. M is even); in the latter 
ase, the di�eren
e
onsists of the median 
redibility level �0�. In the sequel, for x ∈ L, we shallwrite x > 0 (resp. < 0,≥ 0,≤ 0) for x ∈ L>0 (resp. L<0, L≥0, L≤0).7



Interpreting the elements of L as truth values or logi
al levels, as suggested byBisdor� (2002a), leads to 
all the elements of L>0, �true levels� and those of
L<0, �false levels�. If R(a, b) > 0 we 
ould say that the proposition �(a, b) ∈ R�is L-true. If, on the 
ontrary, R(a, b) < 0, the proposition �(a, b) ∈ R� is
L-false. If R(a, b) = 0, i.e. the median level, we say that the proposition�(a, b) ∈ R� is L-undetermined. The 
redibility level of a 
onjun
tion (resp.a disjun
tion) of L-valued propositions is obtained by using the �min� (resp.the �max�) operator de�ned on L.Two simple spe
ial 
ases of L are the following. If L has only two elements, weget ba
k to the 
lassi
al Boolean latti
e L2 = {c0, c1} = {−1, 1}; c0 or−1 is thesymbol for �false�, while c1 or +1 is the symbol for �true�. The three-valuedlatti
e L3 (M = 2m = 2) 
orresponds to the 
ase in whi
h −1 represents�false�, 0 represents a logi
ally undetermined level and +1 represents �true�.3.2 Independent dominant or absorbent 
hoi
es in a L-valued graphWe denote by GL = (X, R) a 
omplete L-valued digraph with vertex set X; anar
 (a, b) of GL is assigned the value R(a, b). The simplest way of generalizingthe notions of independent dominant (resp. absorbent) 
hoi
e in GL is throughusing a 
ut. De�ne the appli
ation τ mapping the latti
e L onto the Booleanlatti
e L2 as follows: the set of levels L>0 are all mapped onto +1 (�true�) whilethe levels of L≤0 are all mapped onto −1 (�false�). This appli
ation extends toa transformation of the L-valued graph GL = (X, R) into the ordinary graph
τG = (X, τR); (a, b) is an ar
 of the relation τR i� R(a, b) > 0; otherwise,there is no ar
 (a, b) in the graph τG.De�nition 3 (Independent dominant or absorbent 
hoi
es in GL). The set
K ⊆ X is an independent dominant (resp. absorbent) 
hoi
e in GL = (X, R)if it is an independent dominant (resp. absorbent) 
hoi
e in τG = (X, τR).Note that with this de�nition an independent dominant (resp. absorbent)
hoi
e in GL = (X, R) is an ordinary subset of X and not a �fuzzy� subset of
X.Using the values in L, we 
an de�ne various L-valued quali�
ation degreesatta
hed to any non-empty subset K of X.De�nition 4 (Degrees of quali�
ation of 
hoi
es). Let K be a non-emptysubset of X. The degree of independen
e of the 
hoi
e K is de�ned as

∆ind(K) =







m if |K| = 1 ,
min b6=a

b∈K

mina∈K{¬R(a, b)} otherwise. (3.2)8



K is 
onsidered to be L-independent if ∆ind(K) > 0.The degree of dominan
e of a 
hoi
e K 
orresponds to
∆dom(K) =







m if K = X,

mina6∈K maxb∈K {R(b, a)} otherwise. (3.3)
K is 
onsidered to be L-dominant if ∆dom(K) > 0.The degree of absorben
e of a 
hoi
e K is equal to

∆abs(K) =







m if K = X,

mina6∈K maxb∈K {R(a, b)} otherwise. (3.4)
K is 
onsidered to be L-absorbent if ∆abs(K) > 0.The quali�
ation of K as being an independent and dominant 
hoi
e 
orre-sponds to

Qi−dom(K) = min(∆ind(K), ∆dom(K)). (3.5)The quali�
ation of K as being an independent and absorbent 
hoi
e, 
orre-sponds to
Qi−abs(K) = min

(

∆ind(K), ∆abs(K)
) (3.6)De�nition 5 (Potentially good and bad 
hoi
es). The set K ⊆ X is a po-tentially good 
hoi
e if Qi−dom(K) ∈ L>0, i.e. if K is L-independent and L-dominant. The set K ⊆ X is a potentially bad 
hoi
e if Qi−abs(K) ∈ L>0, i.e.if K is L-independent and L-absorbent.We denote by Cp−good(GL) (respe
tively Cp−bad(GL)) the (possibly empty)set of potentially good (respe
tively potentially bad) 
hoi
es in GL. The 
or-responden
e between potentially good 
hoi
es (resp. potentially bad 
hoi
es)and independent dominant (resp. absorbent) 
hoi
es of GL (de�nition 3) is notentirely straightforward due to the possible existen
e of the �undetermined�median level 0.Proposition 2 (L. Kitainik, 1993).Let GL = (X, R) be an L-valued digraph and let τG = (X, τR) be its asso
i-ated 
risp digraph. We have:

Ci−dom(GL) ⊆ Kdom(τG)and
Ci−abs(GL) ⊆ Kabs(τG).Proof. Consider K 6= ∅ su
h that ∆ind(K) ∈ L>0.9



∆ind(K) ∈ L>0 ⇔min
b6=a

b∈K

min
a∈K

(¬R(a, b)) > 0

⇔∀a 6= b ∈ K : R(a, b) < 0

⇒∀a 6= b ∈ K : (a, b) 6∈ τR

⇔K is an independent 
hoi
e in τG = (X, τR).Consider now K 6= ∅ su
h that ∆dom(K) > 0.
∆dom(K) ∈ L>0 ⇔min

a6∈K
max
b∈K

R(b, a) > 0

⇔∀a 6∈ K, ∃ b ∈ K : R(b, a) > 0

⇔∀a 6∈ K, ∃ b ∈ K : (b, a) ∈ τR

⇔K is a dominant set in τG.Using the same arguments,
∆abs(K) > 0 ⇔ K is an absorbent set in τG.The proposition is an immediate 
onsequen
e of the previous results.From the �rst part of the previous proof (independen
e), it 
learly appearsthat the sets Cp−good(GL) and Kdom(τG) may be di�erent only if R(a, b) takesthe logi
ally undetermined value 0; there may indeed exist sets K ⊆ X that areindependent dominant 
hoi
es of τG but have a quali�
ation Qi-dom(K) equalto 0. A similar remark holds for independent absorbent 
hoi
es. The follow-ing 
orollary establishes the pre
ise 
orresponden
e between potentially good(resp. potentially bad) 
hoi
es and independent dominant (resp.absorbent)
hoi
es in τG (whi
h are also the dominant (resp. absorbent) kernels in τG,as established in proposition 1).Corollary 1.The set of potentially good (resp. potentially bad) 
hoi
es in GL = (X, R) isthe set of independent dominant (resp. absorbent) 
hoi
es K in τG = (X, τR)for whi
h Qi-dom(K) > 0, i.e. su
h that R(a, b) 6= 0 for all a, b ∈ K.10



Proof.Consider the �rst part of the proof of proposition 2. We have
∆ind(K) ∈ L>m ⇔ K is an independent set in τGi� R(a, b) 6= 0 for all a, b ∈ K. The rest of the proof follows that of proposition2.Example 3. The following example (see �gure 3) has been suggested byBernard Roy (Lausanne, 1995; see Bisdor� (2000)). Let GL be su
h that X =

{a, b, c}, L = {−5, . . . , 0, . . . , 5} and R : {R(a, b) = −5, R(b, a) = R(c, a) =
R(c, b) = 1, R(b, c) = R(a, c) = 5}.

a

b

c1

5

1

1

5

Figure 3. Graph of the preferen
e relation in example 3Table 1Degrees of quali�
ation of all 
hoi
es in example 3
hoi
e ∆ind ∆dom ∆abs Qi−dom Qi−abs

{a} 5 −5 1 −5 1

{b} 5 1 −5 1 −5

{c} 5 1 5 1 5

{a, b} −1 5 1 −1 −1

{a, c} −5 1 5 −5 −5

{b, c} −5 1 5 −5 −5

{a, b, c} −5 5 5 −5 −5Table 3 shows the degrees of quali�
ation for all 
hoi
es in GL. All single-tons are L-independent. All 
hoi
es, ex
ept {a}, are L-dominant and all are
L-absorbent, ex
ept {b}. Therefore, the singletons {b} and {c} give poten-tially good single 
hoi
es whereas {a} and {c} give potentially bad single
hoi
es. Choi
es 
onsisting of pairs, as well as the 
hoi
e 
onsisting of X, areneither potentially good nor potentially bad, as they all la
k the required
L-independen
e 
ondition. Although the relation R often takes the undeter-mined value 0, Cp−good(GL) = Kdom(τG) and Cp−bad(GL) = Kabs(τG).11



One may argue that the indi
es Qi−dom and Qi−abs 
an be used to sele
t a�good 
hoi
e� among several possible ones; for instan
e, in example 3, one seesfrom table 3 that {b} is a more 
onvin
ing potentially good 
hoi
e than {c}sin
e {c} is also a potentially bad 
hoi
e. We refer the reader to Bisdor� andRoubens (2004) for further developments of this idea.Proposition 2 suggests a way of 
omputing the �good 
hoi
es� (and the �bad�ones) of L-valued graphs: 
ompute the independent dominant 
hoi
es of τG;then verify, by 
omputing their degree of independen
e ∆ind and 
he
kingwhether ∆ind > 0, that they are potentially good 
hoi
es.3.3 L-valued dominant and absorbent kernelsWe now address the generalization of the kernel equation systems (2.2) and(2.4). Choi
es and kernels of L-valued relations 
an be de�ned as fuzzy sets;the degree of membership of an element a of X to su
h a set belongs to theset L.A 
hara
teristi
 ve
tor Ỹ of a fuzzy subset of X is an appli
ation from X onto
L, i.e. a row ve
tor [Ỹ (x), x ∈ X]. If Ỹ is to be interpreted as a 
hoi
e anddepending on the 
ontext, Ỹ (a), for any a ∈ X, may be interpreted as thedegree of truth or the 
redibility of the assertion �element a belongs to the
hoi
e Ỹ �. Values of Ỹ (a) above 0 are interpreted as meaning that a tendsmore to belong to Ỹ than not; the 
onverse interpretation holds when Ỹ (a) isbelow 0; Ỹ (a) = 0 represents an undetermined situation.It is rather straightforward to extend the kernel equation systems (2.2) and(2.4) to the 
ase in whi
h R is L-valued and we a

ept solutions that are
L-valued. These equations be
ome: for all a ∈ X:

(Ỹ ◦ R)(a) =max
b6=a

[

min
(

Ỹ (b), R(b, a)
)]

= ¬Ỹ (a) = −Ỹ (a), (3.7)
(R ◦ Ỹ t)(a) =max

b6=a

[

min
(

R(a, b), Ỹ (b)
)]

= ¬Ỹ (a) = −Ỹ (a). (3.8)Applying the negation operator to the above equations yields the followingformulation that will be used in the sequel:
Ỹ (a) = min

b6=a
[max(−Ỹ (b),−R(b, a))], ∀a ∈ X (3.9)

Ỹ (a) = min
b6=a

[max(−R(a, b),−Ỹ (b))], ∀a ∈ X. (3.10)12



We denote by Ydom(GL) (resp. Yabs(GL)) the set of solutions of equationsystem 3.7 (resp. 3.8).Example 4. Consider GL = (X, R) with X = {a, b, c}, L = {−5, . . . , 0, . . . , 5}(M = 2m = 10) and R = {R(a, b) = −3}, R(a, c) = 4, R(b, a) = 1, R(b, c) =
5, R(c, a) = 2, R(c, b) = 3} (see �gure 4).

a

b

c1−3

5

3

2

4

Figure 4. Graph of the preferen
e relation in example 4The 
orresponding dominant kernel equation system is:
[

Ỹ (a) Ỹ (b) Ỹ (c)
]

◦















- −3 4

1 - 5

2 3 -  =
[

− Ỹ (a) − Ỹ (b) − Ỹ (c)
] (3.11)Its solutions are shown in table 2. Solution Ỹ0 is 
ompletely L-undetermined;Table 2Solutions of Equation System (3.11). The starred solutions are maximally sharp.solution Ỹ (a) Ỹ (b) Ỹ (c)

Ỹ0 0 0 0

Ỹ1 −1 1 −1

Ỹ2 −1 2 −2

Ỹ ∗
3 −1 3 −3

Ỹ4 −1 −1 1

Ỹ ∗
5 −2 −2 2it doesn't 
hara
terize any 
hoi
e at all and we may ignore it. If we applythe operator τ to the fuzzy 
hara
teristi
 ve
tors, solutions Ỹ1, Ỹ2 and Ỹ ∗

3yield the same 
risp 
hoi
e {b}, whereas solutions Ỹ4 and Ỹ ∗
5 yield the same
risp 
hoi
e {c}. Note that both subsets of solutions are organized as 
hainsof more and more logi
ally determined solutions, i.e. 
oming in
reasingly 
loseto the values −5 and +5 that represent the maximal degree of falseness andtruth, respe
tively. In ea
h group of solutions, we shall fo
us on the maximalsolutions, Ỹ ∗

3 and Ỹ ∗
5 , with respe
t to this determinateness.13



We formalize the remarks made about the example into pre
ise de�nitions. We
all an L-fun
tion any L-valued fun
tion de�ned on X. We mainly 
onsider
L-fun
tions Ỹ su
h that Ỹ (a) 6= 0, for all a ∈ X; the set of su
h L-fun
tionsis denoted by L0 .De�nition 6 (Sharpness). Let Ỹ , Z̃ be two fun
tions in L0 . We say that Ỹis at least as sharp as Z̃, whi
h we denote by Z̃ 4 Ỹ , i�, for all a ∈ X, either
Ỹ (a) ≤ Z̃(a) < 0 or 0 < Z̃(a) ≤ Ỹ (a). The asymmetri
 part ≺ of 4 isde�ned as follows: a ≺ b i� a 4 b and not b 4 a.The �sharpness� relation ≺ is a partial order (asymmetri
 and transitive rela-tion) on the set of L-fun
tions in L0 .To ea
h fun
tion Ỹ in L, we asso
iate a 
risp subset of X, whi
h we denoteby K

Ỹ
and de�ne by:

K
Ỹ

= τ Ỹ = {a ∈ X su
h that Ỹ (a) > 0}. (3.12)We 
all K
Ỹ
the stri
t median 
ut 
hoi
e asso
iated with K

Ỹ
.For any L-fun
tion Ỹ ∈ L0 , the degree of sharpness Qsharp(Ỹ ) of Ỹ is de�nedas:

Qsharp(Ỹ ) = min( min
a∈K

Ỹ

Ỹ (a), min
a6∈K

Ỹ

−Ỹ (a)). (3.13)This index interprets as a degree of sharpness of Ỹ sin
e we have
Ỹ 4 Z̃ ⇒ Qsharp(Ỹ ) ≤ Qsharp(Z̃). (3.14)Of 
ourse, we may have Qsharp(Ỹ ) ≤ Qsharp(Z̃) and neither Ỹ 4 Z̃ nor Z̃ 4 Ỹ .De�nition 7 (L-valued dominant and absorbent kernels).We 
all L-dominant (resp. L-absorbent) kernel a L- valued 
hara
teristi
 ve
-tor Ỹ that satis�es the following three 
onditions:

• Ỹ is a solution of equation system (3.7) (resp. (3.8));
• it is maximal with respe
t to the sharpness relation 4 in the set Ydom(GL)(resp. Yabs(GL)) of admissible solutions of (3.7) (resp. (3.8)), i.e. there is noother solution Z̃ su
h that Ỹ ≺ Z̃;
• it belongs to L0 , i.e. Ỹ (a) 6= 0, for all a ∈ XWe denote by Fdom(GL) (resp. Fabs(GL)) the (possibly empty) set of L-dominant (L-absorbent) kernels of GL.Revisiting example 4, we have Ỹ ∗

3 and Ỹ ∗
5 (see Table 2) as L-dominant kernelsof GL; defuzzyfying Ỹ ∗

3 using the operator τ yields τ Ỹ ∗
3 = {b}. In a similarway, we get τ Ỹ ∗

5 = {c}. Those sets are the two dominant kernels of τG.A similar 
omputation, using the 
orresponding absorbent kernel equation14



systems yields the solutions [Y (a) = 2, Y (b) = −1, Y (c) = −2] and [Y (a) =
−4, Y (b) = −4, Y (c) = 4] as the L-absorbent kernels in GL.In example 3, the digraph GL admits the set F i−dom(GL) = {Ỹ ∗

1 , Ỹ ∗
2 } of L-dominant kernels and the set Fbad(GL) = {Ỹ ∗

3 , Ỹ ∗
4 } of L-absorbent kernels(see table 3). Applying the operator τ to these L-valued kernels yields the
hoi
e sets that were already obtained for example 3 in se
tion 3.2.Table 3

L-valued kernels in the digraph of Example 3kernel Ỹ (a) Ỹ (b) Ỹ (c)

L-dominant
Ỹ ∗

1 −1 5 −5

Ỹ ∗
2 −1 −1 1

L-absorbent
Ỹ ∗

3 1 −1 −1

Ỹ ∗
4 −5 −5 5From the latter example, it appears that L-valued kernels and potentially goodor potentially bad 
hoi
es of a valued graph are strongly related. In the nextse
tion, we show the formal 
orresponden
e between those notions.4 Relating L-valued kernels and potentially good and bad 
hoi
esIn this se
tion, we shall only deal with the �dominant 
ase�; our results extendmutatis mutandis to the �absorbent 
ase�. It is easy to establish a link betweena subset of solutions of the dominant kernel equation system (3.7) and a subsetof dominant kernels of τG that we de�ne below.De�nition 8 (Determined solutions of the dominant kernel equation system).A solution Ỹ of the dominant kernel equation system (3.7) is said determinedif it belongs to L0 i.e. Ỹ (a) 6= 0, for all a ∈ X. We denote by Ydom

0 (GL) theset Ydom(GL) ∩ L0 of determined solutions of (3.7).De�nition 9 (R -determined subsets). A subset K of X in the valued graph
GL = (X, R) is R -determined if R(a, b) 6= 0 for all a, b ∈ K.Lemma 1. If Ỹ belongs to L0 and is a solution of the dominant kernelequation system (3.7), then τ Ỹ = K

Ỹ
is a R -determined dominant kernel of

τG. 15



Proof. Using the fa
t that Ỹ is a solution of the dominant kernel equationsystem, we apply τ to both sides of (3.7), yielding
−τ Ỹ (a) = max

b6=a
[min(τ Ỹ (b), τR(b, a))],whi
h is exa
tly (2.2) with Y = τ Ỹ . It remains to be proven that K

Ỹ
is

R -determined. Assume that there are a, x ∈ K
Ỹ
with R(a, x) = 0. Sin
e Ỹbelongs to L0 by hypothesis, Ỹ (a), Ỹ (x) > 0. Using the �negative form� (3.9)of the kernel equation system, we have for that parti
ular a ∈ K

Ỹ
:

0 < Ỹ (a) ≤ max(−Ỹ (x),−R(x, a)) = 0,a 
ontradi
tion.4.1 A useful transformationThe elements of Ydom
0 (GL) i.e. the determined solutions of the dominant kernelequation system 
an be viewed as the �xpoints of a transformation T thatoperates on L0 .De�nition 10 (The transformation T ). The transformation T maps a fun
-tion Ũ ∈ L0 , onto T Ũ de�ned by:

T Ũ(a) = min
x 6=a

max(−Ũ(x),−R(x, a)), ∀a ∈ X.The �xpoints of T in L0 are the solutions of (3.9) or, equivalently, of (3.7),sin
e
T Ũ = Ũ ⇔ Ũ(a) = min

x 6=a
max(−Ũ (x),−R(x, a)), ∀a ∈ X.Lemma 2. If K is a R -determined dominant kernel of τG and Ũ ∈ L0 issu
h that K

Ũ
= K, then T Ũ ∈ L0 and K

T Ũ
= K. Moreover, for all a ∈ K

Ũ
,we may 
ompute Ũ(a) as follows:

T Ũ(a) =

(

min
x 6=a; x∈K

Ũ

−R(x, a)

)

∧

(

min
x 6∈K

Ũ

max(−Ũ(x),−R(x, a))

) (4.1)and for all a 6∈ K
Ũ
, we have:
T Ũ(a) = min

x∈K
Ũ

max(−Ũ(x),−R(x, a)) (4.2)Proof. If a ∈ K, T Ũ(a) > 0 be
ause 16



• for x ∈ K, R(x, a) < 0 and thus, for x ∈ K, max(¬Ũ(x),−R(x, a)) =
−R(x, a) (this also proves that(4.1) is equivalent to (3.9), for a ∈ K);

• for all x 6∈ K, max(−Ũ(x),−R(x, a)) ≥ −Ũ(x) > 0.If a 6∈ K, T Ũ(a) < 0 be
ause there is x ∈ K su
h that R(x, a) > 0; for su
han x, max(−Ũ(x),−R(x, a)) < 0 and hen
e Ũ(a) < 0. Moreover, for all x notin K, max(−Ũ(x),−R(x, a)) > 0, hen
e (4.2) is valid.Corollary 2. Let Ỹ ∈ L0 . The fun
tion Ỹ is a solution of equation system(3.9) (or equivalently of (3.7)), i� Ỹ satis�es
Ỹ (a) =

(

min
x 6=a; x∈K

Ỹ

−R(x, a)

)

∧

(

min
x 6∈K

Ỹ

max(−Ỹ (x),−R(x, a))

)

, (4.3)for all a ∈ K
Ỹ
, and

Ỹ (a) = min
x∈K

Ỹ

max(−Ỹ (x),−R(x, a)), (4.4)for all a 6∈ K
Ỹ
.Proof.

[⇒] Lemma 1 indi
ates that τ Ỹ = K
Ỹ
is a R -determined dominant kernelof τG; therefore Ỹ ful�lls the hypotheses of lemma 2 yielding the result.

[⇐] We prove that K
Ỹ
is a R -determined dominant kernel of τG. In view of(4.3) and the fa
t that Ỹ (a) > 0 whenever a ∈ K

Ỹ
, we dedu
e that R(x, a) < 0for all a, x ∈ K

Ỹ
. Similarly, for all a 6∈ K

Ỹ
, we dedu
e from Ỹ (a) < 0 andequation (4.4) that there exists at least one x in K

Ỹ
su
h that R(x, a) > 0.Hen
eforth, K

Ỹ
is a R -determined dominant kernel of τG. Using the fa
t that

K
Ỹ
is a kernel of τG, lemma 2 yields that T Ỹ 
an be 
omputed using (4.1)and (4.2); by hypothesis, Ỹ satis�es (4.3) and (4.4); therefore Ỹ is a �xpointof T , hen
e Ỹ belongs to Ydom

0 (GL).4.2 Obtaining a L-dominant kernel from a R -determined dominant kernelof τGWe use transformation T to obtain a L-dominant kernel from a R -determineddominant kernel of τG. The main result we need is the fa
t that T respe
tsthe relation �at least as sharp as� on any subset of L-fun
tions Ỹ su
h that
τ Ỹ is a R -determined dominant kernel.Lemma 3. Let K be a R -determined dominant kernel of τG and Ũ , Ṽ ∈ L0be su
h that K

Ũ
= K

Ṽ
= K and Ũ 4 Ṽ . Then T Ũ 4 T Ṽ .17



Proof. For any a ∈ K,
T Ṽ (a) =

(

min
x 6=a; x∈K

Ṽ

−R(x, a)

)

∧

(

min
x 6∈K

Ṽ

max(−Ṽ (x),−R(x, a))

)

.Sin
e the fun
tions min and max are nonde
reasing and for all x 6∈ K,
−Ṽ (x) ≥ −Ũ(x), we get T Ṽ (a) ≥ T Ũ(a).For any a 6∈ K, T Ṽ (a) = minx∈K

Ṽ
max(−Ṽ (x),−R(x, a)). Sin
e the fun
tions

min and max are nonde
reasing and for all x ∈ K, −Ṽ (x) ≤ −Ũ(x), we get
T Ṽ (a) ≤ T Ũ(a).Starting from the 
hara
teristi
 fun
tion of a R -determined dominant kernelof τG and applying iteratively T to this fun
tion, one obtains, after a �nitenumber of iterations, an element of Ydom

0 (GL)that is at least as sharp as anyother element Ỹ of Ydom
0 (GL)su
h that K

Ỹ
= K.Proposition 3. Let K be a R -determined dominant kernel of τG and Ũ ∈ L0be de�ned by Ũ(a) = m if a ∈ K and −m otherwise. For some �nite integer

n, T nŨ = T n+1Ũ and Z̃ = T nŨ is an element of Ydom
0 (GL)su
h that K

Z̃
= K;we have furthermore Ỹ 4 Z̃ for all element Ỹ of Ydom

0 (GL)with K
Ỹ

= K.Proof. The fun
tion Ũ de�ned in the proposition belongs to L0 . Sin
e, bylemma 2, K
T Ũ

= K
Ũ
, it is obvious from the de�nition of Ũ that T Ũ 4 Ũ .Applying lemma 3, we get T i+1Ũ 4 T iŨ , for all i. Due to the �niteness of Land X, there is a �nite number n su
h that T n+1Ũ is not stri
tly less sharpthan T nŨ , whi
h means that T n+1Ũ = T nŨ . For su
h a n, Z̃ = T nŨ is anelement of Ydom

0 (GL). It is moreover a maximal element w.r.t. the relation
4 in the subset of elements Ỹ of Ydom

0 (GL)su
h that K
Ỹ

= K. Let Ỹ besu
h an element. We have T Ỹ = Ỹ and Ỹ 4 Ũ . Applying lemma 3, we get
T nỸ 4 T nŨ , whi
h means that Ỹ 4 Z̃.It was not evident at �rst sight that, for all R -determined dominant kernels
K of τG, there are solutions Ỹ of (3.9) with K

Ỹ
= K. It was not evident eitherthat the set of solutions Ỹ of (3.9) with K

Ỹ
= K, when non-empty, admits aunique maximally sharp element. Putting together lemma 1 and proposition 3,we establish the existen
e of a bije
tive 
orresponden
e between R -determineddominant kernels of τG and determined L-dominant kernels of GL.Theorem 1. K is a R -determined dominant kernel of τG i� there is a de-termined L-dominant kernel Ỹ su
h that K

Ỹ
= K. This L-dominant kernel isunique. 18



4.3 Quali�
ation of a dominant kernelThere is a link between the quali�
ation Qi-dom(K) of a dominant kernel Kof τG and the sharpness quali�
ation of all elements Ỹ of Ydom
0 (GL)su
hthat K

Ỹ
= K. We �rst prove that the degree of sharpness of an element of

Ydom
0 (GL)is not larger than the quali�
ation of the 
orresponding R -determineddominant kernel.Lemma 4. If K is a R -determined dominant kernel of τG, any determinedsolution Ỹ of the kernel equation system (3.7) is su
h that the 
hoi
e K

Ỹ
= Kin τG veri�es:

Qsharp(Ỹ ) ≤ Qi-dom(K) (4.5)Proof. Assume thatQsharp(Ỹ ) > Qi-dom(K). Let Qsharp(Ỹ ) = r and Qi-dom(K) =
k, with r > k > 0. The quali�
ation Qi-dom(K) = k is equal either to −R(b, a)for some a, b ∈ K or to maxx∈K R(x, y), for some y 6∈ K.In the former 
ase, using (4.3), we get r ≤ Ỹ (a) ≤ −R(b, a) = k, a 
ontradi
-tion.In the latter 
ase, there is a ∈ K su
h that R(a, y) = maxx∈K R(x, y) =
k. Therefore, for all x ∈ K, R(x, y) ≤ k. Using (4.4), we have Ỹ (y) =
minx∈K

Ỹ
max(−Ỹ (x),−R(x, y)). For all x ∈ K,−Ỹ (x) ≤ −r ≤ −k ≤ −R(x, y) †† ;therefore Ỹ (y) ≥ −k. But, by de�nition of Qsharp(Ỹ ), Ỹ (y) ≤ −r hen
e

−r ≥ Ỹ (y) ≥ −k, a 
ontradi
tion.We �nally prove that the sharpness of the L-dominant kernel Ỹ 
orrespondingto a R -determined dominant kernel K is equal to the quali�
ation of K.Theorem 2. For any R -determined dominant kernel K, the L-dominantkernel Z̃ 
orresponding to K is su
h that Qsharp(Z̃) = Qi-dom(K).Proof. In view of lemma 4, it su�
es to prove that Qsharp(Ỹ ) ≥ Qi-dom(K).Let Qi-dom(K) = k, with k > 0. De�ne the L-fun
tion W̃ ∈ L0 as
W̃ (a) =











k if a ∈ K

−k if a 6∈ K.By lemma 2, TW̃ belongs to L0 and K
TW̃

= K
W̃

= K. Using (4.1) and (4.2),
†† obtained applying the negation − to Ỹ (x) ≥ r ≥ k ≥ R(x, y)19



we show that W̃ 4 TW̃ . Indeed, for a ∈ K,
TW̃ (a) =

(

min
x 6=a;x∈K

W̃

−R(x, a)

)

∧

(

min
x 6∈K

W̃

max(−W̃ (x),−R(x, a)) ≥ k

)

,and, for a 6∈ K,
TW̃ (a) = min

x∈K
W̃

max(−W̃ (x),−R(x, a))

= max(−k, min
x∈K

W̃

−R(x, a))

≤−k.Remember the de�nition of Ũ ∈ L0 that was used in proposition 3: Ũ(a) = mif a ∈ K and−m otherwise. We have W̃ 4 Ũ and, using lemma 3, T iW̃ 4 T iŨ ,for all i = 1, 2, . . .. Sin
e, for some n, T nŨ = Z̃, the L-dominant kernel
orresponding to K, we have:
W̃ 4 T nW̃ 4 T nŨ = Z̃and, using (3.14), Qsharp(W̃ ) = k ≤ Qsharp(Z̃).4.4 RemarksThe above results prompt the following remarks.(1) The undetermined value 0, when su
h a value appears in the set L, playsa spe
ial role and has to be 
arefully dealt with. In lemma 2 for instan
e,if we either drop the restri
tion that the dominant kernel K of τG is a

R -determined one or that Ũ(x) 6= 0 for all x ∈ X, we 
an no longermake sure that T Ũ(a) > 0 for all a ∈ K. This means that the trans-formed 
hara
teristi
 fun
tion T Ũ would not satisfy K
T Ũ

= K
Ũ
. Sin
ewe are interested in determined solutions of the kernel equation system,we did not pay attention to undetermined solutions, and 
orrelatively, we
onsidered only the R -determined dominant 
hoi
es of τG.(2) Throughout this paper, we have assumed that both the set X and the set

L are �nite. Our results extend without di�
ulty to the 
ase in whi
h Lis in�nite, while the set X of alternatives remains �nite. In su
h a 
ase,the number of values taken by the relation R is at most |X| × (|X| − 1);let m denote the maximum of |R(a, b)|, for a, b ∈ X; the 
onstru
tion ofa �xpoint of T as des
ribed in proposition 3 remains valid, sin
e T Ũ willonly take values also taken by R or their opposite, hen
e a �nite subsetof L. In 
ase the number of alternatives X is in�nite and L is an interval20



of the real numbers (for instan
e the interval [−1, 1]), the 
onstru
tionof the �xpoint as in proposition 3 still works but the 
onvergen
e mighttake an in�nite number of steps.5 Con
lusionThis paper aims at exploring the relationship between independent dominant(resp. absorbent) 
hoi
es and solutions of the kernel equation system in the
ase of valued relations. We have shown that there is a one-to-one 
orrespon-den
e between L-dominant (resp. L-absorbent) kernels of a valued graph andthe (R -determined) independent dominant (resp. absorbent) 
hoi
es of thestri
t median 
ut digraph τG. Furthermore, starting with an independentdominant (resp. absorbent) 
hoi
e of τG, the te
hnique of proof provides away of building the 
orresponding L-dominant (resp. L-absorbent) kernel asthe �xpoint of a transformation. This has an important 
onsequen
e from thealgorithmi
 point of view: �nding L-valued kernels is not more di�
ult than�nding the kernels of a 
risp graph. Indeed, starting with a (R -determined)kernel of τG and applying the transformation (de�nition 10) at most m|X|times yields the �xpoint. Of 
ourse, this does not make the determination ofthe L-valued kernels an easy task sin
e we know that �nding all kernels ofa 
risp relation is a 
omputationally hard problem (this was proven by V.Chvátal; see Garey and Johnson (1979), p.204).Theorem 2 also has interest in its own: the degree of sharpness of a L-dominantkernel Ỹ is equal to the degree of potential goodness Qi−dom of the asso
iated
risp kernel K
Ỹ
. The 
omparison of 
risp kernels (or equivalently of indepen-dent dominant or absorbent 
hoi
es of τG) done at the end of se
tion 4 aboutexamples 3 and 4 
an thus be transposed to L-valued kernels.Referen
esBang�Jensen J. and Gutin, G., Digraphs: Theory, algorithms and appli
ations.Springer�Verlag, London, 2001.Berge, C., Théorie des graphes et ses appli
ations. Dunod, Paris, 1958.Berge, C., Graphes et hypergraphes. Dunod, Paris, 1970.Bisdor�, R. and Roubens, M., On de�ning fuzzy kernels from L-valued simplegraphs. In: Pro
eedings Information Pro
essing and Management of Un
er-tainty, IPMU'96 , Granada, July 1996, 593�599.Bisdor�, R. and Roubens, M., On de�ning and 
omputing fuzzy kernels from

L-valued simple graphs. In: Da Ruan et al., eds., Intelligent Systems and Soft21



Computing for Nu
lear S
ien
e and Industry, FLINS'96 workshop. WorldS
ienti�
 Publishers, Singapoure, 1996, 113�123.Bisdor�, R., On 
omputing kernels from L-valued simple graphs. In: Pro
eed-ings 5th European Congress on Intelligent Te
hniques and Soft ComputingEUFIT'97 , (Aa
hen, September 1997),vol. 1, 97�103.Bisdor�, R., Logi
al foundation of fuzzy preferential systems with appli
ationto the Ele
tre de
ision aid methods, Computers & Operations Resear
h,27, 2000, 673�687.Bisdor�, R., Ele
tre-like 
lustering from a pairwise fuzzy proximity index.European Journal of Operational Resear
h, 138/2, 2002, 320�331.Bisdor�, R. and Roubens, M., Le temps des noyaux . . . . In: Bair, J. andHenry, V. (ed.) Regards 
roisés sur les méthodes quantitatives de gestion.Les Éditions de l'Université de Liège, Liège (Belgium), 2004, pp. 41�54.Garey, M.R. and Johnson, D.S., Computers and intra
tability, A guide to thetheory of NP-Completeness. Freeman and Co., New York, 1979.Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Fundamentals of dominationin graphs. Mar
el Dekker In
. New-York, 1998.Kitainik, L., Fuzzy de
ision pro
edures with binary relations: towards a uni�edtheory. Kluwer A
ademi
 Publ., Boston, 1993.Riguet, J., Relations binaires, fermetures, 
orrespondan
es de Galois. Bull.So
. Math. Fran
e, 76, 1948, 114�155.Roy, B., Classement et 
hoix en présen
e de points de vue multiples. RIRO 8,57�75.Roy, B., Algèbre moderne et théorie des graphes. Dunod, Paris, 1969.Roy, B., Méthodologie Multi
ritère d'aide à la dé
ision. E
onomi
a, Paris,1985.Roy, B. and Bouyssou, D., Aide multi
ritère à la dé
ision: Méhodes et 
as.E
onomi
a, Paris, 1993.S
hmidt, G. and Ströhlein, Th., On kernels of graphs and solutions of games:a synopsis based on relations and �xpoints. SIAM, J. Algebrai
 Dis
reteMethods, 6, 1985, 54�65.S
hmidt, G. and Ströhlein, Th., Relationen und Graphen. Springer-Verlag,Berlin, 1989. English version: Relations and graphs, Springer�Verlag, Berlin,1993.von Neumann, J. and Morgenstern, O., Theory of games and e
onomi
 behav-iour. Prin
eton University Press, Prin
eton 1944.

22


