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Abstract

The problem of bandwidth allocation in computer networks can be likened to the supply-
demand problem in economics. This paper presents the economic generalized particle model
(EGPM) approach to intelligent allocation of network bandwidth. EGPM is a significant extension
and further development of the generalized particle model (GPM) [1]. The approach comprises
two major components: (1) dynamic allocation of network bandwidth based on GPM; and (2)
dynamic modulation of price and demands of network bandwidth. The resulting algorithm can
be easily implemented in a distributed fashion. Pricing being the network control mechanism in
EGPM is carried out by a tatonnement process. We discuss the EGPM’s convergence and show
that the approach is efficient in achieving the global Pareto optimum. Via simulations, we test
the approach, analyze its parameters and compare it with GPM and a genetic-algorithm-based
solution.

Index terms: Intelligent bandwidth allocation, economic generalized particle model (EGPM), price
and demands dynamic modulation, distributed and parallel algorithm, dynamical process, computer
networks.

1 Introduction

1.1 Approaches to the bandwidth allocation problem

Well-known optimization approaches that have been applied to network resource allocation
include: the max-min fairness (progressive filling) algorithm [2], Lagrangian multiplier approaches
such as the ones by Kelly and Low et al. [3, 4, 5, 6, 7, 8, 9], the ant colony optimization approach
[10, 11, 12], and genetic algorithms [13, 14, 15].

The max-min fairness algorithm has been widely used in digital networks, where it is used to allot
bandwidth as equally as possible to all the users under certain transmission conditions. Although
the algorithm is easy to realize, it tends to yield lower utilization of bandwidth resources than
other approaches. The algorithms proposed by Kelly and Low et al. dynamically control the data
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transmission rates of source nodes in the network so that the global utility of all the source nodes may
be maximized. These algorithms can usually achieve a comparatively higher utilization of network
resources with some degree of fairness. Using these algorithms, however, flow control is centralized,
which makes the algorithms difficult to realize in real environments. Evolutionary algorithms (EA)
are heuristic-based global search and optimization methods that have found their way into virtually
every area of real world optimization. Ant colony optimization (ACO) and genetic algorithm (GA)
are well-known examples; they belong to the class of meta-heuristics or approximate algorithms
capable of obtaining fairly good solutions to hard combinatorial optimization problems in a reasonable
amount of computation time. Their main limitation is that their empirical performance is unknown,
and they could sometimes consume excessive amounts of computation time.

During the past several years, a number of approaches using economic models for resource allo-
cation have been proposed, which include [16, 17, 18, 19, 20, 21]. Some of them divide the traffic into
multiple priority classes, and use a fixed price for each class. To achieve greater network’s efficiency,
a better strategy may be to use dynamic pricing whose variation depends on network activities such
as congestion. Wang and Schulzrinne [16] proposed a strategy where the price depends on the ser-
vice class’s average demand. The price is negotiable through a negotiation protocol. The strategy
however requires resource reservation which obviously would incur some amount of overhead. In the
pricing model of Baglietto et al. [17], the same amount of bandwidth is assigned to all traffic classes.
Although simple, this approach may not be that reasonable as different customers may have different
demands for bandwidth. Pricing in the scheme proposed in [18] is governed by a well-defined sta-
tistical model based on the source traffic. The scheme however does not take into account dynamic
changes in the traffic.

Auction-based algorithms could be an effective model for solving classical assignment problems.
Bitsaki et al. [19] pointed out that auctioning as an approach can outperform its main competitors
by a margin for some important types of problems, and is also well suited for parallel implementation.

Pricing as an effective means to achieve economic efficiency for computer networks has attracted
much attention recently. A number of pricing schemes have been proposed, such as [20, 21]. An
appropriate pricing policy will provide incentives for users to behave in a way that would improve
the overall utilization and performance of the network. A proper pricing policy influences the users’
demands and the network revenue. There exist many papers on pricing for communication networks
using the principles of microeconomics. Kelly et al., for example, use congestion price for rate
control in wired networks, where elastic traffic users for throughput reasons can dynamically change
their data rates [4]. Siris adopts a similar approach for CDMA networks [22]. Low presented a
duality model of several TCP/AQM gate protocols [6], which treats these protocols as distributed
primal-dual algorithms carried out over the Internet in real-time to maximize the aggregate utility
and subject to certain capacity constraints. Kelly et al.’s and Low’s methods can be regarded as
directly or indirectly based on the Lagrangian multiplier method, and because of that, flow control
is centralized.
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1.2 The Generalized Particle Model (GPM)

Recently, Shuai and Feng proposed the generalized particle model (GPM) approach [1]1 which
is based on hybrid energy functions. GPM can overcome some of the main deficiencies of the
other approaches while retaining some of the good features of those well-known approaches just
discussed. GPM was shown to be easy to realize, able to achieve comparatively higher network
resource availability, and suitable for distributed implementation. GPM uses two “force-fields”,
the demand force-field and the resource force-field. There are numerous particles and forces in every
force-field, where the particles and forces follow their own dynamic equations to represent the network
entities and their behaviors and interactions respectively. The approach features high parallelism,
low computational complexity, and simplicity for hardware implementation. The GPM approach,
however, has the following limitations when applied to the network bandwidth allocation problem.

• The demand force-field in GPM is used to determine the pricing. Since the prices of bandwidth
computed based on the demand force-field are linked to many factors such as congestion, supply
and demands of bandwidth, interaction of various network entities, etc., the convergence rate
to the equilibrium prices is low.

• Since many parameters in GPM need to be correctly chosen, GPM may not always produce
a solution for efficient resource utilization. In order to accommodate as many connections as
possible in a congested network, the resources need to be used efficiently. GPM’s complex
solutions (in both pricing and resource allocation) may be impractical although theoretically
they can achieve better resource utilization.

• When the network traffic changes dynamically, the pricing is modulated via several or more
iterative steps, and only when these steps are completely over can the new price take effect.
Thus, prices modulate slowly in response to changes of the network traffic.

1.3 Economic Generalized Particle Model (EGPM)

This paper presents the EGPM approach for network bandwidth allocation. EPGM is based
on GPM [1] and the excess demand function [28]. EGPM retains the advantages and overcome the
disadvantages of the price-based approaches mentioned above, as follows.

• It adds congestion-dependent components to the price.

• It takes network activities and dynamic traffic changes into account.

• Its pricing depends on the excess demands of network resources.

• It does not require resource reservation.

• It uses price to reflect the dynamic situation of resource demands and the supply.
1The work reported in [25] predated that of [1]; the latter incorporated several major improvements and achieved

better results for the bandwidth allocation problem.
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• It does not assign the same amount of bandwidth to all classes of traffic.

• Its complexity is relatively low.

Similar to the auction algorithm, EGPM rests on the belief that an appropriate pricing policy will
provide incentives for the users to behave in ways that would improve the overall utilization and
performance. EGPM makes use of the following ideas in the field of economics.

Yield management. By adjusting the allocation of (limited) resources, a company can optimize
its total revenue or “yield.” In [23], it is suggested that (1) it is expensive or impossible to
store excess resources; (2) commitments need to be made when future demand is uncertain; (3)
the company should differentiate among customers who may have different demand curves; (4)
the same unit of capacity can be used to deliver many different products or services; and (5)
producers are profit-oriented and have absolute freedom of action. Obviously, the bandwidth
allocation problem has all these characteristics.

General equilibrium model. General equilibrium theory seeks to explain production, consump-
tion and prices in an economy. Walras suggests that equilibrium can be achieved through a
process of tatonnement [24].

Tatonnement process. Prices are lowered for goods with positive prices and excess supply, and
should be raised for goods with excess demand [24]. EGPM applies the tatonnement process
to GPM for the pricing of bandwidth.

Pareto efficiency. If an economic system is Pareto efficient, then no individual can be made
better off without another individual being made worse off [24]. In this paper, we prove that
the solution obtained by the EGPM algorithm is globally Pareto optimal.

We study particularly the relationship between price and demands in networks, and present
the detailed EGPM approach which exploits the price-demands trade-off in solving the bandwidth
allocation problem.

The following summarizes the differences of EGPM from GPM.

• In EGPM, the resource force-field is retained for allocating network resources; but instead of
the demand force-field, the economic tatonnement process is used to determine the prices.

• The solution obtained by the EGPM algorithm is globally Pareto optimal.

• The EGPM algorithm is simpler than GPM in terms of the initial conditions and the choice of
the main parameters in the algorithm, hence more practical.

• By the tatonnement process, EGPM is more effective in resource utilization than GPM. Also,
EGPM’s convergence rate is faster.

• In EGPM, only the value of the excess demand function is used in updating the price; hence,
price modulation works faster than GPM in response to dynamic network traffic changes.
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The provision of network services can be viewed as an economy where users are consumers and
network resources are commodities. The price for bandwidth dynamically reflects the equilibrium
between demand and supply. When the supply of bandwidth is less than the demands of bandwidth,
the network becomes congested, and the price will rise; whereas when the supply of bandwidth is
more than the demands of bandwidth, the price will fall. In EGPM, prices depend on the traffic
demands and the available bandwidth. The bandwidth allocated to a user is equal to the demand for
a price that the user can accept. Hence, the pricing scheme in EGPM is dynamic where the prices
are not fixed and can change as the traffic load in the network changes.

In this paper, we consider the idealized situation where users can freely choose their shares of
fixed or variable bandwidth in order to maximize their benefit. The network coordinates their choices
through resource pricing. By bringing up the price at times of peak usage of bandwidth, the demands
would adjust themselves, and the result is that less capacity is needed to meet the demands, and the
capital utilization becomes higher. Some traditional approaches would reserve certain capacity for
the users ahead of time. Reservation however neglects the efficiency gains that are possible through
sharing of resources. EGPM avoids reservation so as to take advantage of statistical multiplexing.

To avoid large communication overheads in the computation, we (1) price only bandwidth (but
not buffers), and (2) avoid reservation. In typical network situations, both bandwidth and buffer
capacities will eventually become scarce. We believe that scarcity is best treated through pricing as
price-based allocation is consistent with a competitive marketplace. We consider bandwidth to be a
natural commodity to price, whereas pricing buffers is less satisfactory from a user’s point of view.
Furthermore, network performance is usually more sensitive to bandwidth than to buffers.

The EGPM algorithm is divided into two parts, as shown in Fig. 1: (1) dynamic allocation of
network bandwidth based on GPM, and (2) dynamic modulation of prices and demands based on the
tatonnement process. The tatonnement process and auctioning share some common features. Allo-
cation based on GPM can realize the optimization of multiple objectives, including the global utility,
the personal utilities, the minimal personal utility, the resource utilization, the users’ satisfaction
degrees, etc. Auction-based allocations cannot achieve the same.

The design of the EGPM algorithm pays special attention to the three “evaluation indices”:
bandwidth utilization, demand satisfaction, and fairness. These are in fact rather common measures
for network performance. The former two indices are embodied in Eq. 4. Proposition 5 for the
equation implies that the EGPM algorithm will be able to narrow the gap between bandwidth
resources and the demand and maximize the utilization of the links’ bandwidth. Max-min fairness
is embodied in Eq. 3 and assured by Proposition 1.

1.4 Paper structure

Section 2 presents the model of bandwidth allocation problem. In Section 3, we give an overview
of the EGPM architecture. In Sections 4 and 5, the evolution of the allocation policy and that of the
pricing policy are addressed, respectively. The convergence of the EGPM algorithm is discussed and
proved in Section 6. Section 7 presents the EGPM algorithm which is a synthesis of the results of
the previous sections. In Section 8, we present the performance of EGPM based on simulation, and
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compare it with GPM, genetic algorithm and other well-known bandwidth allocation approaches.
Finally, we draw conclusions in Section 9.

2 Problem Model for Bandwidth Allocation

The following are the important issues to consider in our solution.

1. Allocation effectiveness: the customers should be satisfied, the available bandwidths should be
utilized as fully as possible, and the allocation should be fair.

2. Pricing strategy: how the various bandwidths should be priced in order to maximize every
link’s and network’s revenue.

3. Parallel allocation: the allocation method should be easy to be implemented in a distributed
fashion with minimal communications among the computing entities.

The first issue above presents specific objectives which are common to most bandwidth allocation
problems and solutions. In our approach, the degree of this objective being met is measured by the
demand satisfaction level (DSL), the bandwidth utilization level (BUL), and a fairness term. Every
link’s revenue and network’s revenue are two artificial objectives in our EGPM algorithm, which are
means to optimizing the real objectives of the problem. EGPM purports to address all the above
issues.

In the bandwidth allocation problem, a source-destination pair communicate through a channel
associated with the pair, and have a certain demand for bandwidth. The channel can be realized
through one or more paths into which the channel’s traffic would be split. We consider the scenario
with a given number of links and their capacities, a given number of channels and their demands
for bandwidth, and a given number of paths per each of these channels. This is the case of a static
environment. Our approach applies also to the dynamic case where these parameters may change over
time. If the environment does change during the calculation of an allocation, the EGPM algorithm
will allocate the bandwidths based on the current calculation and then perform a new calculation
from the beginning according to the new conditions.

The network is an undirected graph of N nodes and m links, and there are J channels. The main
parameters of any problem instance are as follows.

Ai: The i-th physical link (i = 1,m).

T (j): The j-th channel (j = 1, J ; J ≤ N × (N − 1)/2).

nj: The number of the paths of channel T (j) (n =
J∑

j=1
nj).

T
(j)
k : The k-th path of the j-th channel.

ri: The maximum bandwidth of link Ai.

d(j): The median of the bandwidth demand of channel T (j).
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ςj: The mean square deviation of the bandwidth demand of channel T (j).

x
(j)
ik : x

(j)
ik = 1 if path T

(j)
k passes through link Ai; otherwise 0.

a
(j)
ik : The bandwidth of link Ai that is allotted to path T

(j)
k .

p
(j)
k : The price per unit bandwidth that path T

(j)
k has to pay.

a
(j)
k : The actual bandwidth obtained by path T

(j)
k —that is, a

(j)
k = min

i
{a(j)

ik

∣∣∣∀x(j)
ik = 1} .2

Table 1 shows a snapshot of allocation.

Table 1: The bandwidth allocation problemXXXXXXXXX

of channels
Required bandwidths

(price) to paths
Allotted bandwidths

Am

...

Ai

...

A1

Link

Path

p
(1)
1 , a

(1)
1

x
(1)
m1, a

(1)
m1

...

x
(1)
i1 , a

(1)
i1

...

x
(1)
11 , a

(1)
11

T
(1)
1

d(1), ς1

· · ·

· · ·

· · ·

· · ·

· · ·

p
(1)
n1 , a

(1)
n1

x
(1)
m,n1 , a

(1)
m,n1

...

x
(1)
i,n1

, a
(1)
i,n1

...

x
(1)
1,n1

, a
(1)
1,n1

T
(1)
n1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

p
(j)
1 , a

(j)
1

x
(j)
m1, a

(j)
m1

...

x
(j)
i1 , a

(j)
i1

...

x
(j)
11 , a

(j)
11

T
(j)
1

d(j), ςj

· · ·

· · ·

· · ·

· · ·

· · ·

p
(j)
nj

, a
(j)
nj

x
(j)
m,nj

, a
(j)
m,nj

...

x
(j)
i,nj

, a
(j)
i,nj

...

x
(j)
1,nj

, a
(j)
1,nj

T
(j)
nj

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

rm

...

ri

...

r1

bandwidth
Link

The above parameters of the problem fall into several categories, as in Table 2.

Table 2: The notations
Category Parameter(s) During calculation

The network Ai, T
(j), T

(j)
k , N, m, J, nj , x

(j)
ik fixed

Supply & demand ri, d
(j)(t = 0), ςj fixed

Solution a
(j)
k changing

Artificial variables d(j)(t > 0), a
(j)
ik , p

(j)
k changing

The bandwidth allocation problem is defined as:

Bandwidth allocation problem:

Try to guarantee: satisfaction indicator (SI).

Maximize: demand satisfaction level (DSL), bandwidth utilization level (BUL), and fair-
ness.

Given conditions: N, m, J, nj , ri, d
(j)(t = 0), ςj , x

(j)
ik , and topology.

Solution: a
(j)
k .

Definition 1 The satisfaction indicator is a logical variable indicating whether the demand of a
channel is met or not.

SI(j) =

{
Y es

nj∑
k=1

a
(j)
k (t) ∈ [d(j) − ςj , d

(j) + ςj ]

No otherwise.

2If x
(j)
ik = 0, a

(j)
ik = 0.
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Definition 2 The demand satisfaction level of a channel (source-destination pair) shows the actual
degree of satisfaction (or dissatisfaction) of the channel.

DSL(j) =

nj∑
k=1

a
(j)
k (t)

d(j)(t)
× 100%.

Definition 3 The bandwidth utilization level of every link is defined as

BULi =

p∑
j=1

nj∑
k=1

a
(j)
k (t) · x(j)

ik (t)

ri(t)
× 100%.

Definition 4 The fairness of the allocation is measured by (according to [26])

f(y1, y2, · · · , yJ) = (
J∑

j=1

yj)2
/

J
J∑

j=1

y2
j

where y1, y2, · · · , yJ are the bandwidths allocated to J channels respectively.
In addition, we introduce two artificial measures—the network’s revenue and every link’s revenue—

and some artificial variables (d(j)(t > 0), a(j)
ik , p

(j)
k ) into the EGPM algorithm which are useful in the

derivation of the final solution.

Definition 5 The revenue of link Ai is given by

J∑

j=1

nj∑

k=1

p
(j)
k (t) · a(j)

k (t) · x(j)
ik (t)

and the revenue of the network is the sum of the revenues of all the links.

The former two indices are embodied in Eq. 4. According to Proposition 5, the EGPM algorithm
will always result in a decrease of Eq. 4—i.e., the algorithm will narrow the gap between bandwidth
resources and the demand, and will increase the utilization of the links’ bandwidth. Max-min fair
allocation can be obtained by the EGPM algorithm, which is assured by Proposition 6 as well as
Proposition 1. Max-min fairness is embodied in Eq. 3. The degree of fairness achieved is quantified
by the fairness measure f() defined above.

3 The EGPM Architecture

As shown in Fig. 1, our EGPM-based approach and its corresponding algorithm are divided into
two parts: (1) dynamic allocation of network bandwidth based on GPM, and (2) dynamic modulation
of prices and demands for network bandwidth.

GPM uses a resource force-field to model the interactions of the network entities [1]. A similar
force-field is used here by EGPM, which consists of numerous particles and forces. A particle with
its own dynamic equations represents an entity of the network being modeled, a network link in
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this case; each force with its own time-varying properties represents a certain kind social interaction
among the network entities. The evolution process is iterative: at every step the allocation module
would produce an allocation based on which the modulator module would generate a new set of
modulated prices and demands. The iteration terminates when an equilibrium is reached. In this
paper, the two modules are combined in a single EGPM algorithm.

Upper boundary

Lower boundary
0

0.5

1

0 1 · · · i · · · m

r6

r6
r6

r6 r6

r
6

r6Ai
XXy

XXy ¡¡µ

¡¡ª

HHj

HHY

¾ ¾

a
(j)
k

p
(j)
k , d(j)

¾

-

Bandwidth allocator Price and demand modulator

p
(j)
k (t + 1) = p

(j)
k (t) + zj(t) · θ

d(j)(t + 1) = p
(j)
k (t) · d(j)/p

(j)
k (t + 1)

? ?

@@R ¡¡ª

distributed parallel algorithm
for bandwidth allocation

distributed asynchronous algorithm
for price and demand modulation

The EGPM Algorithm

a particle and its forces6HHYr
zj : the excess demand function; θ: the price modulation rate.

Figure 1: The EGPM architecture

A particle in the resource force-field would move along a certain trajectory under the influence
of a composite force. The particles’ behaviors are characterized by the following.

• Each particle has an autonomous self-driving force corresponding to the “personality” of the
network link being modeled.

• The stimulus of a particle is a function of the particle’s objective, utility, and intention, which
presents a multiple objective optimization problem to be solved.

• There are a variety of interactive forces among the particles, including unilateral forces, corre-
sponding to the various kinds of social interaction that are possible in a network.

4 Evolution of the Allocation Policy

The allocation module accepts new parameter values at every step of the iterative process to
produce an allocation which is closer to equilibrium than the previous allocation. Since the evolution
of the allocation policy in GPM and that in EGPM are essentially the same, we only highlight the
relevant definitions and properties here. For further details and the missing proofs, we refer the
reader to [1].

The mathematical model involving m links and n paths is defined as follows. We refer to a
particle in the force-field that represents a link in the network a link particle.
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Definition 6 Let ui(t) be the distance of link particle Ai from the upper boundary of the force-field
at time t, and let J(t) be the total utility of all link particles. We define

ui(t) = exp [ −
J∑

j=1

nj∑

k=1

p
(j)
k (t) · a(j)

k (t) · x(j)
ik (t) ]; (1)

J(t) =
m∑

i=1

ui(t) (2)

The larger the value of the double summation in Eq. 1 (hence the smaller the value of ui(t)), the
more profit the ith link earns. The optimization problem here is posed as a minimization problem
and so the term is negated. The exponential function makes ui(t) fall between 0 and 1. ui(t) indeed
is the utility of link particle Ai. The distance between the bottom and the upper boundary is set to
be 1. As for the total utility (Eq. 2), the smaller the value of J(t) the better.

Definition 7 At time t, the potential energy function P (t), which is created by the upward gravita-
tional force of the force-field, is defined by

P (t) = ε2 ln
m∑

i=1

exp[ −u2
i (t) /2ε2] (3)

where 0 < ε < 1 is a parameter to be tuned in the implementation, which affects directly the
convergence speed.
The smaller the value of P (t) the better. The decrease of this value implies the increase of the
minimal utility among all the links (see Proposition 1). By this equation, we consider not only the
aggregate, but also the individual personal utilities, in particular the minimum one, when trying to
optimize the network bandwidth allocation. ε represents the strength of the upward gravitational
force in the force-field. The larger the value of ε the faster the particles would move up; hence, ε

influences the convergence speed of the allocation process. Too fast a speed however might result in
some of the possible solutions being skipped over, and so ε needs to be carefully adjusted in order
to maximize the users’ satisfaction.

Definition 8 At time t, the potential interaction energy function, Q(t), is defined by

Q(t) = β1

m∑

i=1

|
J∑

j=1

nj∑

k=1

a
(j)
k (t)− ri(t) |2 + β2

J∑

j=1

|
nj∑

k=1

a
(j)
k (t)− d(j)(t) |2 (4)

where 0 < β1, β2 < 1 .
The smaller the value of Q(t) the better. β1 and β2 are the weights assigned to the amount of
available link bandwidth and the degree of satisfaction of the path demands, respectively.

Eq. 4 quantifies the effect of interactions among the links during bandwidth allocation. The
first and the second term of Q(t) can be seen as penalty functions due to the constraints on the
utilization of resources (i.e., link bandwidth) and the satisfaction of the users (i.e., the channels)
respectively. Therefore, resource utilization and users’ satisfaction can be explicitly included as part
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of optimization objectives through some appropriate choices of the coefficients β1 and β2. There
exist specific interactive forces among the particles, and these forces may cause the potential energy
components represented by the first and second terms of Q(t) to decrease.

Definition 9 The dynamics of particle Ai are defined by

4a
(j)
ik (t) = −λ1

∂ui(t)

∂a
(j)
ik (t)

− λ2
∂J(t)

∂a
(j)
ik (t)

− λ3
∂P (t)

∂a
(j)
ik (t)

− λ4
∂Q(t)

∂a
(j)
ik (t)

(5)

where λ1, λ2, λ3 are one-dimensional coefficient vectors, and λ4 is a two-dimensional coefficient
vector. λ1 = (λ(1)

i )m×1, where λ
(1)
i represents the strength of Ai to pursue personal profit, 0 ≤ λ

(1)
i ≤

1. λ2 = (λ(2)
i )m×1, where λ

(2)
i represents the strength of Ai to consider the aggregate profit of all the

links, 0 ≤ λ
(2)
i ≤ 1. λ3 = (λ(3)

i )m×1, where λ
(3)
i represents the strength of Ai to increase the minimal

personal profit among all the link particles, 0 ≤ λ
(3)
i ≤ 1. λ4 = (λ(4)

iu )m×m, where λ
(4)
iu represents the

strength of Ai to interact with Au, 0 ≤ λ
(4)
iu ≤ 1.

Ai updates a
(j)
ik according to Eq. 5—that is, a

(j)
ik (t + 1) = a

(j)
ik (t) + ∆a

(j)
ik (t). We can therefore

obtain the radial velocity of link particle Ai along the vertical direction towards the upper boundary
of gravitational field by the equation

vi = dui/dt =
J∑

j=1

nj∑

k=1

∂ui

∂a
(j)
ik

da
(j)
ik

dt
. (6)

Proposition 1 The decrease of the potential energy P (t) of the gravitational field will result in the
increase of the profit of the link whose profit is the minimum among all the links.

Proof. Let U(t) = max
i

u2
i (t). Because U(t) = max

i
u2

i (t) ≤
m∑

i=1
u2

i (t) ≤ m ·max
i

u2
i (t) =m · U(t), we

have
[
e

U(t)

2ε2

]2ε2

≤
[

m∑
i=1

e
u2

i (t)

2ε2

]2ε2

≤
[
me

U(t)

2ε2

]2ε2

.

Simultaneously taking the logarithm of each side of the above equation leads to

U(t) ≤ 2ε2 ln
m∑

i=1

e
u2

i (t)

2ε2 ≤ U(t) + 2ε2 lnm,

2ε2 ln
m∑

i=1

e
u2

i (t)

2ε2 ≥ U(t) ≥ 2ε2 ln
m∑

i=1

e
u2

i (t)

2ε2 − 2ε2 lnm,

2P (t) ≥ max
i

ui(t) ≥ 2P (t)− 2ε2 lnm.

Since m is the number of links, 2ε2 lnm is a constant. P (t) therefore represents the maximum among
all the ui(t)’s associated with Ai, namely, the minimum of the personal profits obtained by a link
at time t. Hence, decreasing P (t) implies the increase of the profit of the link whose profit is the
minimum among all the links. ¤

Definition 10 (Max-min Fairness) [27] A feasible allocation of bandwidth a is max-min fair if and
only if an increase of any bandwidth within the domain of feasible allocations will be at the cost of
a decrease of some already smaller bandwidth allocation.Formally, for any other feasible distribution
Y , if y

(j)
ik > a

(j)
ik then there must exist some (i′, k′, j′) such that a

(j′)
i′k′ ≤ a

(j)
ik and y

(j′)
i′k′ < a

(j′)
i′k′ .
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Proposition 2 The behavior of Ai, by the third term of 4a
(j)
ik (Eq. 5), will always bring about an

increase of the minimum profit obtained by a link, and this increase is directly proportional to the
coefficient vector λ3.

Proposition 3 The behavior of Ai caused by the first and third terms of 4a
(j)
ik (Eq. 5) will always

result in an increase of the personal profit of Ai, and this increase is proportional to the coefficient
vectors λ1 and λ3.

Proposition 4 The behavior of Ai caused by the second term of 4a
(j)
ik (Eq. 5) will increase the

global utility of the network, which is directly proportional to the coefficient vector λ2.

Proposition 5 The behavior of Ai caused by the fourth term of 4a
(j)
ik (Eq. 5) will narrow the gap

between bandwidth resources and the demand, and the strength is proportional to the coefficient vector
λ4.

Proposition 6 (Max-min fair allocation) Max-min fair allocation can be obtained by updating the
allotted a by Eq. 5.

5 Evolution of the Pricing Policy

In this section, we present the evolutionary model that describes mathematically the dynamic
modulation of prices and demands of network bandwidth. We introduce an important function, the
excess demand function, which is a key element of the price modulation process.

5.1 Excess demand function

Definition 11 The price vector p∗ = p
∗(1)
1 , · · · p∗(j)k , · · · p∗(J)

nJ , a solution of the bandwidth allocation
problem a = a

(1)
1 , · · · a

(j)
k , · · · a

(J)
nJ is in equilibrium if and only if a is a feasible solution, and

zj(p∗) =
nj∑

k=1

a
(j)
k − d(j) = 0. (7)

The mapping z is called the excess demand function and it has the following properties:

P1: z is single valued and continuous for all p > 0.

P2: z satisfies Walras’ law: p · z(p) = 0 for all p > 0.

P3: z is homogeneous of degree zero: z(αp) = z(p) for all α > 0.

P4: There is a scalar ν < 0 such that zj(p) > ν for all j and p > 0.

P5: lim
p(t)→p

[
max

j,k∈JKp

zj(p(t))
]

= ∞, when p(t) > 0, p 6= 0 and JKp = {j, k : p
(j)
k = 0} 6= Ø.
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Homogeneity is an elementary property of the excess demand function because the channels’ price
vector stays the same when the budget constraints are multiplied by a positive constant. Walras’ law
and the continuity property result from the channels’ minimization problems when the preferences
are strictly concave and locally non-satiated. P4 means that all the component functions of z are
bounded from below on Rn

+; this is because the net supply of bandwidth to the channels cannot
exceed the channels’ total demand. By P5, all the bandwidths of the paths are desirable in the
sense that when some of these bandwidths become free of charge, there will exist at least some
channels whose excess demand functions become infinitely large. When z has the properties P1–P5,
the economy has at least a ray of equilibrium prices.3

The absolute value of the excess demand function is inversely proportional to the demand sat-
isfaction level (Def. 2). EGPM’s pricing policy aims at maximizing the demand satisfaction levels
of the channels, and therefore the iterative price modulation processes in EGPM have to satisfy the
conditions that (1) the absolute value of the excess demand function will be minimized, and (2) the
modulation processes will converge.

5.2 Iterative price modulation processes

The dynamic modulation of price in the EGPM algorithm is based on the following. The price
will rise when the supply of bandwidth is less than the demands of bandwidth (zj < 0), whereas
the price will fall when the supply of bandwidth is more than the demands of bandwidth (zj > 0).
The tendency to increase or decrease in price is directly proportional to |zj |. In economics, such a
dynamic modulation of price is known as the tatonnement process. The continuous time tatonnement
process, introduced by Samuelson [29], is described by the differential equation

ṗ(t) = z(p(t)) (8)

where ṗ(t) is the time derivative of p(t). This process is usually interpreted as an “auction” run by
a fictitious agent, which sets the prices until an equilibrium is reached. It can be shown that under
the following stability condition C1, the process of Eq. 8 is globally stable, i.e., it converges to an
equilibrium for any positive initial prices.

C1: There exists p∗ > 0 that solves Eq. 7 and satisfies p∗ · z(p) > 0 for all p > 0 for which z(p) 6= 0.

The convergence condition C1 can be interpreted as the weak axiom of revealed preferences be-
tween the equilibrium p∗ and any disequilibrium price vector. The simplest discrete time alternative
for the process of Eq. 8 is the fixed-point iteration

p(t + 1) = p(t) + z(p(t)) (9)

where t is the iteration index corresponding to the time instants at which the prices are modulated.
Analyzing Eq. 9 instead of Eq. 8 suits the bandwidth allocation problem better, for which the price
modulation process proceeds over discrete time instants. Unfortunately, Eq. 9 is not suitable for

3See for example Chapter 17 of [28] for more about the properties of excess demand functions.
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solving Eq. 7, because some of the prices may become negative during the iteration, for which z is
usually not defined. One way to obtain non-negative prices is to update p

(j)
k (t) as follows.

p
(j)
k (t + 1) = max{0, p

(j)
k (t) + θ · zj(p

(j)
k (t))} (10)

where θ is called the price modulation rate which is a positive constant. The convergence of this
process restricts the choice of θ and p(t = 0). The drawback of the process of Eq. 10 is that due to
P5 the excess demand function is not finite if some prices become zero. It can be easily seen that
the discrete time process of Eq. 10 does not converge under the same assumptions as the continuous
time process of Eq. 8. For example, the convergence of process of Eq. 10 depends on the choice of
the parameter θ. Moreover, normalized discrete time processes tend to exhibit chaotic behavior. We
give an alternative discrete time process which converges under assumptions that are very close to
those required for the process of Eq. 8 to converge. This process can be seen as a variation of the
fixed-point iteration of Eq. 9 and it is defined by the following formula.

p(t + 1) = p(t) + µt · z(p(t)) (11)

where the parameter µt is updated as follows:

Step 1: A scalar γt > 0 is chosen such that p(t) + γt · z(p(t)) > 0, and γt = γt−1 for t ≥ 1 if
p(t) + γt−1 · z(p(t)) > 0.

Step 2: µt =min{γt,M/‖z(p(t))‖}, where M > 0.

The first step above is to guarantee that the new prices are positive. When p(t) > 0, there is a
positive number γt such that p(t) + γt · z(p(t)) > 0. It follows that when the initial prices are
positive, i.e., p(0) > 0, all the prices obtained during the process are positive as well. The second
step guarantees that µt · z(p(t)) is bounded in the Euclidean norm ‖ · ‖. As a result, the magnitude
of the change of the price vector is bounded, namely ‖p(t + 1) − p(t)‖ = ‖µt · z(p(t))‖ ≤ M , where
M is an arbitrarily chosen positive number. This property is needed in the convergence analysis of
the process. Note that by these two steps, µt is updated only when it is necessary, to obtain positive
prices or to bound the changes by M .

The process of Eq. 11 satisfies the law of demand in the sense that the price of bandwidth would
rise with excess demands (of the channels), and the price would fall with excess supply. Moreover,
the prices are adjusted in proportion to the excess demands in a fashion similar to that in the process
of Eq. 8.

6 Convergence Analysis of EGPM

6.1 Convergence analysis

We prove in this section that the process of Eq. 11 converges when z has the properties P1–P5
and satisfies C1 as well as C2 which is stated below. In the condition C2, vector p∗ is the same
equilibrium vector for which C1 holds, for Eς = {p ∈ Rn

+ : ‖z(p)‖ < ς}.
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C2: There are positive scalars ς and σ such that p∗ · z(p) ≥ σ‖z(p)‖2 for all p ∈ Eς .

Let us examine the geometrical interpretation of the conditions C1 and C2. The condition C1
means that the hyperplane {a ∈ Rn : p∗ · a = 0} supports the set {a ∈ Rn : a = z(p), p > 0} (see
Fig. 2). The condition C2 means that this set is at least located locally around the origin, inside a
ball which has its center at the ray of solutions {p : p = λp∗, λ > 0}. Hence we can write p∗ ·z ≥ σ‖z‖2

equivalently as ‖p∗/(2σ)− z‖ ≤ ‖p∗/(2σ)‖.
The way in which the parameter µt is updated guarantees that the norm of the scaled excess

demand, µtz, is bounded by the constant M . As a result, the scaled excess demand is for all p > 0
inside a ball centered at the ray of solutions, as illustrated in Fig. 2, where σ = 1/2 and λ = 1.

Figure 2: Illustration of the convergence conditions

Theorem 1 Let z have the properties P1–P5 and satisfy the conditions C1–C2. Then the process
of Eq. 11 converges to an equilibrium for any p(0) > 0. If there is a unique ray of equilibria, then
there exists an N ≥ 0 such that the convergence is monotonical when t ≥ N .

The monotonical convergence of the sequence {p(t)}t to p̃ means that ‖p(t) − p̃‖ → 0, when
t →∞, and if p(t) 6= p̃, then ‖p(t+1)− p̃‖ < ‖p(t)− p̃‖. The following lemmas are used in the proof
of Theorem 1 which can be found in the appendix. Here we let B(p∗, ς) denote the closed ball with
radius ς > 0 and centered at p∗, i.e., B(p∗, ς) = {a ∈ Rn : ‖a− p∗‖ ≤ ς}. The proofs of Lemmas 1–3

are in the appendix.

Lemma 1 Let the continuous mapping z : B(p∗, r) → Rn satisfy Walras’ law for all p ∈ B(p∗, r),
and let the inequality p∗ · z(p) ≥ ‖z(p)‖2 hold for all p ∈ B(p∗, r). If p(0) ∈ B(p∗, r) and µt ≤ 1 for
all t, then the iterative process p(t+1) = p(t)+µt ·z(p(t)) converges. When 0 < µL ≤ µt, the process
converges to the solution of z(p) = 0.

Note that Lemma 1 does not assume that p∗ solves z(p) = 0. It can be shown, however, that
under the conditions of Lemma 1 vector p∗ is a solution. The following lemma shows that convergence
is monotonical when there is a unique ray of equilibria.
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Lemma 2 Let z satisfy the same conditions as in Lemma 1 and let the iteration p(t + 1) = p(t) +
µz(p(t)), µ > 0, converge to a solution p̃ for which there exists α > 0 such that

‖z(p)‖2 ≤ 2αz(p) · p̃ (12)

for all p ∈ B(p∗, r). Then the convergence is monotonical.

Lemma 3 If z has the properties P1, P3–P5, and satisfies C1–C2, then there exists σ > 0 such that
p∗ · ẑ(p) ≥ σ‖ẑ(p)‖2 for all p > 0, where

ẑ(p) =
{

Mz(p)/‖z(p)‖ if ‖z(p)‖ ≥ M,

z(p) otherwise.

Theorem 2 When there is a unique equilibrium for the model of bandwidth allocation, the equilib-
rium prices solve the bandwidth optimization problem, i.e., the solution is globally Pareto optimal.

Proof. Assume that each path uses the process of Eq. 11 to update its price. The best price for a path

is calculated from
nj∑

k=1

a
(j)
k = d(j). At equilibrium, this is the condition that is satisfied. Furthermore,

the links use Eq. 5 to calculate a
(j)
ik , which guarantees local optimality of the solution and the

feasibility of the condition
J∑

j=1

nj∑
k=1

a
(j)
ik (t) ≤ ri(t), i = 1,m. Uniqueness of the equilibrium guarantees

that the locally feasible optimum solution is also the global optimum. Under these conditions, the
outcome of the proposed approach is a solution to the bandwidth optimization problem. ¤

Pareto optimality is a relevant criterion in a multiobjective problem setting. At Pareto optimum,
we can find no other feasible solution that can improve some objectives without depriving other
objectives. Theorem 2 states that, if the equilibrium is unique, then the outcome of the proposed
approach is the optimal solution to the problem of maximizing individual revenues. If there are
multiple equilibria, however, the resulting bandwidth allocation a is only locally optimal.

From Theorem 2, if a solution a is in equilibrium when the price vector is p, a is an optimal
solution, which implies that every link can obtain as large a profit as possible and so can the network
for the total profit. As a result, individual optimization (which implies fairness) is consistent with
global optimization and contributes to the efficiency of the latter.

Generally speaking, the utility function should satisfy the two conditions that (1) ui is a concave
function, and (2) ui is monotonic.
In this paper, the utility function is defined by

ui(t) = exp


−

J∑

j=1

nj∑

k=1

p
(j)
k (t) · a(j)

k (t) · x(j)
ik (t)


 ;

u′i(t) = −p
(j)
k (t) · exp


−

J∑

j=1

nj∑

k=1

p
(j)
k (t) · a(j)

k (t) · x(j)
ik (t)


 ≤ 0;

16



u′′i (t) =
[
p
(j)
k (t)

]2
· exp


−

J∑

j=1

nj∑

k=1

p
(j)
k (t) · a(j)

k (t) · x(j)
ik (t)


 ≥ 0.

When p
(j)
k (t) 6= 0, u′i(t) < 0 and u′′i (t) > 0. When p

(j)
k (t) 6= 0, ui is monotonic and concave.

The properties mentioned above have a deeper meaning. ui being a concave function implies that
the improvement of the satisfaction level for bandwidth between two end nodes should be realized by
means of balancing the bandwidth among several links. ui being monotonic implies that the more
links there are and the more bandwidth each link has, the better.

6.2 Convergence rate analysis

Theorem 3 The iteration process of Eq. 11 converges to a solution p∗ in 2-rank.

Proof. Let xt denote p(t); then xt+1 denotes p(t + 1), and x∗ denotes p∗. Supposing that
xt+1 = f(xt), the iteration process p(t + 1) = p(t) + µt · z(p(t)) becomes

f(x) = x + µt · z(x) (13)

And we also have f(x∗) = x∗ + µt · z(x∗). Because z(x∗) = 0, we have f(x∗) = x∗.

Since zj(p(t)) =
nj∑

k=1

a
(j)
k (t)− d(j)(t), we have

a(j)
ik (t + 1) = a(j)

ik (t) +4a(j)
ik (t);

4a(j)
ik (t) = ui(λ1p

(j)
k + λ3wi)− λ2 − 2λ4β1|

p∑

j=1

nj∑

k=1

a(j)
k − ri| − 2λ4β2|

nj∑

k=1

min
i

a(j)
ik − d(j)|.

We can obtain z′(x∗) = A 6= 1 and A 6= 0. z(x) is continuously differentiable for two times. From
the Taylor’s equation, when x sufficiently approaches x∗, we get

z(x) = z(x∗) + A(x− x∗) + 0.5z′′(ξ)(x− x∗)2.

Let x∗ = 0, we obtain

z(x) = Ax + O(x2).

From Eq. 13 and A 6= 1, we get

f(x) = x + µt · [Ax + O(x2)] = x + Aµt · x + O(x2).

Therefore

lim
t→∞

xt+1 − x∗

(xt − x∗)n = c ⇒ lim
t→∞

x + Aµt · x + O(x2)− x∗

(x− x∗)n = c ⇒ n = 2.

So the iteration process of Eq. 11 converges to a solution p∗ in 2-rank.
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7 The EGPM Algorithm

Here we present the EGPM algorithm which consists of a component for distributed parallel
bandwidth allocation and a component for distributed asynchronous price-demands modulation.

0. Input:

ri, ςj , d
(j), x

(j)
ik

1. Initialization:
t ← 0
4t, θ, ε, β1, β2, a

(j)
ik (t), p(j)

k (t)
2. a

(j)
k (t) ← min

i
a

(j)
ik (t)

zj ←
nj∑

k=1

a
(j)
k (t)− d(j)(t)

Compute vi(t) according to Eq. 6
3. while (| zj |> ςj and vi(t) 6= 0) do

3.1) p
(j)
k (t +4t) ← p

(j)
k (t) + zj(t) · θ

if (p(j)
k (t +4t) ≤ 0)

θ ← θ/2
p
(j)
k (t +4t) ← p

(j)
k (t) + zj(t) · θ

d(j)(t +4t) ← p
(j)
k (t) · d(j)(t)/p

(j)
k (t +4t)

t ← t +4t

3.2) Compute ui(t) according to Eq. 1
Compute vi(t) according to Eq. 6
Compute da

(j)
ik (t)/dt according to Eq. 5

a
(j)
ik (t) ← a

(j)
ik (t−4t) + da

(j)
ik (t)/dt

if (
l∑

j=1

h∑
k=1

a
(j)
ik (t) ≤ ri and

l∑
j=1

h+1∑
k=1

a
(j)
ik (t) > ri)

a
(j)
ik (t) = 0

a
(j)
k (t) ← min

i
a

(j)
ik (t)

zj ←
nj∑

k=1

a
(j)
k (t)− d(j)(t)

3.3) if (| zj(t) |≥| zj(t−4t) |)
θ ← θ/2
p
(j)
k (t) ← p

(j)
k (t−4t)

d(j)(t) ← d(j)(t−4t)

ε is a parameter to be tuned in the implementation, which affects directly the rate of convergence. θ

is the price modulation rate. ςj is the desired threshold of zj , which should be input as σ2 (variance)
of d(j), and d(j) should be input as µ (mean) of d(j). Substeps 3.1 and 3.3 together implement the
price and demands modulation, and Substep 3.2 implements the bandwidth allocation policy.

The process of network bandwidth allocation comprises real-time variation of the supply and
demands of bandwidth. In the network, links are appended to or deleted from, the bandwidth
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demands between two end nodes arise and end, and the bandwidth supply or demands increase or
decrease. The time quantum 4t used by the iterative process is adjusted and modulated based on
the speed of change of the supply and demands of bandwidth. 4t should be made smaller when the
supply and demands vary rapidly, and larger when the supply and demands vary tardily.

The (a)m×n and (p)1×n can be initialized as: (1) some average values between 0 and 1, or (2)
random numbers between 0 and 1. In fact, based on the experiments we have done, we found that
the final results are not affected by how these variables are initialized. β1 and β2, the weights used
in Eq. 4, can be initialized as any constants between 0 and 1.

In Substep 3.1, when p
(j)
k (t +4t) ≤ 0 and p

(j)
k (t) > 0, we perform “θ ← θ/2” one or more times

to make p
(j)
k (t+4t) > 0. In Substep 3.3, if | zj(t) |≥| zj(t−4t) |, which means the result of the t-th

iteration is not better than the last iteration, we perform “θ ← θ/2”. It is possible to leap over better
convergence points because θ is too big and convergence speed is too fast. By making θ smaller (a

half), we can avoid this. In Substep 3.2, if (
l∑

j=1

h∑
k=1

a
(j)
ik (t) ≤ ri and

l∑
j=1

h+1∑
k=1

a
(j)
ik (t) > ri), we let all

a
(j)
ik (t) = 0 in order to make all a

(j)
ik of the i-th row of the allocation matrix to be not larger than ri.

Since the “actual bandwidth” obtained by a path is the smallest a
(j)
ik over all the links that make

up the path, we let a
(j)
k (t) ← min

i
a

(j)
ik (t) in Substep 3.2. The individual a

(j)
ik ’s are often larger than

a
(j)
k . The wastage due to over-allocation however will not be present in the final solution as the a

(j)
ik ’s

exist only in the computing process.
The EGPM algorithm can be executed to allocate network bandwidth in parallel, by dynamically

modulating price and demands of network bandwidth in an asynchronous fashion. Although the
solution at equilibrium as worked out by this asynchronous modulation of price and demands is a
local equilibrium solution within a small time frame, it will approach the globally optimal solution
within a large time frame. What is more, the asynchronous nature of the algorithm makes the
algorithm adaptable to complex and fast changing network environments.

8 Simulations and Comparisons

8.1 Bandwidth allocation by EGPM

8.1.1 The parameters

The main parameters of the EGPM algorithm are: ε, β1, β2, θ, m, n, J , λ1 = (λ(1)
i )m×1,

λ2 = (λ(2)
i )m×1, λ3 = (λ(3)

i )m×1, λ4 = (λ(4)
i )m×m. ε and θ influence the convergence speeds of

bandwidth allocation and price modulation, respectively. β1, β2 are the weights assigned to the
available bandwidth and the satisfaction degree of the channels, respectively. m, n, J are fixed given
values reflecting the dimension of the problem.

Fig. 3 shows the evolutionary trajectories of 4 of 38 link particles in the force-field during problem
solving. The simulation uses the following parameter values: ε = 0.8, β1 = 0.1, β2 = 0.1, θ = 0.5,
m = 38, n = 32, J = 10, λ1 = (λ(1)

i )m×1, λ2 = (λ(2)
i )m×1, λ3 = (λ(3)

i )m×1, λ4 = (λ(4)
i )m×m, and

λ
(1)
i , λ

(2)
i , λ

(3)
i , λ

(4)
iu are chosen at random from [0,1]. The relatively fast speed of convergence can be
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observed in Fig. 3. The y-axis is the dynamic state, ui, of a particle, as defined by Eq. 1.

Figure 3: The kinematics and dynamic trajectories of four selected particles in the force-field during
bandwidth allocation

In Fig. 3, there is a huge dive in the trajectory of Particle 25. Modulated prices and demands may
make bandwidth allocation of several links huge change at next iteration. When allocated bandwidth
a

(j)
k and prices p

(j)
k are updated, dynamic state ui of link particles will change according to Eq. 1.

In addition, in Fig. 3, there is a decrease trend in the trajectory of Particle 33. That is, the
dynamic state (representing link’s revenue) of most link particles increases while that of a few of
link particles decreases. Every link’s revenue and network’s revenue are two artificial objectives in
our EGPM algorithm, which are means to optimizing the real objectives (SI, DSL, BUL, f) of the
problem. Every link’s revenue and network’s revenue are all given attention to by EGPM. The
dynamic state ui represents every link’s revenue. When a link’s revenue conflicts with network’s
revenue, the link will give in and the link’s revenue will decrease.

λ1, λ2, λ3, and λ4 can be adjusted to suit the problem’s objectives. λ1 and λ3 control the links’
autonomy and self-interest; λ2 reflects the links’ interest to improve the global state. λ4 reflects the
strength of the interaction among the links. For instance, when λ1 = 0, λ3 = 0 and λ2 = 1, the links
care for global profits only; when λ1 = 1, λ3 = 1 and λ2 = 0, they care only for their own profits;
and when 0 ≤ λ1, λ3, λ2 ≤ 1, they opt for a balance.

Table 3: Allocation performance from different degrees of link selfishness
The links’ disposition Supply > Demand Supply ≈ Demand Supply < Demand

Initial allocation 0.2 0.5 0.4

Global profits only 0.3 0.5 0.6

Own profits only 0.67 0.66 0.62

Global profits as well as own profits 0.76 0.72 0.8

Table 3 shows how different choices of λ values influence the performance of EGPM. The num-
bers in the table are the average of two indices—bandwidth utilization (BUL) and the channels’
satisfaction level (DSL). The simulation comprises more than 100 problems. We can see that when
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the link particles care for both global profits and their own profits, the performance of EGPM is the
best.

8.1.2 Effectiveness

To see how EGPM reacts to the varying level of available bandwidth, we tested it using the band-
width allocation problem instance in [14]. The network has 7 nodes, 11 links, 42 source-destination
pairs (channels) and 84 virtual paths (two paths per channel), whose topology is shown in Fig. 4.
In this problem, we set nj = 2 (for j = 1, 42), the same as in [14]. Table 4 shows the channels and
their bandwidth demands.
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Figure 4: A 7-node network

Table 4: The 42 channels and their bandwidth demands

Channel T (j) 1:¬-­ 2:¬-® 3:¬-¯ 4:¬-° 5:¬-± 6:¬-Æ 7:­-¬ 8:­-® 9:­-¯ 10:­-° 11:­-± 12:­-Æ 13:®-¬ 14:®-­

d(j): µ 110 80 120 70 95 115 120 80 100 130 100 85 100 50

d(j): σ2 50 25 35 30 40 20 40 45 30 50 65 16 70 55

Channel 15:®-¯ 16:®-° 17:®-± 18:®-² 19:¯-¬ 20:¯-­ 21:¯-® 22:¯-° 23:¯-± 24:¯-² 25:°-¬ 26:°-­ 27:°-® 28:°-¯

d(j): µ 110 80 55 145 60 90 100 100 130 115 60 70 50 120

d(j): σ2 35 60 40 20 40 45 30 50 65 10 55 40 50 10

Channel 29:°-± 30:°-² 31:±-¬ 32:±-­ 33:±-® 34:±-¯ 35:±-° 36:±-² 37:²-¬ 38:²-­ 39:²-® 40:²-¯ 41:²-° 42:²-±

d(j): µ 90 100 80 130 50 70 130 115 50 30 150 90 110 105

d(j): σ2 20 60 30 65 60 30 45 60 10 25 80 30 60 40

For the links’ capacity (ri), two types of cases are considered: limited capacity (ri = 240 Mbits/sec
and ri = 480 Mbits/sec), and abundant capacity (ri = 720 Mbits/sec and ri = 960 Mbits/sec). We
also include a “heterogeneous” case where link capacity differs from link to link.

Table 5: Allocation results for different link capacities
(SI=Yes)/J Average BUL Fairness f Average DSL

ri = 240Mbits/s (extremely scarce) 32/42 0.9134 0.4304 0.3619

ri = 480Mbits/s (scarce) 42/42 0.9646 0.7385 0.7449

ri = 720Mbits/s (plentiful) 42/42 0.9084 0.8601 1.0000

ri = 960Mbits/s (extremely plentiful) 42/42 0.7340 0.8972 1.0000

ri=[560,480,320,480,560,480,400,480,560,480,480](Mbits/s)

(heterogeneous) 42/42 0.8036 0.7555 0.5233

The results are summarized in Table 5. From the table, we observe the following.
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• The demands of all source-destination pairs (channels) are satisfied (according to SI, the sat-
isfaction indicator) in all cases except the case of extreme scarce capacity (240 Mbits/sec) of
which 75% of the demands are satisfied.

• The average BUL, average DSL, and fairness are reasonably high in all five cases, especially in
the cases of scarce capacity.

• When the link capacity is plentiful, the satisfaction level (DSL) of all source-destination pairs
(channels) can reach 100%.

• When network capacity decreases rapidly, such as from 960 to 480 Mbits/sec, the performance
indices do not seem to follow suit.

• Whether the network is homogeneous or heterogeneous in terms of link capacities is not a key
factor for SI, BUL, DSL and fairness.

8.1.3 Efficiency and parallelism

In this section, we show the actual times used to compute the solutions, on a cluster. The
machines of the cluster each has a Pentium 4 2.0 GHz CPU with 512 Kbytes of L2 cache and 512
Mbytes of DDR SDRAM, and they are interconnected via Fast Ethernet.

The network of the problem is such that if there are N nodes in the network, the number of
source-destination pairs (channels) is N × (N − 1). We use the number of nodes and channels to
represent the “scale” of the problem. Convergence times and iterations for different scales using
EGPM are shown in Table 6. The data come from using 1, 4, and 8 computing nodes of the cluster.
“Increase” represents the percent of increase of the current scale from the previous scale.

Table 6: Convergence times and iterations of EGPM
Scale sequential 4 parallel nodes 8 parallel nodes

nodes channels iterations increase time (s) increase iterations increase time (s) increase iterations increase time increase

4 12 103 0.008 134 0.175 112 0.301

5 20 112 8.7% 0.018 125.0% 150 11.9% 0.2 14.3% 135 20.5% 0.429 42.5%

6 30 130 16.1% 0.029 61.1% 171 14.0% 0.245 22.5% 164 21.5% 0.5 16.6%

7 42 172 32.3% 0.076 162.1% 221 29.2% 0.363 48.2% 205 25.0% 0.69 38.0%

8 56 230 33.7% 0.141 85.5% 297 34.4% 0.386 6.3% 304 48.3% 0.87 26.1%

9 72 363 57.8% 0.317 124.8% 446 50.2% 0.551 42.7% 397 30.6% 1.043 19.9%

10 90 544 49.9% 0.69 117.7% 563 26.2% 0.843 53.0% 622 56.7% 1.564 50.0%

11 110 734 34.9% 1.235 79.0% 797 41.6% 1.324 57.1% 796 28.0% 2.374 51.8%

12 132 979 33.4% 2.101 70.1% 968 21.5% 1.611 21.7% 1029 29.3% 2.571 8.3%

13 156 1358 38.7% 3.782 80.0% 1360 40.5% 2.51 55.8% 1370 33.1% 3.847 49.6%

14 182 1618 19.1% 5.616 48.5% 1934 42.2% 4.21 67.7% 1857 35.5% 5.327 38.5%

15 210 2260 39.7% 9.821 74.9% 2213 14.4% 5.11 21.4% 2724 46.7% 7.708 44.7%

16 240 2865 26.8% 15.12 54.0% 3221 45.5% 8.58 67.9% 2806 3.0% 6.567 -14.8%

17 272 3627 26.6% 23.578 55.9% 4159 29.1% 13.85 61.4% 3928 40.0% 12.801 94.9%

18 306 4941 36.2% 37.534 59.2% 4885 17.5% 17.37 25.4% 4298 9.4% 13.898 8.6%

19 342 5442 10.1% 50.188 33.7% 5342 9.4% 21.17 21.9% 5328 24.0% 18.618 34.0%

20 380 7528 38.3% 78.089 55.6% 7547 41.3% 31.913 50.7% 6897 29.4% 25.627 37.6%

As shown in Fig. 5, the convergence time of the sequential version increases exponentially with
the scale, which is similar to all other exact methods. When parallelized, the convergence time drops
significantly across the larger scale problems. The times for the smaller scale problems are dominated
by the message exchange times, and the sequential version appears to be more efficient in that range.
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The number of iterations for all the cases, however, is more or less the same for either the sequential
or the parallel versions.

—— sequential – – – 4 parallel nodes · · · · · · 8 parallel nodes

Figure 5: Convergence times of EGPM using one or more processors

The EGPM algorithm has the ability to carry out the allocation in a distributed manner with
little communication overheads. The bandwidth allocation variables, a

(j)
ik (see Table 1), can be

computed and updated in parallel without any information exchange, which is the foundation of
EGPM’s parallelism. There is some information exchange between entries in a column (in Table 1)
to compute and update the actual bandwidth allocation to the paths (a(j)

k ), the price (p(j)
k ) and the

demand variable (d(j)(t > 0)); as well as some information exchange between entries in a row in
order to satisfy the links’ capacity restrictions. These exchanges of information in a row or column
are responsible for the less than ideal speedup that can be achieved using parallel implementation.

8.2 Comparison with GPM

Fig. 6 shows an example highlighting the difference between demand and allocation in a dynamic
environment where the bandwidth demands may change with time. In Fig. 6(a), the curved line
corresponds to the demand and the rectangles the supply (allocated bandwidth) over a period of
time. T in the figure denotes the length of a run of the GPM algorithm to calculate the equilibrium
allocation. Because the allocation will not change until the the equilibrium is reached in a run of the
GPM algorithm, the allocation stays unchanged between any two consecutive runs in the figure.

The EGPM algorithm allows links to trade resources to settle excess demand at every iteration.
In Fig. 6(b), the two curved lines represent the change of the demand and the allocated bandwidth,
respectively. For both GPM and EGPM, the shaded regions represent the “excess demand function”
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(a) GPM (b) EGPM

Figure 6: Excess demands in a dynamic environment

(i.e., over- or under-allocation). The shaded regions of both GPM and EGPM shrink in size when the
interval of environmental changes becomes longer. When that interval is small (i.e., the changes are
frequent) the excess demand function of EGPM is smaller and EGPM is preferable. However, because
EGPM needs to renew the allocation at every iteration step in a run before reaching equilibrium, it
takes a longer time than GPM. Hence, when the interval of change is excessively long, GPM might
have an advantage.

Next, we compare the satisfaction level. There is a direct relationship between the satisfaction
level and the excess demand function: when the level is low, the excess demand function is large and
the allocation is not preferable, and if the level is high, the excess demand function is small and the
allocation is well done. The level reaches 1 if and when the allocation matches exactly the demand.

(a) static environment (b) dynamic environment

Figure 7: Satisfaction level of demand in static environment and in dynamic environment

In a static environment where the demands of the paths do not change, the satisfaction level
changes in a fashion which is as shown in Fig. 7(a). The figure shows that the GPM algorithm takes
shorter time (T ) to complete its run than the iterative EGPM algorithm. It can be easily seen that,
for a static environment, if T is small, GPM is preferable, and if T is large, EGPM is preferable.

Fig. 7(b) shows an example of a changing satisfaction level in a dynamic environment. As can
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be seen in the figure, because the environment changes soon after or even before GPM reaches
equilibrium, the allocation by GPM is effective only for a short pinch of time. On the other hand,
the allocation by EGPM adapts to the changing environment more responsively.

8.3 Comparison with genetic algorithm

Here we compare the experimental results of EGPM with that of a genetic algorithm for the
same problem of bandwidth allocation which can be found in [14]. Table 7 shows the results for the
7-node network with links running at 480 Mbits/sec. The experimental results of GA come from [14]
and those of EGPM come from our own experiments.

Table 7: Traffic demands and bandwidth allocations for the 7-node network using EGPM vs. GA
for the case of capacity = 480 Mbits/s

Channel T (j) 1:¬-­ 2:¬-® 3:¬-¯ 4:¬-° 5:¬-± 6:¬-Æ 7:­-¬ 8:­-® 9:­-¯ 10:­-° 11:­-± 12:­-Æ 13:®-¬ 14:®-­

d(j): µ 110 80 120 70 95 115 120 80 100 130 100 85 100 50

d(j): σ2 50 25 35 30 40 20 40 45 30 50 65 16 70 55

EGPM BA 110 55 120 70 55 95 120 36 70 107 65 69 70 24

GA BA 143.47 42.02 185.94 57.55 35.28 43.29 148 59.62 118.45 164.31 129.81 61.42 19.14 47.59

EGPM SI Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

GA SI Yes No Yes Yes No No Yes Yes Yes Yes Yes No No Yes

EGPM DSL 1 0.6875 1 1 0.5789 0.8261 1 0.45 0.7 0.8231 0.65 0.8118 0.7 0.48

GA DSL 1 0.5252 1 0.8221 0.3714 0.3764 1 0.7452 1 1 1 0.7226 0.1914 0.9518

Channel T (j) 15:®-¯ 16:®-° 17:®-± 18:®-² 19:¯-¬ 20:¯-­ 21:¯-® 22:¯-° 23:¯-± 24:¯-² 25:°-¬ 26:°-­ 27:°-® 28:°-¯

d(j): µ 110 80 55 145 60 90 100 100 130 115 60 70 50 120

d(j): σ2 35 60 40 20 40 45 30 50 65 10 55 40 50 10

EGPM BA 75 80 55 125 60 90 70 50 65 105 17 70 34 110

GA BA 41.91 40.84 86.40 156.09 132.43 149.83 53.84 130.66 76.39 8.20 49.91 99.68 45.88 133.09

EGPM SI Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

GA SI No Yes Yes Yes Yes Yes No Yes Yes No Yes Yes Yes Yes

EGPM DSL 0.6818 1 1 0.8621 1 1 0.7 0.5 0.5 0.9130 0.2833 1 0.68 0.9167

GA DSL 0.381 0.5105 1 1 1 1 0.5384 1 0.5876 0.0713 0.8318 1 0.9176 1

Channel T (j) 29:°-± 30:°-² 31:±-¬ 32:±-­ 33:±-® 34:±-¯ 35:±-° 36:±-² 37:²-¬ 38:²-­ 39:²-® 40:²-¯ 41:²-° 42:²-±

d(j): µ 90 100 80 130 50 70 130 115 50 30 150 90 110 105

d(j): σ2 20 60 30 65 60 30 45 60 10 25 80 30 60 40

EGPM BA 70 56 50 65 50 40 85 72 40 25 69 61 50 105

GA BA 93.96 57.83 83.48 153.34 97.72 50.79 131.47 132.25 18.82 27.7 165.03 30.07 72.18 139.24

EGPM SI Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

GA SI Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes No Yes Yes

EGPM DSL 0.7778 0.56 0.625 0.5 1 0.5714 0.6538 0.6261 0.8 0.8333 0.46 0.6778 0.4545 1

GA DSL 1 0.5783 1 1 1 0.7256 1 1 0.3764 0.9233 1 0.3341 0.6562 1

BA: Bandwidth allocation; SI: satisfaction indicator; DSL: Demand satisfaction level.

As shown in Table 7, 10 (out of 42) channels failed to be satisfied using GA, whereas the EGPM
algorithm satisfies all the channel demands. The average demand satisfaction levels of EGPM and
GA are 0.7449 and 0.7890, respectively; EGPM is slightly below because it gives preference to the
SI index. In fact, EGPM tries to maximize all three objectives: DSL, BUL and fairness.

As shown in Table 8, EGPM is several orders of magnitude faster than GA in computing the
solutions. And the convergence time of EGPM increases more steadily with the problem scale than
GA.

Other than genetic algorithm, the comparison Lagrangrian multiplier approach, the max-min
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Table 8: Convergence times and iterations of EGPM vs. GA
Scale EGPM: 4 parallel nodes EGPM: sequential GA

nodes channels iterations increase time increase iterations increase time increase iterations increase time increase

4 12 134 0.175 103 0.008 2000 1353

5 20 150 11.9% 0.2 14.3% 112 8.7% 0.018 125.0% 2000 0.0% 3024 123.5%

6 30 171 14.0% 0.245 22.5% 130 16.1% 0.029 61.1% 2000 0.0% 4761 57.4%

7 42 221 29.2% 0.363 48.2% 172 32.3% 0.076 162.1% 10000 400.00% 36971 676.5%

algorithm, and the ant colony algorithm are also popular choices for solving the bandwidth allocation
problem. We give a succinct comparison of these different approaches with EGPM/GPM in Table 9.

Table 9: EGPM vs. GPM and other well-known algorithms

EGPM GPM Lagrangrian multiplier Ant colony Max-min GA

Flow control Decentralized Decentralized Centralized Decentralized Centralized Decentralized

/adaptive /adaptive /static /adaptive /static /adaptive

Adaptive to Fast Middle Slow Middle Fast Middle

topology changes

Routing overhead Low Low High Low Low Low

Routing By Excess By Hybrid By Utility By Pheromone By Transmission By Chromosomes

preference demand function energy functions function laid time/delay

Information Can by Can by Separate Can by Separate Can by

exchange piggybacked piggybacked routing entries piggybacked routing entries piggybacked

in data packets in data packets transmission in data packets transmission in data packets

9 Conclusion

In this paper, an approach based on the economic generalized particle model (EGPM) for intelli-
gent allocation of network bandwidth is proposed. The approach transforms the complicated network
bandwidth allocation problem into efficient, parallel allocation of network bandwidth. The mecha-
nism is based on asynchronous modulation of prices of network bandwidth. The special features of
the proposed model and its algorithm include: (1) high parallelism and real-time computational per-
formance; (2) a market-oriented mechanism between the demands and service; (3) the microscopic
characterization of an individual link and the macroscopic properties of the whole network being
combined to achieve both fairness and efficiency; and (4) better adaptation to the real-time dynamic
network environment.

The EGPM method can be applied to other optimization problems, such as resource allocation
in grid, cache optimization in CDN, etc. When solving grid computing problems by the EGPM
algorithm, because the problem model of grid will be simpler than that of bandwidth allocation,
only two of the ordinal numbers i, j, k in the of bandwidth allocation model will be needed for the
model of grid; moreover, the logic variable x

(j)
ik will always be equal to 1, and can be left out.

In the future, we plan to improve EGPM so that it will become a generic algorithm for NP-hard
combinatorial optimization problems, such as the traveling salesman problem (TSP), the quadratic
assignment problem (QAP), etc., as well as for multi-objective optimization problems. We hope to
develop the EGPM algorithm by a new approach, giving it the ability to deal with difficult problems
that feature non-homogeneous, noisy, incomplete or obscured information, constrained resources,
and massive processing of large amounts of data.
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Here are some specific suggestions on future work.

1. The choices of coefficients in the EGPM algorithm and their impact should be further studied.

2. Communication times among computing entities should be reduced to improve the parallel
execution of EGPM.

3. The present approach treats all demands to be equally important and tries to maximize the
overall satisfaction. To support true QoS, priority classes with preferential treatment by the
allocation mechanism need to be introduced. How to prove that the guarantee of a certain QoS
can be met if certain conditions are satisfied “in theory” will be a key issue.

4. Our work in this paper is predominantly theoretical and based on a number of simplifying
assumptions. Between this and a practical solution for real-life deployment, much work needs
to be done.

5. Capacity planning including priority classes and reservation is not addressed in the current
design of EGPM, which however is very important in practical bandwidth allocation.

Appendix: Convergence Proofs

Proof of Lemma 1. Observe that when µt ≤ 1,

µt · p∗ · z(p) ≥ ‖µt · z(p)‖2. (14)

This can be seen by multiplying both sides of p∗·z(p) ≥ ‖z(p)‖2 with µ2
t and noticing that µ2

t ·p∗·z(p) ≤
µt · p∗ · z(p) because µt ≤ 1. From Eq. 14 and Walras’ law we have

‖p(t + 1)− p∗‖2 = ‖p(t) + µtz(p(t))− p∗‖2 = ‖µtz(p(t))‖2 − 2µtz(p(t)) · p∗ + ‖p(t)− p∗‖2

≤ ‖p(t)− p∗‖2.

Note that p(t) belongs to B(p∗, r) for all t = 0, 1, . . ., when p(0) ∈ B(p∗, r). Therefore, the sequence
{‖p(t) − p∗‖}t converges, and as a result, the sequence {‖p(t)‖}t is bounded. From Walras’ law it
follows that

‖p(t)‖2 = ‖p(0)‖2 +
t−1∑
i=0

µ2
i ‖z(p(i))‖2,

so that {‖p(t)‖}t is a growing and bounded sequence and hence convergent. The iteration formula
yields

p(t) = p(0) +
t−1∑
i=0

µiz(p(i)).

Hence, ‖p(0) +
t−1∑
i=0

µiz(p(i))‖ converges, too. From the triangular inequality we get

‖p(0) +
t+l∑
i=0

µiz(p(i))‖ ≥
∣∣∣∣‖p(0) +

t∑
i=0

µiz(p(i))‖ − ‖
t+l∑

i=t+1
µiz(p(i))‖

∣∣∣∣
and
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‖p(t + l)− p(t)‖ = ‖
t+l∑

i=t+1

µiz(p(i))‖ → 0, (15)

when t →∞ and l ≥ 1. Thus, {p(t)}t is a Cauchy sequence and hence convergent. Let p̃ denote the
limit point of this Cauchy sequence.

We now show that when 0 < µL ≤ µt the sequence {p(t)}t converges to the solution of z(p) = 0.
By setting l = 1 it follows from Eq. 15 that µt‖z(p(t))‖ → 0. Because µL‖z(p(t))‖ ≤ µt‖z(p(t))‖
holds and z is continuous, p̃ is a solution of z(p) = 0. ¤
Proof of Lemma 2. If Eq. 12 holds for α > 0 then it holds for any α̃ > α. Specifically, we can
choose α̃ > 0 such that Eq. 12 holds for p∗ = α̃p̃ − 2p̃ instead of αp̃. Moreover we can take α such
that ‖z(p)‖2 < 2αz(p)p̃ if p is not a solution. We can deduce that ‖p(t + 1) − p∗‖2 < ‖p(t) − p∗‖2,
and ‖p(t + 1)− αp̃‖2 < ‖p(t)− αp̃‖2 when p(t) is not a solution. By the parallelogram law we get

‖p(t)− αp̃‖2 + ‖p(t)− p∗‖2 = 2‖p(t)− p̃‖2 + 2(α− 1)‖p̃‖2.

By rearranging the terms we have

2‖p(t)− p̃‖2 = 2(α− 1)‖p̃‖2 − ‖p(t)− αp̃‖2 − ‖p(t)− p∗‖2

> 2(α− 1)‖p̃‖2 − ‖p(t + 1)− αp̃‖2 − ‖p(t + 1)− p∗‖2

= 2‖p(t + 1)− p∗‖
and hence {p(t)}t converges monotonically to p̃. ¤
Proof of Lemma 3. Let z satisfy C2 on Eς̄ = {p ∈ Rn

+ : ‖z(p)‖ < ς̄} with constant σ̄. By the
homogeneity of excess demand we know that ẑ obtains all its values on the unit simplex 4 = {p ∈
Rn

+ :
J∑

j=1

nj∑
k=1

P
(j)
k = 1}. Because of P4 and P5 it can be seen that p∗ · z(p(t)) → ∞ when p(t) → p

and JKp 6= ∅. As a result, we have

lim
p(t)→p

p∗ · ẑ(p) > 0

when JKp 6= ∅. From this property, the continuity property, and C1, it follows that there exists
δ > 0 such that p∗ · ẑ(p) ≥ δ for all p ∈ 4\S, where S = {p ∈ 4 : p

(j)
k > ς ′, ∀j = 1, J, k = 1, np, ς

′ > 0
is chosen such that Eς̄ ∩4 ⊂ S.

Clearly, the infimum of p∗ · ẑ(p) over S\Eς̄ is positive, since otherwise ẑ would violate C1. Let
α > 0 denote this infimum. We have p∗ẑ(p) ≥ min{δ, α} for all p ∈ 4\Eς̄ . Because ‖ẑ(p)‖ ≤ M

we get p∗ · ẑ(p) ≥ σ̂‖ẑ(p)‖2 for all p ∈ 4 \Eς̄ by choosing σ̂ < min{δ, α}\M2. The result follows by
setting σ = min{σ̄, σ̂}. ¤
Proof of Theorem 1. The process of Eq. 11 can be expressed as

p(t + 1) = p(t) + λtẑ(p(t))

where λt =min{γt, 1}, and ẑ is as defined in Lemma 3. When z has the properties P1–P4, so does
ẑ, and P5 implies that ẑ has the following property.

P5’: lim
p(t)→p

[
max

j,k∈JKp

ẑj(p(t))
]

> 0, when p 6= 0, and JKp = {j, k : p
(j)
k = 0} 6= ∅.

Moreover, we know from Lemma 3 that p∗ · ẑ(p) ≥ σ‖ẑ(p)‖2 holds for all p > 0 when z satisfies
C1–C2. Due to homogeneity p∗ can be replaced by p∗/σ in C1 and C2; hence, without loss of
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generality we may suppose that σ = 1. It follows then from Lemma 1 that the iteration converges.
Let us show that due to P5’ the parameter λt is updated only finitely many times, from which

it follows that λt has a positive lower bound that is required by Lemma 1 to obtain convergence to
a solution of Eq. 7. On the contrary, suppose that λt → 0. It then follows that pt → p, where some
components of p are zero, i.e., JKp 6= ∅. Namely, if the sequence {p(t)}t, p(t) > 0 for all t, converges
to some point in Rn

+, then the parameters γt and λt would be updated only finitely many times and
λt could not converge to zero. Hence, we have p

(j)
k (t) → 0 for all j, k ∈ JKp, i.e., for all ς > 0 we find

Nς ≥ 0 such that p
(j)
k (t) < ς, when t ≥ Nς and j, k ∈ JKp. Thus, by the continuity property and

P5’ there are l, h ∈ JKp and N ≥ 0 such that p
(l)
h → 0, and zl(p(t)) > 0 for all t ≥ N . Now we get

from the iteration formula that p
(l)
h (t + 1) > p

(l)
h (t) for all t ≥ N , which contradicts p

(l)
h → 0. Hence,

λt is updated finitely many times, i.e., there exists N̄ such that λt = λN̄ for all t ≥ N̄ . Convergence
to a solution of Eq. 7 follows from Lemma 1.

Let us assume that there is a unique ray of solutions for Eq. 7. Then the process of Eq. 11
converges to a point p̃ = βp∗, where β > 0. From Lemma 3 we see that there exists α > 0 such that
for αp̃ we have 2αp̃ · ẑ(p) ≥ ‖ẑ(p)‖2 for all p > 0. Lemma 2 then implies monotonical convergence.¤
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