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Abstract— Late post-traumatic seizure (LPTS) is a com-
plication of traumatic brain injury (TBI), which can lead to
a potentially lifelong condition of post-traumatic epilepsy
(PTE). Currently, the patho-mechanism that induces epilep-
togenesis in TBI subjects is unclear. As such, the epilepsy
community strives to identify which TBI subjects will de-
velop epilepsy and find potential biomarkers. To that end,
this study collects longitudinal multimodal data from TBI
subjects at multiple participating institutes. A supervised,
binary classification task is formed with data from the LPTS
versus no LPTS subjects. Missing modalities in certain
subjects is handled in two ways. First, we extend a graph-
ical model based Bayesian estimator to directly classify
subjects with missing modality, and second, we investigate
standard imputation techniques. The multimodal informa-
tion is then combined, following several fusion and dimen-
sionality reduction techniques found in literature, and even-
tually fitted to a kernel- or a tree-based classifier. For this fu-
sion, we propose two new algorithms: recursive elimination
of correlated components (RECC) which filters information
based on correlation, and information decomposition and
selective fusion (IDSF) which meaningfully recombines in-
formation from decomposed multimodal features. Based
on the cross-validated area under the curve (AUC) score,
we find the proposed IDSF algorithm provides the best
performance. Finally, following statistical analyses of the
frequently selected features, we recommend alterations in
inferior temporal gyrus as a potential biomarker.

Index Terms— seizure classification, multimodal fusion,
machine learning, missing data, multivariate information,
biomarker identification.

I. INTRODUCTION

Post-traumatic epilepsy (PTE) is a form of acquired epilepsy
that results from a traumatic brain injury (TBI) caused by an
external force, for example a fall or a motor vehicle accident.
Risk factors for PTE include occurrence of posttraumatic
seizures (PTS) such as late PTS (LPTS, 1 week post-injury),
because they carry a high risk of future seizures [1]. Effective
pharmacological treatments in the prevention or treatment of
symptomatic PTE seizures does not currently exist, therefore
it is essential for the epilepsy community to find potential
biomarkers, and techniques to identify which TBI subjects
will likely develop LPTS [2]. TBI causes widespread damage
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to both functional and structural features and to properly
understand the effect of TBI, we need to consider multiple
modalities [3]. Currently, the Epilepsy Bioinformatics Study
for Antiepileptogenic Therapy (EpiBioS4Rx) [4] is pioneering
this work with the aim to design and perform preclinical trials
of antiepileptogenic therapies, using multimodal information,
followed by future planning of clinical trials.

For classification tasks utilizing multiple modality infor-
mation, three major approaches are found in literature. They
are, namely: late, intermediate, and early fusion. Late fusion
involves combining predictions from multiple different base
learners (Base), or heterogeneous ensemble classification, and
it has been shown to be an efficient way of improving
predictive accuracy in machine learning (ML) [5]. As a form of
late fusion, stacking involves learning how to best combine the
classifiers, in addition to combination using simple statistics,
such as voting or averaging [6]. Džeroski et al. claimed
that heterogeneous base learners, stacked with a final meta
classifier, can perform comparably, if not better, to the best
of the individual classifiers [6]. In the second major approach,
intermediate fusion, features or information extracted from the
individual modalities are aggregated, and subsequently fed to
a single classifier. Since fusion in this method occurs in the
feature space, it is often more interpretable, and also allows
the application of multivariate information theoretic fusion [7].
The final approach, early fusion, involves representing the
raw individual modality information collectively in a common
space. From this aggregated information, an ML pipeline
can then extract relevant features and perform the desired
classification. Early fusion can be challenging to interpret,
since meaningful aggregation of different types of modalities
(e.g. spatial and temporal) is not always straightforward [8].
Past studies involving magnetic resonance imaging (MRI) and
electroencephalography (EEG) have found intermediate and
late fusion to be less affected by noise, misregistration, and to
have lower complexity; compared to early fusion [8], [9].

While acquiring data from all modalities for each subject
is ideally desirable, it is often not feasible. This creates a
challenge of handling such missing modality information.
Missing data has historically been dealt with imputation:
using the existing data to make estimates for the missing
values. Imputation techniques generally take either the form
of: a univariate approach that considers each missing fea-
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ture/ modality in isolation across all subjects, such as mean
imputation; or a multivariate approach that considers the
other available features/ modalities, which could be within
subject or across all subjects, such as k-nearest neighbor
(kNN) imputation [10]. Following imputation, standard fusion
and classification pipelines can be implemented. Aside from
conventional imputation, contemporary approaches include
jointly performing data imputation and self-representation
learning [11], or graphical model estimators that marginalize
missing attributes [12].

In this work, we undertake a LPTS versus no LPTS binary
classification task, in selected subjects from EpiBioS4Rx. In
Section II, we begin by elaborating our data collection and
preparation strategies. We considered three data modalities:
functional MRI (fMRI), diffusion-weighted MRI (dMRI), and
EEG. To address missing modality in certain subjects, first
we extend a graphical model based Bayesian estimator, and
second we investigate several univariate and multivariate im-
putation techniques. For combining the resultant multimodal
information, aligned with the findings from relevant previous
studies as discussed earlier, our work is based on intermediate
and late fusion. For intermediate fusion, we propose two novel
algorithms: one that refines multivariate information based on
correlation, and the other selectively combines information
following decomposition of the complete data. Finally, we
search for potential biomarkers, following statistical compar-
isons of the most frequently chosen features between the two
LPTS groups. The remainder of the paper is organized as
follows: Section III presents our empirical findings, Section IV
summarizes our discussion, and Section V concludes our work.

II. METHODOLOGY

A. Data Collection and Preparation

1) Data Acquisition: This work was approved by the UCLA
Institutional Review Board (IRB#16− 001576) and the local
review boards at each EpiBioS4Rx Study Group institution.
Written informed consent to participate in this study was
provided by the participants’ legal guardian/next of kin.

According to the EpiBioS4Rx protocol [4], moderate-to-
severe TBI subjects with frontal and/or temporal hemorrhagic
contusion and Glasgow Coma Scale (GCS) score between
3−13 were eligible for enrollment. A total of 48 subjects (36
male, 12 female; age = 42.1±19.3 years; GCS = 7.8 ± 4.44)
were chosen for this work. Of these subjects, 17(35%) expe-
rienced at least one LPTS, whereas the remaining 31 did not
experience any for the entire two year follow-up period, which
is the minimum duration needed to identify about 80 − 90%
of the subjects who will eventually develop PTE [13]. Even
though the modalities of interest for this work are dMRI,
EEG, and fMRI, the acquired data from the subjects included
other MRI sequences such as T1-weighted, T2-weighted, T2-
weighted fluid attenuated inversion recovery (T2-FLAIR), etc.
The following three sections will summarize the preprocesing
steps involved in preparing our three data modalities of interest
for the extraction of relevant features.

2) dMRI Preprocessing: dMRI scans corresponding to mul-
tiple diffusion gradient values and directions were collected.

Acquired dMRI data was processed in the Oxford FMRIB
Software Library (FSL) [14]), to estimate diffusion tensor
imaging (DTI) parameters, such as fractional anisotropy (FA)
maps, in subject-specific spaces. Since FA features have been
reported in earlier work to be promising in characterizing
PTS [15], [16], we focused on extracting and utilizing FA
features in this work.

The collected individual subject FA images were then
transformed to a common Montreal Neurological Institute
(MNI) space by registering to a standard HCP 1065 DTI FA
template, following Pipeline 1 in [16]. Finally, tract based
spatial statistic [17] of each registered image was carried
out using the mask and distance map obtained from the
standard template, to extract mean FA values along 63 white
matter (WM) tracts and bundles obtained from the JHU-DTI
atlas [18]. These mean FA values are recorded as the dMRI
features (xd).
Exclusion Criteria: Of the 45 subjects analyzed, 41 subjects,
meeting the two-year follow-up requirement, were chosen for
this work. From the chosen, 14(34%) experienced LPTS,
whereas the remaining 27 did not.

3) EEG Preprocessing: Epileptiform abnormalities (EAs)
such as seizures, periodic discharges (PDs), and abnormal
rhythmic delta activity (ARDA), are potential biomarkers of
epileptogenesis [19], [20]. Kim et al. [21] showed that the
presence of EAs in the EEG signal during the acute period
following TBI independently predicted PTE in the first year
post injury. Clinicians annotated the obtained EEG to denote
the presence of three such EAs (Seizure, PD, and ARDA),
which formed our EEG features (xe).
Exclusion Criteria: EEG recordings from 10 subjects were
selected, following review by EEG experts. Of them, 7(70%)
developed LPTS, while the other 3(30%) did not.

4) fMRI Preprocessing: To incorporate lesion information in
the rs-fMRI preprocessing, we manually segmented damaged
brain tissue into parenchymal contusions and brain edema
with ITK-SNAP [22] from the acquired 3D T2-FLAIR scans.
Brain contusion was defined as a lesion with abnormal signal
intensity and hemorrhagic volume > 1 ml, and brain edema
was defined as a region surrounding or in the proximity of
the contusion with hyperintense signal compared with the
WM signal on T2-FLAIR images [23]. Each segmentation
was carried out by a student research assistant and reviewed
for clinical accuracy by one of two medical physicians with
research experience in neuroradiology. For each TBI subject,
we obtained a 3D lesion mask including contusion and edema.
For the purposes of this work, the lesion incorporation served
to obtain a more accurate preprocessing pipeline, in which
brain alterations related to TBI were not mislabeled as brain
tissues such as WM, cerebrospinal fluid (CSF) and grey matter
(GM). Therefore, we did not consider the edema and contusion
separately within each 3D mask. Then, to use the lesion masks
in the rs-fMRI preprocessing pipelines, we performed affine
registration on each mask using the MNI 152 template with
the Linear Registration Tool (FLIRT) of FSL [14]. Affine
transformations were used because they allowed us to better
maintain the morphological characteristics of the lesions while
at the same time obtaining robust registrations.
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The preprocessing used a modification of the unified seg-
mentation normalization of SPM12 [24] as accessed through
the CONN toolbox [25]. The literature on normalization sug-
gests that SPM12’s unified segmentation normalization outper-
forms other pipelines when applied to simulated lesions [26].
However further work [27] showed that to achieve the best
performance, information about the lesion should be included,
motivating the inclusion of the lesion mask in preprocessing.

The fMRI preprocessing pipeline incorporates information
about the lesion by performing SPM12’s unified segmentation
normalization using a lesion modified Tissue Probability Map
(TPM). As discussed in [27], modifying the TPM performs
implicit cost function normalization because it ultimately
causes SPM to ignore the lesion areas during normalization.
The TPM normally provides a prior probability of a given
voxel belonging to one of 6 tissue classes; GM, WM, CSF,
skull, soft tissue, and other [28]. SPM12’s default TPM was
augmented for each subject with a 7th tissue class which
corresponds to the MNI lesion mask for that subject, thereby
setting the prior probability of the existence of GM, WM, or
CSF in the lesion areas to 0. A new function in the CONN
toolbox, conn createtpm, was used to create the modified
TPM. Finally, using the AAL atlas, the strengths of the positive
(xf−p), negative (xf−n), and overall (xf−o) connections were
recorded as the fMRI features [29].
Exclusion Criteria: Of the 44 subjects analyzed, 8 were
excluded because the preprocessing failed or the subject’s
imaging exhibited significant motion (less than 1

3 of the scan
was valid). From the remaining, scans corresponding to 32
subjects, meeting the two-year follow-up requirement, were
chosen. Out of these, 12 developed LPTS (38%), whereas the
remaining 20 (62%) did not.

B. Data Distribution and Preparation
1) Data Distribution by Modality and Train-Test Partitions:

While the goal of the study was to acquire all three modalities
of interest (xd, xe, xf ) for each subject, all subjects did not
have all modalities. Table I shows the number of subjects for
each combination of modalities, as well as the relative number
of subjects within each modality configuration. Out of the
included total N = 48 subjects, only seven had information
available from all three modalities. Of the other 41 subjects,
21 had a single missing modality, while the remaining 20 had
two missing modalities.

From the total N subjects, we then created train and test
partitions, following a five-fold cross-validation (CV). Any
missing modalities were handled using methods described in
Section II-B.2. We concatenated all D features (166 × 3 for
the three fMRI strengths, 63 for dMRI, 3 for EEG) along
the columns of X̃i ∈ R1×D, for i ∈ n samples in each CV
train fold. Each X̃i, representing an individual subject, is then
stacked vertically as rows to give the training partition (Xtrain)
for each CV round

Xtrain =
[
X̃1, X̃2, . . . , X̃n

]⊤
.

Each test partition (Xtest) is constructed in a similar manner
with m = N−n samples. The complete feature set, including
the train and the test sets, is denoted by X =

[
Xtrain,Xtest

]⊤
,

TABLE I
DISTRIBUTION OF SUBJECTS BY THE DIFFERENT AVAILABLE

MODALITIES AND LPTS LABELS.

Subjects fMRI dMRI EEG LPTS No LPTS
5 ✓ 1 4
13 ✓ 2 11
2 ✓ 2 0
20 ✓ ✓ 7 13
1 ✓ ✓ 1 0
7 ✓ ✓ ✓ 4 3

Total: 48 32 41 10 17 31

where X ∈ RN×D. Similarly, the train-test partitions for the
complete set of LPTS labels y ∈ RN×1, corresponding to any
CV round, could be expressed as y =

[
ytrain,ytest]

⊤.
2) Missing Data Imputation Technique: Most classification

techniques in literature cannot deal with missing data. In order
to establish an individual modality baselines and utilize several
relevant classification pipelines, we investigated imputing the
missing modality features following four standard techniques,
namely: mean, median, kNN, and iterative. The mean and
median imputation strategies replace each missing feature in
X̃i with the mean and median, respectively, of the non-missing
values in the corresponding feature column of Xtrain. For the
kNN imputation, each missing feature in X̃i is imputed using
the mean value of the feature present in a chosen number of
nearest neighbors sne (in terms of Euclidean distance among
the non-missing features) of X̃i within Xtrain [30]. For the
iterative imputation, we imputed the missing values in X̃i

by modeling d features with missing values as a function
of the other D − d features in a round-robin fashion, for a
given number of iterations. For all imputation techniques, we
used information from Xtrain only (in an unsupervised learning
setting), and not from ytrain.

C. Model Pipeline and Evaluation

1) Dimensionality Reduction (DR) and Classifiers: Consid-
ering Xtrain as input, the feature dimension D≫n. Aside, by
inclusion of all features, we risk hurting the final classification
performance by adding noise, and over-fitting by increasing
complexity [31]. It is thus recommended to reduce the dimen-
sionality of such high dimensional input. Thus, a standard DR
technique is cascaded at the start of each classifier for all
fusion approaches, aside the intermediate fusion techniques
(Other) outlined in Sections II-G.2-II-G.7, which themselves
serve to reduce dimensions. The three standard reduction pro-
cedures adopted in this work are: principal component analysis
(PCA) [32], and K-best features: chosen by maximizing either
the χ2-test score (χ2

score) or the Fischer score (fscore), between
Xtrain and ytrain [33].

In all classification tasks, whether as an interim individual
learner or as the final estimator, both SVM and AdaBoost
classifiers were investigated. The choice of these two clas-
sifiers was aligned with previous studies, which have found
both SVM [34], [35] and AdaBoost [16] to be suitable for
classification tasks involving neuroimaging features. For SVM,
both linear and radial basis function (RBF) kernel variants
were explored.
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K={2,3,
4,5,7,all}

k={1,2,
. . . ,10}

tree={10,50,100}

γ={0.01,0.1, 1
#features}

ℓ2={0.01,0.1,1}

Other

AdaBoost
χ2

score

fscore

SVMPCA

Dimension
Reduction

ClassifiersParameter
Search

Parameter Search

Fig. 1. Model pipeline showing the different dimension reduction tech-
niques and the classifiers, along with their parameter search spaces.

The top K or k features/components to be chosen, for
either one of the standard techniques or the intermediate
fusion techniques, were varied in the search space as shown in
Fig. 1. The only difference in implementation was: different
values for K were chosen per CV fold for the standard
reduction techniques, following a nested 5-fold CV within
the train set, whereas the same value for k was utilized (for
computational considerations) for all outer CV folds involving
the intermediate reduction techniques. For the classifiers, the
search space for SVM RBF’s gamma (γ), L-2 regularization
(ℓ2), and number of trees (tree) in AdaBoost can also be seen
in Fig. 1. All models were trained and tested in Python 3.7.4,
with support from scikit-learn [33] version 1.0.2, CCA-Zoo
[36], and MMIDimReduction [37].1

2) Scoring Metrics: For evaluating models on the test par-
titions in each CV fold, we use mean area under the receiver
operating characteristic (ROC) curve (AUC) as the primary
metric. Hanley et. al. demonstrated AUC to be an effective
measure of accuracy, with a meaningful interpretation in
medical diagnosis [38]. We thus used AUC to rank the models.
Aside, AUC helps choose a desired operating point (sensitivity,
specificity) in the ROC curve, where

sensitivity =
TP

TP + FN
, and specificity =

TN

FP + TN
,

where TP, FN, TN, and FP are the true positive, false
negative, true negative, and false positive, respectively. Two
techniques have been suggested in literature [39] to choose
the best operating point (for equal weights to sensitivity and
specificity), including the highest

Youden index = sensitivity + specificity − 1, (1)
and the lowest Euclidean distance from the upper left corner
(0,1) of the ROC curve, as

dUL =
√
(1− sensitivity)2 + (1− specificity)2. (2)

As a secondary metric to assess model performance on this
imbalanced dataset, but not to rank them, we used weighted
F1-score as given by

F1 =
2∑

i=1

mi

m

2 ∗ TP
2 ∗ TP + FP + FN

, (3)

where mi is the number of samples belonging to the i-th class,
in the current test fold.

D. No Imputation: Naive Bayes (NB) Late Fusion
In this section, we will extend the standard NB classi-

fier [12] to our graphical model to handle missing modalities in
the original data. As seen in Fig. 2, given the LPTS label (y),
we hypothesized that the resulting physical state of the subject

1The code used to generate the results will soon be made publicly available.

y

xd xe xf

Fig. 2. Graphical model depicting the hypothesized relation of the
observed modalities (shaded circles), with LPTS label as the latent state
(clear circle).

was captured by the different observed modalities (xd, xe, xf ).
The purpose of multimodal fusion with the different modalities
was to maximize the probability of detecting the true LPTS
label, given the collected evidence. In the NB approach,
features from each modality were assumed to be conditionally
independent of each other, such that

p(xd, xe, xf |y) = p(xd|y)p(xf |y)p(xe|y). (4)
Under the conditional independence assumption, it is possi-

ble to integrate out the contribution of any missing modalities,
i.e., by marginalizing over all possible values of xj given
y, where j ∈ M and M = {d, e, f}. This formulation
can be directly extended to missing modality scenario. For
instance, suppose xe is the missing modality, Eq. (4) becomes
p(xd, xf |y) which is equivalent of marginalizing over all
possible values of xe given y, leading to:

p(xd, xf |y) = p(xd|y)

(∫
p(xe|y)dxe

)
p(xf |y) (5)

where
∫
p(xe|y)dxe = 1.

The maximum likelihood estimation of choosing the pre-
dicted label y of a given subject is then taken to follow

y = argmax
l∈{0,1}

p(xd, xe, xf |y = l)p(y = l)

p(xd, xe, xf )
, (6)

where l = 0 (no LPTS), l = 1 (LPTS), and

p(xj |y) =
p(y|xj)p(xj)

p(y)
∀j ∈ M. (7)

Since p(xj) and p(xd, xe, xf ) are not functions of y, the
optimization objective in (6) is equivalent to

y = argmax
l∈{0,1}

p(y = l)
∏
j∈M

p(y = l|xj)

p(y = l)
. (8)

In this work, output from each individual modality base learner
(elaborated in Section II-E) was used to approximate p(y|xi),
and p(y = l) is estimated from the train set.

E. With Imputation: No Fusion
Here, we will summarize how we developed individual

modality base learners, using the data with imputation and
without any explicit fusion (disregarding the cross-modality
information lookup during imputation). The imputed features
from each j-th (j ∈ M) modality were passed through a
standard reduction technique and then subsequently fitted to a
classifier, as outlined earlier in Fig. 1.

F. With Imputation: Late Fusion
In this section, we will discuss the implementation of the

late fusion ensemble classification on the imputed data. We
begin by collecting the probabilities p(yj) corresponding to
the labels

yj = l ∀ l ∈ {0, 1}
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from each j-th modality classifier (base learner), as introduced
in Section II-E. We then summed these probabilities for l = 0
and l = 1, and utilized maximum likelihood to estimate

y = argmax
ℓ∈{0,1}

∑
j∈M

p(yj = l). (9)

This manner of probabilistic fusion (soft) takes into account
the confidence in the predictions of the individual base learn-
ers. This is in contrast to another comparable implementation,
where each learner directly estimates the output label, and the
fusion ultimately involves only majority voting (hard) among
the estimated labels [5].

G. With Imputation: Intermediate Fusion

In this section, we will discuss the implementations of
several existing intermediate fusion techniques, as well as
propose two novel techniques at the end.

1) Feature Union: In this approach, all D features from the
three modalities were concatenated to give Xtrain ∈ Rn×D.
Subsequently, Xtrain was passed through a standard reduction
technique to extract K features, and then fitted to a classifier.

2) Canonical Correlation Analysis (CCA): We hypothesized
that by looking in the directions of the maximal correlations of
the input modalities, we would be able to extract information
about their shared space, which might help the classification
task, since the y was assumed to be the underlying common
latent state in Fig. 2. In CCA, two sets of variables are linearly
combined to obtain canonical variates such that the correlation
between the linear combinations is maximized [32]. This
technique was thus utilized to combine our input modalities
in a three-fold combination: (xd, xe); (xd, xf ); and (xe, xf ).

For mathematical formulation, let us assume the com-
bination (xd, xf ). If we can express two linear functions
u = a⊤xf and v = b⊤xd, and if the covariance [32]

Cov(xd, xf ) =

[
Σ11 Σ12

Σ21 Σ22

]
, (10)

it can be shown that their correlation is maximized when[
−λΣ11 Σ12

Σ21 −λΣ22

] [
a
b

]
= 0, (11)

where the eigenvalues λ ∈ {ρ1 ≥ . . . ≥ ρs+t}, in descending
order. The maximum correlation was obtained with λ = ρ1,
and it provided our first pair of variates u1 = a⊤1 xf and
v1 = b⊤1 xd. From the obtained D such pair of variates, we
then selected kCCA pairs to form ZCCA ∈ Rn×kCCA (kCCA ≤ D),
and fitted ZCCA to a final classifier.

3) Generalized Canonical Correlation Analysis (GCCA):
CCA can only linearly combine two sets of variables. GCCA,
however, can combine more than two variables [40]. In our
case, GCCA combined (xd, xe, xf ) directly. GCCA attempts
to solve the following optimization problem

max
α1,...,αJ

J∑
j,q=1,j ̸=k

cjqg
(
corr(α⊤

j Xj , α
⊤
q Xq)

)
s.t. Var(α⊤

j Xj) = 1, j = 1, . . . , J,

(12)

where corr(·) is the Pearson correlation function, g(·) is the
identity function, cjq = 1 represents the connections between
modality feature matrices {Xd,Xe,Xf}, and J=3.

Similar to CCA, we then selected kGCCA pairs of variates
from the total D pairs, to give ZGCCA ∈ Rn×kGCCA (kGCCA ≤
D), and fitted ZGCCA to a final classifier.

4) Sequential Feature Selection (SFS): For selection of fea-
tures from such high D dimensional data, standard univariate
feature selection techniques ignore the mutual information
among features. Multivariate feature selection techniques,
however, consider a group of features in its entirety. Unfortu-
nately, searching for the globally optimal subset with exhaus-
tive search is O(2n), and can be computationally intractable.
As a result, it is common practice to resort to algorithms
striving to obtain a locally optimal, but perhaps globally sub-
optimal, feature set with a lower complexity [34]. Wrapper
method, a multivariate feature selection technique, attempts to
find a set of highly important features by fitting a particular
classifier on all features in a nested CV within the train
set [31]. Wrapper methods have been demonstrated to provide
superior performance (compared to filter methods in feature
selection) in classification tasks involving high-dimensional
neuroimaging data with limited samples [34].

In SFS, a multivariate wrapper technique, we greedily
choose features for classification, either by forward selection
or by backward elimination. For the first round in forward
selection, based on the score of the wrapper classifier, the most
informative feature is added. In the case of backward selection,
the least informative feature is removed. Forward selection
thus involves a bottom-up search strategy, which begins with
an empty set, and during each iteration, a new feature is added
to the current set so the loss function is reduced [34]. On the
contrary, backward elimination, follows a top-down approach,
starting with the complete set D, features are removed one
at a time such that the reduction in performance is kept at a
minimum [34]. Choosing either forward or backward selection,
we retain kSFS features. Selected features are collected as
ZSFS ∈ Rn×kSFS (kSFS ≤ D), and subsequently fitted to a final
classifier. SFS has an average complexity of O(n2).

5) Stochastic Mutual Information Gradient (SMIG): In this
method, we aim to learn a feature transformation network
ϕ⋆ : Rn×D 7→ Rn×kSMIG such that the high n×D-dimensional
input feature space is mapped to a lower n×kSMIG-dimensional
transformed feature space [37]. This mapping is done while
maximizing the mutual information between the transformed
set and the train labels ytrain as

ϕ⋆ = argmax
ϕ∈Ω

{I(ZSMIG,ytrain)}, (13)

where I(·) is the mutual information function, ZSMIG contains
the transformed training samples, and Ω denotes the function
space for possible feature mappings ϕ [37]. The parameters of
this ϕ⋆(·) network is updated iteratively by a technique known
as SMIG [37].

6) Recursive Elimination of Correlated Components (RECC):
In CCA, each of the kCCA pairs of canonical variates cho-
sen is uncorrelated to each other, since the pairs maintain
orthogonality among themselves [32]. However, there is no
such imposed constraint on some of the other DR techniques
like SFS or SMIG. As such, there exists a possibility that the
chosen set of k features/projections (components) will likely
contain a set of components, which are highly correlated with
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Algorithm 1: RECC for a given selection algorithm
Input : Pearson correlation coefficient threshold ρthresh, column

components Zsorted ∈ Rn×k1 (sorted by decreasing order
of importance by the selection algorithm, k1 ≤ D)

Output: column components ZRECC ∈ Rn×k2 (k2 ≤ D)
1 Initialize j = k1, ZRECC = Zsorted
2 while j > 1 do
3 for i = 1 . . . (j − 1) do
4 ρ← corr(Zsorted[:, i],Zsorted[:, j])
5 if ρ ≥ρthresh then
6 ZRECC ←ZRECC - ZRECC[:, j]
7 end
8 end
9 Decrement j

10 end
11 return ZRECC

Algorithm 2: IDSF for one decomposition algorithm
and one selection algorithm prepared by RECC

Input : Column components Zshared ∈ Rn×k1 (k1 ≤ D,
decomposed information shared by modalities obtained
using algorithm-1), column components Zunique ∈ Rn×k2

(k2 ≤ D, decomposed information present uniquely within
modalities estimated by applying RECC on algorithm-2)

Output: fused components ZIDSF ∈ Rn×k3 , where k3 ≤ D
1 Initialize ZIDSF = Zshared
2 for j = 1 . . . k2 do
3 ZIDSF ← ZIDSF + Zunique[:, j]
4 end
5 return ZIDSF

each other. Inclusion of such components might negatively
impact the classification performance [31].

To address this, we sought to remove the lesser impor-
tant set of highly correlated components using the proposed
technique, RECC, as outlined in Algorithm 1. We start with
Zsorted components sorted in decreasing order of importance,
according to given selection algorithm. Starting with the least
important component, if the Pearson correlation coefficient
(ρ), of the latest component in comparison with any of the
more important components, is ≥ ρthresh, we drop that latest
component from ZRECC. We continue this comparison, and
elimination if applicable, until we have compared all the
components in ZRECC, which is then fitted to the final classifier.

7) Information Decomposition and Selective Fusion (IDSF):
Our earlier hypothesis was that by utilizing information from
the shared space among the modalities, we would hope to
observe a better classification performance, since the LPTS
label y was also assumed to be a shared latent state. However,
there exists the possibility that a fraction of the information,
useful for classification, is present uniquely in a space not
shared by the individual modalities [41]. This indicates that
a classifier could potentially benefit from a combination of
the shared information, as well as modality-specific unique
information, obtained from the multiple modalities. This new
hypothesis formed the basis of our proposed IDSF algorithm,
where we fused the shared information (e.g. canonical variates
from GCCA) with the estimated unique information (e.g. com-
ponents selected by RECC, using a given selection algorithm
like SFS). IDSF is elaborated in Algorithm 2.

III. RESULTS

Based on our preliminary classification results with the four
different imputation techniques, kNN imputation outperformed

the other three. For this reason, all subsequent results in this
section, wherever data was imputed, was done using the kNN
imputer, with sne = 1.

The comparison of the mean AUC and the mean weighted
F1 performances, on the test sets from all five CV folds, for the
different fusion techniques (except IDSF) are summarized in
Table II. The first row shows the classification performance of
our extended NB estimator with late fusion, where the original
input features (no imputation) were used to fit individual
modality base learners. NB (AUC=0.710) outperformed the in-
dividual modality base learners (AUC={0.664,0.670,0.619}),
using imputed features without any fusion, and which form
the next three rows of Table II.

Of the techniques using imputed features and fusion, we
first list the performance of the soft late fusion estimator. This
probabilistic estimator also performed better (AUC=0.756)
than the individual modality base learners. It even performed
better than both the late fusion NB estimator (no imputation),
and the intermediate fusion (union of all modality features)
classifier (AUC=0.736), in the subsequent row of Table II.

The last six rows of Table II correspond to the DR
techniques involving intermediate fusion, as discussed earlier
in Sections II-G.2-II-G.6. Among them, the first four rows
presented existing techniques in literature, and the best per-
formance (AUC=0.784) was achieved with CCA. Even though
GCCA took into account all three modalities (xd, xe, xf−n),
compared to CCA’s two (xd, xf−p), we noticed it lagged in
performance (AUC=0.654) substantially compared to that of
CCA. Of the two SFS implementations discussed (forward and
backward), forward selection performed better (AUC=0.676),
and was thus recorded. Similarly, between the two imple-
mentations of SMIG (linear and non-linear), linear performed
better (AUC=0.699) and was recorded. Finally, the last two
rows in Table II demonstrated the improvement in perfor-
mances with our proposed RECC (AUC={0.710, 0.753}),
when applied on the original SFS and SMIG implementations,
respectively. Aside, the best F1 score (0.753) was obtained
with RECC-SMIG, indicating a potential choice for the best
model, if F1 score was more important in the model selection.

To obtain a better understanding of how the choice of ρthresh
affected the AUC performances of the RECC combinations
corresponding to the last two rows in Table II, we plotted
AUC vs. ρthresh in Fig. 3. The standard implementations of SFS
and SMIG corresponded to ρthresh = 1. As we lowered ρthresh,
we noticed the AUC performances to go up, until it peaked at
ρthresh = 0.5 for both RECC implementations, and then started
to go down. At ρthresh = 0.15, the performance of RECC-
SMIG almost returned to the its SMIG baseline, whereas that
of RECC-SFS remained higher than its SFS baseline.

In Table III, we recorded the best AUC performances for
each combination of the two decomposition algorithms (CCA
and GCCA) with the two selection algorithms (SFS and
SMIG) prepared by RECC, using intermediate fusion with
IDSF. We found the best IDSF performance (AUC=0.792),
also the best among all tested models, was obtained with
CCA and RECC-SFS. Just as seen earlier with CCA and
GCCA, IDSF with CCA was superior to IDSF with GCCA.
Interestingly, while individually both SMIG and RECC-SMIG
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TABLE II
PERFORMANCE OF THE DIFFERENT DIMENSIONALITY REDUCTION TECHNIQUES, FOR DIFFERENT STAGES OF FUSION, WITH BOTH ORIGINAL (NO

IMPUTATION) AND IMPUTED FEATURES.

Imputation Fusion Modalities Method Features/Components Classifier AUC F1
No Late xd, xe, xf−o NB (fscore) Varied Base 0.710 0.645

Yes

None
xd Base (χ2

score) Varied AdB 0.664 0.611
xe Base (PCA) Varied SVM 0.670 0.639

xf−o Base (PCA) Varied SVM 0.619 0.509
Late xd, xe, xf−o Soft Ensemble Varied Base 0.756 0.616

Intermediate

xd, xe, xf−p Feature Union All AdB 0.736 0.651
xd, xf−p CCA 7 SVM 0.784 0.584

xd, xe, xf−n GCCA 8 SVM 0.654 0.514
xd, xe, xf−o SFS (fwd) 5 SVM 0.676 0.581
xd, xe, xf−o SMIG (lin) 4 SVM 0.699 0.629
xd, xe, xf−o RECC-SFS (fwd) 5 (Varied,ρ=0.5) SVM 0.710 0.603
xd, xe, xf−o RECC-SMIG (lin) 3 (Varied,ρ=0.5) SVM 0.753 0.753

* lin=linear, fwd=forward, Varied=different number of features/components selected by grid search/ ρthresh in each CV fold,
AdB=AdaBoost.

Fig. 3. AUC performance of RECC-SFS and RECC-SMIG com-
binations from the last two rows in Table II, as a variation of the
Pearson coefficient threshold ρthresh, with SVM classifier and modalities
xd, xe, xf−o.

performed considerably better than SFS and RECC-SFS ear-
lier, their IDSF performances were closely matched. Aside,
while IDSF improved on the performances of the decom-
position algorithms on all occasions, it did not necessarily
do so over that of the selection algorithms (e.g. IDSF with
GCCA and RECC-SMIG). Finally, the best F1 score (0.677)
for IDSF was obtained with GCCA and RECC-SFS, indicating
a potential runner-up for the best model, should F1 score be
more important in the model selection.

To examine the effect of the proposed algorithms RECC
and IDSF in terms of operating points, mean ROC curves
(from the 5-fold CV) are plotted in Fig. 4 for the best model
from Table III, as well as for the individual techniques that
went into the best model from Table II. The variation of the
best ROC curve (IDSF) is estimated by a binomial distribution
approximation, for a 95% level of confidence [42]. We noticed
that just like RECC-SFS improved on standard SFS, IDSF
(AUC=0.79) improved on the performance over its two input
techniques: CCA (AUC=0.78) and RECC-SFS (AUC=0.71).
It also obtained the best operating point (0.01, 0.67: shown in
a red circle), according to the highest Youden index (0.68) and
the lowest dUL (0.23).

In order to understand whether the features that resulted in
the best classification performances could also be treated as

Fig. 4. ROC curve for the best performing model (solid black line)
using IDSF-CCA-RECC-SFS. The ROC plots for the classification per-
formance with SFS, RECC-SFS, and CCA are also shown: as purple,
yellow, and green dotted lines, respectively. The best operating point (as
per Youden index) is shown in a red circle. The classifier is SVM and
information from all three modalities are used.

potential biomarkers, we compared the distribution of the most
frequently selected feature(s) between the two LPTS groups.
These features were selected by the best algorithm on each
data set (original and imputed), from the aggregate of all the
five CV folds. Table IV presents this comparison, using a two-
tailed non-parametric Mann Whitney U test. The features with
unadjusted p-values less than 0.05 are reported in Table IV,
along with their Bonferroni corrected p-values [43]. Table IV
shows that for NB, using original features, inferior temporal
gyrus (region-90) in xf−o is significantly different between
the two LPTS groups.

IV. DISCUSSION

We observed that in Fig. 4, the best AUC performance
was observed with our proposed IDSF algorithm. While the
improvement of IDSF over CCA was marginal (AUC=0.79
over AUC=0.78), the operating points of the two curves are
quite distinct, as seen in Fig. 4. The choice of which point
to operate in is often subject to clinical considerations, like if
it is more important to correctly diagnose LPTS (sensitivity
weighted higher), or no LPTS (specificity weighted higher),
or the financial costs for correct and false diagnosis is the
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TABLE III
PERFORMANCE OF IDSF (WITH ITS INPUTS) IN INTERMEDIATE FUSION WITH IMPUTED FEATURES.

Modalities Shared Comp. Modalities Unique Components Classifier AUC F1
xd, xf−p CCA 7 xd, xe, xf−o RECC-SFS (fwd) 5 (Varied,ρ=0.5) SVM 0.792 0.619
xd, xf−p CCA 6 xd, xe, xf−o RECC-SMIG (lin) 1 (Varied,ρ=0.5) SVM 0.783 0.584
xd, xf−p GCCA 1 xd, xe, xf−o RECC-SFS (fwd) 5 (Varied,ρ=0.5) AdB 0.663 0.677
xd, xf−n GCCA 8 xd, xe, xf−o RECC-SMIG (lin) 4 (Varied,ρ=0.5) AdB 0.670 0.642
* lin=linear, fwd=forward, Varied=different number of components were selected by ρthresh in each CV fold, AdB=AdaBoost.

TABLE IV
COMPARISON OF SELECTED FEATURES BETWEEN THE TWO LPTS GROUPS USING A TWO-TAILED MANN WHITNEY U TEST.

Imputation Subjects Model Modality Potential Biomarker Unadjusted p-value Comparisons Corrected p-value

No 41 NB xd EC-R 0.049 2 0.098
32 NB xf−o Region-90 0.025 2 0.050

Yes 48 IDSF-CCA-RECC-SFS xd FX/ST-R 0.050 5 0.250
48 IDSF-CCA-RECC-SFS xf−o Region-48 0.049 5 0.245

* The p-values were first tested at a 5% level of significance (p ≤ 0.05) and then corrected using Bonferroni correction, EC-R=external capsule
right, region-90=inferior temporal gyrus, FX/ST-R=fornix/stria terminalis right, region-48=lingual gyrus right.

same (sensitivity=specificity) [39]. If either of the latter two
aforementioned cases is desired, IDSF would perhaps emerge
as the best model, for its operating point shown in red circle
in Fig. 4, indicating the highest Youden index and the lowest
dUL. However, should the cost of a false negative diagnosis be
higher, then the answer might not be as straightforward.

Aligned with our finding in Table IV, inferior temporal
gyrus has been previously reported as a brain biomarker for
early PTS (EPTS) and LPTS, following shape analysis [44]. It
is also worth noting that alterations in the other regions, which
we found to be statistically significant before the Bonferroni
correction, have also been shown to be associated with PTS-
related abnormalities: fornix/stria terminalis (FX/ST) [16], ex-
ternal capsule (EC) [45], and lingual gyri (regions-47,48) [46].
There is also the possibility that other potential biomarkers did
not demonstrate a significant group level difference, owing to
their variations within the individual level [47].

There have been several past studies involving multimodal
ML classification of seizures, including classification from
EEG and structural MRI [48], and from EEG and ECG [49].
However, to the best of our knowledge, ours is the first work
that investigates multimodal ML classification of LPTS from
dMRI, EEG, and fMRI: all the while also addressing the
challenge of missing modality data.

This work has certain limitations. Since this longitudinal
study is ongoing, the experiments in this work are only
carried out on a limited number of subjects, for whom the
necessary two year follow-up data has been obtained [13].
EpiBioS4Rx has an expected enrollment of 300 subjects at
completion. This will substantially increase the sample size,
so we can test the robustness of the proposed methods, as well
as investigate some of the applicable contemporary techniques.
One such example is EmbraceNet [50], which has shown
promise for multimodal classification with missing data, but
needs more samples to properly train its deep network with
more substantially more parameters, compared to ours.

V. CONCLUSION

In this work, we collected multicenter TBI subject data
and investigated them for a binary late seizure classification

task, using three modalities of interest (fMRI, dMRI, EEG).
To handle missing data in certain subjects, we extended the
NB classifier (following our hypothesized graphical model)
to marginalize the missing modality, as well as implement
standard imputation techniques, to be used with a chosen set of
existing DR techniques and ML classifiers. In terms of AUC,
while the NB estimator performed better than the imputation
based individual modality base learners, the proposed IDSF
algorithm performed the best within our experimental frame-
work. IDSF attempted to capture both the shared and unique
information, present within the multiple input modalities. To
estimate the unique information in each modality, we also
proposed RECC, which filtered already selected information
based on correlation. Finally, following statistical analyses of
the most frequently selected features, we found evidence that
the fMRI alterations of the inferior temporal gyrus might serve
as a potential biomarker of LPTS, and ultimately, PTE.
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