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Solving the Dynamic Traveling Salesman Problem using a

Genetic Algorithm with Trajectory Prediction: An

application to Fish Aggregating Devices

Abstract

The paper addresses the synergies from combining a heuristic method with a
predictive technique to solve the Dynamic Traveling Salesman Problem (DTSP).
Particularly, we build a genetic algorithm that feeds on Newton’s motion equation to
show how route optimization can be improved when targets are constantly moving.
Our empirical evidence stems from the recovery of fish aggregating devices (FADs)
by tuna vessels. Based on historical real data provided by GPS buoys attached to the
FADs, we first estimate their trajectories to feed a genetic algorithm that searches
for the best route considering their future locations. Our solution, which we name
Genetic Algorithm based on Trajectory Prediction (GATP), shows that the distance
traveled is significantly shorter than implementing other commonly used methods.

Keywords

Supply Chain Sustainability, Dynamic Traveling Salesman Problem, Genetic Algorithms,
Fish Aggregating Devices.

1 Introduction

The Traveling Salesman Problem (TSP) probably represents the most intensive area of
research within the wide range of combinatorial optimization problems (Golden et al, 1987;
Gutin and Punnen, 2002). Whereas the diverse perspectives and problem-solving methods
have helped practitioners and scholars to address a multitude of different problems in
different industries (Grötschel and Padberg, 1985; Lawler et al, 1985; Duchenne et al,
2007; Donald, 2010), the literature on TSP is still underdeveloped with regard to moving
targets -such as in the fishing or military industries (Helvig et al, 2003). In this case, the
most recent approaches (which can be grouped under the heading ”Dynamic Traveling
Salesman Problem”-DTSP) work on a real time basis to find the changes between nodes
(Pantrigo and Duarte, 2013); nevertheless, they do not anticipate the future movement
of targets, so the optimal solution is given only when changes happen and the algorithm
is subsequently recalculated.
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With this academic background in mind, we faced the problem of tuna vessels that
pick up fish aggregating devices (FADs) at sea. When FADs transmit information on how
much tuna might be available beneath them, the vessels need to design a route taking
into consideration that FADs are constantly moving. They need to minimize distance
while recovering the FADs because saving time and fuel determines their competitiveness.
Using therefore real data, the paper contributes to the literature by proposing a new
approach that combines a heuristic method with a predictive technique. Particularly, we
first estimate the trajectories of the FADs to subsequently build a genetic algorithm that
uses this information and searches for the best possible route considering their future
locations.

From all heuristic methods, we chose GAs for their properties (they are evolutionary,
show statistical convergence, and tend to a global optimum with considerable robustness)
and because they offer vessels the possibility to reach a solution within an acceptable
computational time (Jih and Hsu, 2004; Bjarnadóttir, 2004). On the other hand, we
chose Newton’s movement equation as a predictive technique (we show a performance
comparison with other techniques for illustrative purposes) because it offers vessels a
sound and quick forecast of the future position of FADs with very little information.
By combining both tools in a single method, which could be named Genetic Algorithm
based on Trajectory Prediction (GATP), we reach a global optimization solution with
statistically better results than those offered by commonly used methods, such as the
Nearest Neighbour (NN) strategy or simple Genetic Algorithms (GA)(Konak et al, 2006;
Pérez, 2004).

The following section presents a survey of the relevant literature that guides our
approach. Section three describes the tuna vessels FAD recovery problem. Section four
compares different prediction models in order to show that the final choice (in our case
Newton’s motion equation) depends on the specific characteristics of each forecasting
initiative. Section five shows the experimental design, section six discusses results and,
finally, section seven concludes highlighting the main contributions of the paper and their
implications.

2 Literature review

Calculating the optimal route for recovering N moving elements lies within the Traveling
Salesman Problem (TSP) (Gutin and Punnen, 2002). Given a list of cities and their
pairwise distances, the task is to find the shortest possible route to visit each city only once
and then return home (Applegate et al, 2007). Not surprisingly, the initial applications
to real world problems were mainly in transportation and logistics (Dantzig et al, 1954).

Scholars soon perceived, however, that further applications could be feasible if they
interchanged the city concept with, for example, soldering points or DNA fragments, and
the distance concept with other constraints like traveling times, cost or time windows.
Further developments thus appeared in such diverse fields as crystal structure analysis
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(Bland and Shallcross, 1989), the drilling of printed circuit boards (Grötschel et al, 1991)
or even the mapping of a mouse genome (Avner et al, 2001). Certainly, the diverse
applications also triggered the development of new problem-solving methods (Tyedmers
and Parker, 2012), from exact algorithms to metaheuristics (Blum and Roli, 2003), such
as Swarm Intelligence (Bonabeau et al, 1999) or GAs (Donald, 2010).

GAs represent in fact one of the most consolidated approaches to the TSP (Potvin,
1996). They were first introduced by Holland (1975) to generate solutions for optimization
problems using techniques inspired by natural evolution (Winter et al, 1996), leading
to many theoretical developments over the last thirty years (Reinelt, 1994; Smith and
Smith, 2002).

Basically, GAs achieve the optimal solution from a random set of initial solutions
called population. Each set comprises an array of numbers where each number represents
one of the targets on the route, which are named genes. Hence, each population is
evaluated by a fitness measure (in our study, for instance, the measure is determined by
the minimal distance between all points on each route), so parents of the next generation
are selected probabilistically from the whole population so that the best routes are
selected to become the parents of the next generation. The process is regulated by
operators reflecting typical gene traits such as crossover and mutation. GAs repeat this
loop until they converge to a near global optimal.

Recently, some scholars have intensified the use of GA to implement theoretical
developments in different fields of application such as ship routing with time deadlines
(Karlaftis et al, 2009), vehicle routing with time windows (Dumas et al, 1995; Garcia-
Najera and Bullinaria, 2011; Wang and Regan, 2002; Baker and Ayechew, 2003) and
vehicle routing with loading constraints (Ruan et al, 2013). Despite the progress that
implementing GAs brought to the literature on route optimization, however, their
potential has not been fully exploited when addressing the TSP with constantly moving
targets.

GAs generate near-optimal solutions only when cities are at time t = 0; but, in a
dynamic scenario, the salesman needs to decide a route for t = 1, t = 2, etc. The final
route that the salesman should follow is therefore necessarily different from the one
chosen by a conventional approach to static objectives. This is probably the reason why
recent literature has increasingly dealt with dynamic targets, leading to a new line of
research in this field since Psaraftis (1988) introduced a first reflection on the Dynamic
Traveling Salesman Problem (DTSP).

Some contributions compare DTSP and TSP and reflect on basic issues to solve the
problem, appropriate approaches, or key evaluation criteria (Huang et al, 2001; Zhou et al,
2003). Most of the literature, however, presents specific applications based on well-known
metaheuristics such as Ant Colony Optimization (Eyckelhof and Snoek, 2002; Guntsch
et al, 2001), Simulated Annealing (Jeong and Kim, 1991), Tabu Search (Fiechter, 1994)
and Genetic Algorithms (Moon et al, 2002; Younes et al, 2003; Liu et al, 2009), under
which we can also include particular offshoots like inver-over operators (Li et al, 2006;
Yan et al, 2007) or CHC Algorithms (Simões and Costa, 2011). All this work represents
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a generalization of TSP in which targets are not necessarily static and applications are
often formulated with time-dependent variable constraints.

Taking this background into account, our approach resembles that of the existing
literature on DTSP but differs in an important way. Both assume the dynamic nature of
targets, but the available DTSP solutions work basically on a real time basis to find the
changes between nodes (Zhou et al, 2003; Hajjam et al, 2013). The main DTSP methods
(Pantrigo and Duarte, 2013) consist in fact in (i) restarting the search method from start,
which entails that problems are dealt with as a series of static optimization problems with
no relation to each other, and (ii) starting from the best solutions found before the last
event, which has found different methodological alternatives. Garrido and Riff (2010), for
instance, use a hyper heuristic approach generating a set of low-level heuristics; Pantrigo
and Duarte (2013) rely on a Scatter Search Particle Filter (SSPF) to take advantage
of the best solutions obtained in the previous executions; whereas Hajjam et al (2013)
employ an intermediate structure in a hybrid method that manipulates the self-organizing
map in order to minimize route lengths and customer’s waiting time. Hence, although
DTSP has allowed us to gain new insights by addressing new problems, the current
literature does not anticipate the future movement of targets; optimal solutions are given
only when changes happen and the algorithm is subsequently recalculated. By contrast,
our approach follows the line of research drawn by the literature on DTSP, but assumes
that changes in the localization of targets are small, traceable and time dependent. This
allows us to estimate the trajectories of the targets, as explained above, to subsequently
build a genetic algorithm that searches for the best possible route considering their future
locations.

3 The tuna vessel FAD recovery problem

An FAD is a man-made object used to attract ocean-going pelagic fish, such as tuna,
which gathers around it for reasons that are still unclear (Bach et al, 1998). Most purse
seiners for tuna therefore release FADs into the sea, letting them float on the water surface
following the ocean currents. Some of them are furthermore equipped with echo-sounders
that transmit information about their localization and the aggregated biomass beneath
them (Castro et al, 2001). Vessels can thus receive new messages from the buoys, and each
buoy position is updated at least every 12 hours (latitude and longitude). These messages
are transmitted automatically in a predictable and controlled way, communicating in real
time via satellite telecommunication systems such as Argos, Inmarsat, Orbcomm and
Iridium (Moreno et al, 2007).
Each tuna vessel can handle a different number of FADs, but the maximum per vessel
could be some hundreds. Each of them drifts on a particular course and speed, and these
conditions change with time because they depend basically on the sea currents under
the FAD and on superficial wind. Their speed can thus range from 0.2 knots1 to 2 knots
when they are in areas with strong currents, but on average they travell at about 1 knot.

11 knot = 1 nautical mile per hour; 1, 852 kilometers per hour
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Most tuna vessels recover their FADs still today following the Nearest Neighbor strategy
(NN) (or even without any plan at all). The advantage of this method is that it is easy
to implement, as the next target will always be the closest to the vessel. The amount
of nautical miles covered by vessels, however, is far from being optimal. In order to
calculate the NN with dynamic targets, it is necessary to take the next recovery decision
once the previous one has been taken, and once the rest of the targets’ movements have
been ascertained in order to figure out which will be the closest at time t+ t′.

Figures 1 and 2 show a real scenario of FADs drifting on the Indian Ocean. Each
black point represents a different buoy, whereas the red line represents the past positions
of the object sent via satellite. The time difference between positions is generally 12
hours or less.

Figure 1: FADs drifting in the Indian Ocean

4 Drifting object prediction

The literature offers different methods to simulate and predict current movements in
the sea (Özgökmen et al, 2000), but all are based on complicated mathematical models
which require data that a vessel cannot easily obtain, such as wind data and eddy effects.
Furthermore, by contrast with Lagrangian buoys, which have scientific purposes, FADs
are made without any standard. They are made by fishermen who use simple materials
like wood, string and net, so two FADs cannot be assumed to drift identically under the
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Figure 2: Two FADs drifting in the ocean

same conditions. It is not possible therefore to use models based on standard Lagrangian
buoys to predict the future positions of FADs in the sea.

In this context, we address the drifting FAD prediction problem from another, simpler
point of view; one that requires no more data than the last position of each object. As
soon as the buoys transmit their subsequent positions, the algorithm will update the
last position and will be calculated again to predict the best route, following the current
position of the buoy. So if the prediction for a specific FAD is not accurate enough to
predict the best route, the solution will be updated when the next message is received,
therefore showing a better optimal route if one exists.

Among the most simple prediction methods available, we have selected to compare two
easy-to-implement tools: time series forecasting and Newton’s motion equation. These
prediction methods are valid for any FAD, regardless of the ocean where it is drifting;
however, their effectiveness decreases with time because the error has a cumulative effect.
Be that as it may, our goal is to predict where the FAD will be in the near future; not
only its next position, but many future positions.

4.1 Time series

A time series is a sequence of data points that are measured at uniform time intervals.
Time series forecasting, in turn, refers to a model that predicts future events based on
past values (Casdagli, 1989). Among the methods to perform this type of analysis, the
autoregressive model (AR) is very often used to predict the future position of objects
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(Reinelt, 1994; Besse et al, 2000). It predicts the output of a system based on its previous
outputs.

There are a number of different notations for time-series analysis, among which one
of the most common is the following:

Y = {Yt : t ∈ T}

This AR(p) notation indicates an autoregressive model of order p (number of lags). The
AR(p) model is defined as:

yt+1 = c+

p∑
i=1

(αiyt+1−i) + εt

where α1, . . . , αp are the parameters of the model, c is a constant (often omitted for
simplicity) and εt is the error. AR models are easy to calculate and are widely used as
predictors for time series analysis of, for instance, stock markets, etc. (Marcellino et al,
2006; Zhang and Qi, 2005).

4.2 Newton’s motion equation

Motion equations describe the behavior of a system as a function of time. More specifically,
the equations of motion describe the behavior of a physical system as a set of mathematical
functions in terms of dynamic variables: normally spatial coordinates and time are used.
The Newton’s motion equation is considered between two points of time: one initial point
and one current or final point:

yt+1 = yt + vt∆t + 1
2at∆

2
t

where:

• yt: the position at the end of the interval (displacement)

• vt: the velocity at the end of the interval t

• ∆t: the time interval between the initial and current states

• at: acceleration at time t

Notice that in the rest of the article we will refer to the time variable t as discrete.
Although FADs are constantly moving in the sea, the information on their position is
given twice a day because of the airtime cost inherent to satellite communications.

Given that the acceleration value depends on the speed of the object, in our discrete
case its calculation requires the last two positions of the object:

a =
∆v

∆t
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4.3 Model comparison

Twelve real random FADs were selected from all the oceans to compare how well the
prediction methods forecast their next position. Each position is a pair of two single
elements: latitude and longitude. Independence between latitude and longitude is assumed
so, for a single position prediction, the model estimates two independent parameters,
latitude and longitude, which are estimated using the same equation.

The first step is to compare the different time series to see what order suits better
the real tracking of FADs. Ordinary Least Squares (OLS) was used to determine AR,
and the order of AR was selected using MAPE (Mean Absolute Percentage Error).

MAPE expresses accuracy as a percentage of the actual data and is defined by the
formula:

M =
1

N

N∑
t=1

∣∣∣∣(At − Ft)

At

∣∣∣∣
where At is the actual value, Ft is the predicted value and N the number of fitted points.
MAPE therefore provides an intuitive way to asses the importance or errors, since it
easily reflects, for instance, that an error of 10 when the actual value is 100 (10% error)
is worse than an error of 10 when the actual value is 1000 (1% error).

We have checked that first order time series predicts much better than other time
series with more order lags. The rationale is that the speed of FADs ranges from 0,2 to 2
knots, so the best approach to the next position will be close to the last position, which
is what the first order equation suggests.

This first order series is very simple to calculate and only requires the last position of
each object, but it has one important limitation. It predicts the future rather accurately
once the α1 parameter value has been set for each FAD. This means that, before predicting
the next positions, it is necessary to analyze all the past positions, calculate the best
parameter (coefficient) and only then can the equation be used to predict future positions
for that FAD (but only for that FAD). If we need to predict future positions of other
FADs, the optimal coefficient needs to be re-calculated.

Accordingly, in order to estimate the future movement of FADs with a time series
model, we will consider two options: The first stems from estimating the average of all
the coefficients, which would be close to 1 (α ' 1). This is named a random walk model,
with the form yt+1 = yt + εt, therefore suggesting that the next movement of an FAD is
only determined by its last position (which entails there is no movement). The second
option estimates the coefficient for each FAD. We will then compare these two time series
models with Newton’s motion equation.

yt+1 = yt (1)

yt+1 = α1yt (2)

yt+1 = yt + vt∆t + 1
2at∆

2
t (3)
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The information available on each object is latitude and longitude in degrees, and
the time difference between each position is 12 hours. Each buoy in the study has a
minimum of 200 samples, which is enough to establish the coefficients for each buoy and
to compare the different methods properly. Table 1 shows some real data from a buoy
and how the latitude and longitude change with time. In this case, day 0 refers to the
last position, whereas each half-day step is the former position that the buoy sends every
12 hours.

Table 1: Buoy data samples
An example of buoys data

Days Latitude Longitude

0.00 -8.07450 53.08117
0.50 -8.20417 52.92067
1.00 -8.43233 52.75367
1.50 -8.67017 52.56317
2.00 -8.69100 52.45533
2.50 -8.60883 52.27750
3.00 -8.60100 52.08517
3.50 -8.61000 51.87983
4.00 -8.60050 51.78600
4.50 -8.51550 51.74350
5.00 -8.38250 51.67350
5.50 -8.28683 51.54150
6.00 -8.22217 51.45200
6.50 -8.18550 51.41283
7.00 -8.10300 51.42383
7.50 -8.00983 51.43133
8.00 -7.94450 51.38983
8.50 -7.88600 51.34833
9.00 -7.84233 51.33783
9.50 -7.78750 51.24567
10.00 -7.81867 51.19767
10.50 -7.87417 51.12983
11.00 -7.98883 51.09517
11.50 -8.03833 51.08083
12.00 -8.07300 51.07117
12.50 -8.08317 51.01017
13.00 -8.13817 50.92533
13.50 -8.22083 50.84883
14.00 -8.27383 50.85417
14.50 -8.21600 50.81000

The results are shown in table 2: Newton’s motion equation has less error in average
than the other two methods (even if we compare it with the specific AR(1) for each FAD).
This is an important result because FAD positions can be therefore estimated without
great computational costs. By contrast, it is worth noting that Newton’s motion equation
only works for short time predictions because the error increases with time. Forecasting
the trajectory of an FAD for more than five days would require a more complex prediction
method, probably internalizing chaotic modeling as with ocean currents or weather
forecast (Casdagli, 1989). This is not needed here, however, because vessels spend
normally less than five days fishing and recover two to three FADs each day. Future
research can indeed identify applications where this effort is useful.
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Table 2: MAPE for three prediction methods
Buoys Lat/Lon Ramdom walk AR(1) Newton

Buoy 1
Latitude 0,84% 0,84% 0,82%

Longitude 0,22% 0,18% 0,24%

Buoy 2
Latitude 0,46% 0,47% 0,48%

Longitude 0,11% 0,11% 0,08%

Buoy 3
Latitude 1,31% 1,28% 0,63%

Longitude 0,27% 0,29% 0,06%

Buoy 4
Latitude 1,69% 1,67% 0,75%

Longitude 0,25% 0,32% 0,06%

Buoy 5
Latitude 5,33% 5,37% 1,02%

Longitude 0,07% 0,14% 0,02%

Buoy 6
Latitude 0,30% 0,33% 0,25%

Longitude 0,05% 0,13% 0,03%

Buoy 7
Latitude 1,27% 1,28% 0,77%

Longitude 0,15% 0,23% 0,03%

Buoy 8
Latitude 6,28% 6,30% 3,86%

Longitude 0,39% 0,44% 0,12%

Buoy 9
Latitude 32,37% 32,36% 18,40%

Longitude 0,10% 0,16% 0,03%

Buoy 10
Latitude 2,81% 2,79% 0,88%

Longitude 0,25% 0,27% 0,05%

Buoy 11
Latitude 10,04% 10,04% 5,05%

Longitude 0,21% 0,26% 0,07%

Buoy 12
Latitude 30,16% 30,16% 59,98%

Longitude 0,69% 0,72% 0,19%

5 Methodology

5.1 Data on buoys and vessels

5.1.1 Buoys input

If our problem has N drifting objects, being each bi an FAD:

(b1, b2, . . . , bN )

And for each of these objects we know their current position and the last M positions,
then the input we have is an N × (M + 1) matrix:

bt1 bt−11 bt−21 · · · bt−M1

bt2 bt−12 bt−22 · · · bt−M2
...

...
... · · ·

...

btN bt−1N bt−2N · · · bt−MN


Where the first column are all the objects in the current time t = t, the second column
are all the objects in t = t− 1, following the progression up to the last column, where we
have the objects at t = t−M .

Each object bt has two coordinates, latitude and longitude, to plot the real position
on a 2D map:

bt = (latitudet, longitudet)
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Note that M can be different for each object depending on when the object was
released in the sea. In our case it is enough to have two positions in the past for each
object; that is, t− 1 and t− 2: 

bt1 bt−11 bt−21

bt2 bt−12 bt−22
...

...
...

btN bt−1N bt−2N


5.1.2 Vessel and fishing information input

We need from the vessel the following inputs:

• Vessel speed average (in knots) when traveling from one object to the following
one: vs

• Initial position of the vessel: vinit = (vlat, vlon)

• Time spent by object ft (fishing time) with two possibilities (our solution can
handle both regardless of the choice of the vessel):

– The same fishing time for all the objects: ft,1 = ft,2 = . . . = ft,N

– Different fishing time for each object: ft,1 6= ft,2 6= . . . 6= ft,N

5.1.3 Objects prediction

Once we have the inputs, the first step is to predict the next position of each object using
Newton’s motion equation. Accordingly, the estimation of the R next positions would be:

b̂t+1 = bt + vt∆t +
1

2
at∆

2
t

b̂t+2 = b̂t+1 + v̂t+1∆t +
1

2
ât+1∆

2
t

...

b̂t+R = b̂t+R−1 + v̂t+R−1∆t +
1

2
ât+R−1∆

2
t

The number of future predictions must be enough to mix with the GA. We will talk
about a quantity of R future positions, where typically R >> N , depending on vs and ft.

After predicting R future positions for each object, the result matrix will be:


bt1 b̂t+1

1 b̂t+2
1 · · · b̂t+R

1

bt2 b̂t+1
2 b̂t+2

2 · · · b̂t+R
2

...
...

... · · ·
...

b̂tN b̂t+1
N b̂t+2

N · · · b̂t+R
N


11



Where for example b̂t+2
N is the predicted position of the object bN at time t+ 2.

5.2 Genetic Algorithm design

As discussed in Section 2, GAs achieve a quasi-optimal solution from a random set
of initial solutions called population. In our paper, the specific properties of the GA
reflected our concern to minimize the distance traveled by the vessel throughout the
recovering process. We summarize them below and provide subsequently in the following
subsections a brief report on the algorithm design:

• Population size: 100

• Natural Selection Mechanism: Tournament selection

• Tournament size: 50 couples tournament. Winners are selected

• Crossover type: Greedy crossover. P = 0, 7

• Mutation type: Simple Mutation between two elements. P = 0, 3

• Stopping Criteria: 1000 iterations without any fitness improvement

5.2.1 Solution encoding

A solution represents the route that a vessel must follow to recover all the buoys. Each
buoy will therefore be a point of the route represented by a number. For instance, (4, 2,
3, 1) means that the vessel has to recover object 4, then object 2, object 3 and finally
object 1, which is the end of the route; vessels do not return to their initial point of
departure.

5.2.2 Initialization

As is usual in GAs, the initial population was chosen randomly with the aim of covering
the entire search space. We particularly used a random set of 100 initial solutions, which
perfectly suits the problem we desire to address (Yang, 1997). The fitness of each solution
is measured as the total distance traveled by the vessel to recover all the buoys.

5.2.3 Selection

Once the fitness of each random solution has been calculated, the GA works to select
a sub-set of routes that becomes the parents of the next generation. We have used
here the well-known Tournament Selection Method (TSM) as a selection procedure due
to its robustness and simplicity to adjust the genetic pressure, which determines the
convergence rate of the GA. Firstly, the TSM chooses a number of couples (tournament
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size) randomly from the population. We use a 2-Tournament for the mating selection,
which entails that we initially selected randomly 50 pairs of routes. Then, each pair
competes with each other. The one with the best fitness wins the tournament and
becomes a parent for the next generation, named offspring. This selection pressure drives
the GA to improve the population fitness through successive generations. In order to do
so, nevertheless, the algorithm needs a probability for crossover and mutation. Following
standard practices with GAs, the crossover probability has been set at p=0,7; whereas
the mutation probability, p’, equals 0,3 (p+p’ = 1).

5.2.4 Crossover

Crossover is a method where the offspring inherits the characteristics from their parents.
We chose the Greedy Crossover Method (Yang, 1997) to address the specific characteristics
of our problem: the vessel needs to recover all the buoys only once, and we cannot remove
any of them or add others. Thus, given two parent routes R1 and R2, the first offspring
is built following these rules: we start in a random buoy b, and then check if the edge
leading to b or from b is used in both R1 and R2. If this happens, then the common
buoy b is chosen. Otherwise the b’s right edge is compared in R1 and R2, so the shorter
one is chosen unless it is repeated and it introduces a cycle. In this case, the longer
path is chosen. The second offspring is built in a similar way but comparing the b’s two
left side edges instead of the right ones. In order to implement this method, we need
to calculate the distance between some buoys to compare the edges and to determine
how the offspring is created. This offspring inherits different characteristics from both
parents, ensuring that all the buoys of the route are chosen only once.

5.2.5 Mutation

Mutation is used to preserve and introduce the genetic diversity, so it prevents the
algorithm to avoid a local minimum when the population is too similar among them.
There is always a mutation probability associated to the mutation operator, which as
noted above, we fixed at a standard level of 0,3. There are different mutation types;
from the simplest where only one chromosome is mutated (bit string mutation) to more
complex approximations (Flip bit, Boundary, Gaussian, etc.). Here we use the simplest
one, where two elements of the route are exchanged randomly, since it is sufficient to
maintain the genetic diversity of our population and ensures proper convergence of the
algorithm. For example, if we apply mutation in the route R1= (2, 4, 1, 3, 5) over the
elements 2 and 3 (first and fourth position of the vector), the resultant offspring will be
R1’= (3, 4, 1, 2, 5).

5.2.6 Stopping Criteria

So once we have chosen the 50 parents from the initial population, we provoke crossover
or mutation. In both cases we will generate two descendants from each of the 50 parents.
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If the crossover operator is selected, we choose randomly other parent from the other
remaining 49 parents, and later apply the Greedy Crossover technique in order to get
the two descendants. By contrast, if the mutation operator is selected, we will mutate
two genes (buoys) of the parent route. So if we desire to generate two descendants,
we need to perform the mutation twice for each parent. Once we repeat this process
for all 50 parents, the offspring will double to reach again 100 —improved— solutions.
This process finishes when the loop of steps achieves 1000 iterations without any fitness
improvement (stopping criteria). The quasi-optimal route is thus obtained reflecting the
shortest distance to recover all the buoys from the vessel’s initial position.

6 Experiments and results

Based on the inputs and techniques we have showed previously, this section describes how
the GA can work together with the prediction technique (in this case Newton’s motion
equation) to improve the route when targets are constantly moving. The solution, named
GATP (Genetic Algorithm based in Trajectory Prediction), will evolve from scratch to a
route where the vessel anticipates the future movement of the FADs.

6.1 GATP final solution: implementing the GA with Trajectory Pre-
diction

In order to calculate the final route, we will use the predicted positions. Figure 3 shows
the block diagram of our GATP solution, whereas figure 4 represents in detail how our
method calculates the fitness of each route.

We show below the steps to solve the problem (figure 3):

1. Calculation of the R future positions of each object: (b̂t+1, b̂t+2, . . . , b̂t+R).

2. Random solutions are calculated as follows:
Being (b1, b2, . . . , bN ) the objects to recover, we will select random solutions to
have the first generation of solutions to the problem. Each route is a sorted list
of the objects: (r1, r2, . . . , rN ), where each r can be whatever object to recover
(b1, . . . , bN ).

3. Calculation of the fitness of each route:

(a) [t = 0] and [d = 0]. Time and distance equal to zero.

(b) vp = initial vessel position.

(c) From i = 1 to N

i. Calculation of the time needed by the vessel to go from the current position
(vp) to the next object (ri: next object in the selected route). This time
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Figure 3: GATP Block Diagram

it will be stored as bi. Also, the fishing time of this object will be taken
into account as fi.
The position of the object ri will be r̂ti ≡ predicted position of that object
i at time t.

ii. Calculation of the time spent to recover and fish in the object ri

ti = bi + fi

iii. Vessel position (vp) is updated to the position of the last recovered object
ri at time t.

iv. Calculation of the distance traveled by the vessel to recover the object i

di = vs · bi

v. Current time t is updated to t =
∑i

j=1 tj ≡ current time spent.
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Figure 4: GATP Fitness calculation

vi. Total distance traveled:

d =
i∑

j=1

dj
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(d) Fitness of the route:

d =
N∑
i=1

di

4. Check if the termination condition has been reached. In this case the result is the
best route; if not, go to step 5.

5. Parents selection.

6. New offspring generation (crossover and mutation).

7. Go to step 3.

Note that we ignore the movement of the FAD in the first movement of the vessel,
which means that we ignore the movement of the FAD when the vessel is traveling
to recover it. This only happens, however, for the first object. The rationale of this
mathematical simplification is to avoid the calculation of the collision vector from the
vessel to the object when it is moving (alternatively, the only challenge has to do with
the time calculation of the algorithm). This evolving process makes the routes selected
in each generation converge on the route that minimizes the real distance from the vessel
to all the FADs. Algorithm 1 shows the pseudocode of the GATP solution.
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initialization;
while i < N do

calculates future positions of objecti;
i = i+ 1;

end
random routes selection;
i = 0;
for i← 1 to N do

calculation of time from current vessel position to objecti → bi;
calculation of time spent by the vessel to recover the next objecti → ti;
calculation of distance traveled by the vessel to recover next objecti → di;
update vessel position: vp = vpi ;

update time spent: t =
∑i

j=1 tj ;

i = i+ 1;

end

fitness calculation: d =
∑N

i=1 di;
if stop condition then

final route = best fitness route calculated;
exit;

else
parents selection from routes;
new offspring generation;
i = 0;
go back to the for section;

end
Algorithm 1: GATP algorithm

Figure 5 shows the rationale of the GATP solution and how the route is calculated
from the initial position of the vessel (represented by a square) to each object, considering
each trajectory is time dependent. We can see that the first vector goes directly where
the first buoy is; however, the second finishes where the buoy is expected to be at time
ti+1. The same procedure holds for the rest of the buoys.

The most significant difference between our GATP method and the GA-TSP approach
is the restriction used to calculate the costs of traveling from one point to the other.
The GA-TSP method does not use any prediction technique and it is based in the static
assumption of the objects. For this reason the fitness function is different in each case.
The costs are totally dependent on the distance traveled by the vessel before measuring
where the next object will be at time t. The distance between the vessel (previous object
at time t) and the next object at time t is subsequently calculated. This fitness function
makes our GATP solution evolve towards the route that minimizes the distance traveled
by a vessel.
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Figure 5: Using GA based combining prediction methods

Figure 6 shows our solution with an example of the implementation of the three
methods.

Figure 6: NN, GA-TSP and GATP: A graphic example for 12 FADs

Each route has a different color when they deviate from the rest:

• NN: grey color

• GA-TSP: pink color

• GATP: orange color
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The FADs are represented by the dots in red. In this example the orange cross
represents the starting position of the vessel, whereas each circle reflects an FAD recovery.
The final point of each route (last FAD recovered) is marked with a cross inside a circle.

The graphic shows that the circles are close for the first FADs recovered, but as the
time goes by, the distance increases. Particularly, the three methods start similarly: all
start picking the two FADs to the north of the orange cross (vessel initial position). This
is why we can only see one trajectory in orange. Then, the NN solution leads the vessel
to a different route; we can see how the grey line goes south, whereas the orange line
keeps heading north. The GA-TSP and GATP trajectories thus continue the route in the
same order during the recovery of 3 more FADs; one to the north, the following to the
east and the third to the south-east. After picking the fifth FAD, however, the routes
deviate and the pink trajectory reflecting GA-TSP appears.

6.2 Results and discussion

In this section we discuss the improvement achieved by addressing DTSP with the method
proposed in this paper: GAs based on Trajectory Prediction (GATP). Initially, and just
with informative purposes, we compare the Nearest Neighbor (NN) strategy, which is the
method normally used by tuna vessels, with TSP solved by GAs (GA-TSP). This second
method consists on applying a simple GA to the TSP problem. Then, we compare the
performance of our GATP method with both NN and GA-TSP. It is worth recalling that
we use real data offered by tuna companies for the last quarter of 2013. We have made
the following assumptions:

• Average vessel speed = 12 knots

• Recovery time = 3 hours for all the objects

• Number of objects to recover = 6, 9 and 12

• Buoys have different speed, which can go from 0.2 knots up to 2 knots

• Distance between buoys is also variable, it can go from 100 nm up to 1, 500 nm

The results (average, standard deviation and the improvement percentage achieved
between each two methods) are shown in Table 3. We can observe that our GATP
method is always better than the NN and GA-TSP for recovering 6, 9 and 12 buoys
(normal working range for these vessels).

These results are supported statistically. The comparisons have been tested through
a Repeated Measures ANOVA, given that the same subjects (vessels) are used for each
treatment (method). We thus find significant differences among methods and among the
interaction of methods with a different number of FADs (Sig. = 0.000 < 0.05) (Table
4). Results are consistent since the most frequent multivariate tests used in ANOVA
(Phillai’s trace, Wilks’ Lambda, etc.) show a very high significance. If we now deepen
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into which of the means for the three methods are significantly different from the others,
the pairwise comparisons support our descriptive analysis: average results by GATP are
statistically different (distances are lower) from those obtained by NN and GA-TSP for
6, 9 and 12 FADs (Table 5).

Table 3: Results comparison
Total distance traveled (nautical miles) Improvement Comparison

Experiment No buoys NN GA-TSP GATP GA-TSP
vs NN

GATP vs
NN

GATP vs
GA-TSP

1 6 buoys
x̄ 1735.1 1645.0 1615.6 4.4% 6.2% 1.9%
σ 566.6 498.8 501.2 5.6% 5.6% 2.2%

2 9 buoys
x̄ 4277.0 4185.4 3953.6 1.7% 7.3% 5.5%
σ 807.3 726.8 702.0 7.5% 4.7% 3.5%

3 12 buoys
x̄ 4069.4 3817.0 3734.1 5.6% 7.5% 2.1%
σ 725.8 559.6 556.3 5.6% 8.3% 4.4%

Table 4: Repeated Measures ANOVA: multivariate tests
Effect Value F Hipothesis df Error df Sig.

Method

Pillaíıs Trace 0.552 34.470 2.000 56.000 0.000
Wilkśı Lambda 0.448 34.470 2.000 56.000 0.000
Hotellinǵıs Trace 1.231 34.470 2.000 56.000 0.000
Roýıs Largest Root 1.231 34.470 2.000 56.000 0.000

Method · No of Buoys

Pillaíıs Trace 0.371 6.482 4.000 114.000 0.000
Wilkśı Lambda 0.653 6.647 4.000 112.000 0.000
Hotellinǵıs Trace 0.495 6.805 4.000 110.000 0.000
Roýıs Largest Root 0.405 11.556 2.000 57.000 0.000

Table 5: Repeated Measures ANOVA: Pairwise Comparison
Pairwise Comparisons

(I) Method (J) Method Mean Difference (I-J) Std. Error Sig.
95% Confidence Interval for Differences
Lower Bound Upper Bound

NN
GA-TSP 144.711 32.937 0.000 63.467 225.956
GATP 259.415 35.151 0.000 172.709 346.121

GA-TSP
NN -144.711 32.937 0.000 -225.956 -63.467
GATP 114.703 17.826 0.000 70.733 158.674

GATP
NN -259.415 35.151 0.000 -346.121 -172.709
GA-TSP -114.703 17.826 0.000 -158.674 -70.733

In short, GATP yields better results than other common optimizing strategies when
addressing routes for moving targets in the short term. The sophistication of the prediction
method, however, must be adapted to the specific characteristics of the exercise. For
instance, improving forecasting accuracy for FADs trajectories in the long term requires a
prediction method that considers the chaotic nature of its currents and internalizes Eddy
effects, temperature or altimetry. As mentioned above, however, this is not a concern in
the specific case of tuna fishing because a typical vessel spends normally less than five
days fishing and recovers two sometimes 3- buoys each day.

Finally, although the execution time of the GATP algorithm is an important variable
indeed, tuna vessels do not require a real time computation because it takes at least three
hours (normally between 8 and 12 hours) to fish and recover each buoy. The skipper will
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therefore run the solution to plan a week of work, finding out which is the best buoy to
start with and then run the algorithm with information updates on the buoys position to
keep on. Even if users had to wait several minutes for the algorithm execution in each
buoy, it would not accordingly represent a problem. Our experiments with real data
show, anyhow, that the execution time for the 3 methods is much lower:

• NN: 10 - 20 milliseconds for the recovery of 6 up to 12 buoys

• GA: 0,5 - 1,2 seconds for the recovery of 6 up to 12 buoys

• GATP: 0,6 - 2 seconds for the recovery of 6 up to 12 buoys

7 Conclusions

We have addressed the Traveling Salesman Problem with GA assuming that targets
change their position with time. Our contribution is a new way of solving the dynamic
route optimization problem using a simple prediction method that, combined with the
power of GAs, makes the implemented algorithm evolve towards the near-optimal route.

The comparative analysis between GATP and other commonly used methods like NN
or GA-TSP reveals the benefits of internalizing predictive methods within GAs. However,
given the chaotic nature of ocean currents and regardless of the sophistication of the
forecasting method, we can expect that GATP adds less value if long term predictions
were needed.

In practical terms, the GATP algorithm’s execution time allows new, better routes to
be recalculated easily when the FADs new positions are updated, also showing a better
real time route possibility where it exists. We could accordingly conclude that GATP
allows tuna vessels and any other agent pursuing moving targets in the short term -like
military airplanes- to minimize the distance traveled, which would impact directly on
such relevant variables as the time employed, fuel consumption or CO2 emissions to the
atmosphere. It is important to emphasize here that, for a given speed, the distance saved
is equivalent to fuel savings. This is extremely relevant not only to reduce costs but also
to increase the storage space.

Furthermore, the development of more sustainable fishing with FADs may benefit
from further research. To begin with, the algorithm is totally flexible and open to future
improvements adding new restrictions, such as prioritizing the recovery of some targets
that have more fish beneath them (using buoys with echo-sounder information), working
with time-windows for the recovery of FADs (the vessels can’t get fish during the night, for
example), implementing a multiple vessel FAD recovery strategy or finding the optimal
vessel speed in order to save more fuel. From a more general perspective and beyond
the specific tools employed in this paper, our results also reflect the value of mixing an
heuristic method with a predictive technique, regardless of the specific choice in any of
the two. A quasi-optimal solution could be consequently found using other heuristic
methods if they were combined with prediction techniques in a proper way.
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Finally, from a theoretical point of view, it is worth noting that GATP is a generaliza-
tion of the classic methods to solve the TSP with GA. When targets are not moving the
predicted next position by GATP will be the same offered by GA-TSP, so this solution
will evolve as classic methods for GA-TSP do. However, when targets start moving, the
proposed solution is different because GATP evolves in order to continue optimizing
the total route traveled, assuming the future movement of each object and therefore
achieving better results (depending on the prediction period). Our solution can therefore
be used in a generic way; for static, dynamic and mixed scenarios, being a more flexible
and more adaptable solution to estimate near-optimal routes in general.
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