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Abstract

We prove a discrete analogue for the composition of the fractional integral and Caputo
derivative. This result is relevant in numerical analysis of fractional PDEs when one discretizes
the Caputo derivative with the so-called L1 scheme. The proof is based on asymptotic evalua-
tion of the discrete sums with the use of the Euler-Maclaurin summation formula.
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1 Introduction

Let Iα be the fractional integral operator of order α ∈ (0, 1), i.e. for any locally integrable function
y : (0, T ) 7→ R we define

Iαy(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds. (1)

Further, the Caputo derivative is defined on smooth functions by

Dαy(t) = I1−αy′(t) =
1

Γ(1 − α)

∫ t

0

(t− s)−αy′(s)ds, 0 < α < 1. (2)

An elementary result (see for ex. [5]) states that the composition IαDα is given by

IαDαy(t) = IαI1−αy′(t) = I1y′(t) = y(t) − y(0), (3)

which is a straightforward generalization of the fundamental theorem of calculus. In what follows
we are interested in finding an analogue of the above relation when we allow for the time variable
to take only a discrete number of possible values. This is especially relevant in numerical analysis
where one constructs various schemes for approximately solving differential equations with fractional
derivatives. For example, finite difference or finite element methods lead to a nonlocal recurrence
relations that may be inverted by the use of the fractional integral or the fractional version of the
discrete Grönwall’s lemma [7, 2, 11, 9]. Some results related to the same family as ours can be found
in [3] where authors consider the stability of the L1 scheme on graded meshes. In particular, they
give estimates for the case with power function on the right-hand side of (3) in the discrete context.
For more information concerning fractional calculus and numerical methods we refer the reader to
[1, 5, 6].

∗This is an accepted version of the manuscript published in Communications in Nonlinear Science and Numerical
Simulations 108 (2022), 106234 with DOI: https://doi.org/10.1016/j.cnsns.2021.106234

†Faculty of Pure and Applied Mathematics, Wroc law University of Science and Technology, Wyb. Wyspiańskiego
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2 Main result

In numerical analysis, some very common discretizations of the above operators are constructed by
simple quadratures. Fix a time step h and define the mesh

tn = nh, (4)

where h > 0 is the time step. For brevity we denote yn := y(tn). Some very useful discretizations
of Iα and Dα can be constructed by a simple rectangle quadrature applied to defining integrals. In
particular, we have

Iαyn = Jαyn + Qn, Dα = δαyn + Rn, (5)

where the discretizations Jα and δα are defined by

Jαyn =
hα

Γ(1 + α)

n−1∑
i=0

bn−i(α)yi+1, δαyn =
h−α

Γ(2 − α)

n−1∑
i=0

bn−i(1 − α)(yi+1 − yi), (6)

with weights
bj(β) = jβ − (j − 1)β. (7)

Furthermore, the remainders satisfy

Qn ∼ − h

Γ(1 + α)

(
1

2
tα +

ζ(−α)

nα
+

α

12n

)
tαy′(τ), Rn ∼ − h2−α

Γ(2 − α)
ζ(α−1)y′′(τ), n → ∞, nh → t,

(8)
where ζ is Riemann-Zeta function and τ ∈ (0, t) is some number. The bounds above are sharp (see
[10]). In the literature this discretization of the fractional derivative is called the L1 scheme (see [8]).

We are interested in discrete version of the composition formula (3), that is we expect that
Jαδαyn = yn − y0 + rn, with some remainder rn. In order to prove this result and find the form of rn
we need to recall the Euler-Maclaurin formula written in the form that we need (for a proof see for
ex. [4]).

Theorem 1 (Euler-Maclaurin). For f ∈ C([0,m]) we have

m∑
k=1

f(k) =

∫ m

1

f(x)dx +
1

2
(f(1) + f(m)) +

∫ m

1

f ′(x)P1(x)dx, (9)

where P1(x) = B1(x− ⌊x⌋) is the periodized Bernoulli polynomial B1(x) = x− 1
2
.

We can now proceed to our main result. Notice that in the below the remainder is of order
hmin(α,1−α), that is, the exponent is always not larger than 1/2. This interesting fact comes from
the singularity of kernels. When composed, the fractional integral and Caputo derivative produce a
kernel that has two types of singularities at each endpoint of the integration interval.

Theorem 2. Let α ∈ (0, 1) and y ∈ C1(0, T ). For any fixed t ∈ (0, T ) with n → ∞ and h = t/n we
have

Jαδαyn = yn − y0 + rn (10)

where the remainder rn satisfies

|rn| ≤ Chβ

∫ t

0

(t− s)−β|y′(s)|ds, β := min(α, 1 − α). (11)

and the constant C depends only on α and y.
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Proof. Fix n = 1, ..., N and start with writing the composition as

Jαδαyn =
hα

Γ(1 + α)

n−1∑
i=0

bn−i(α)δαyi+1

=
1

Γ(1 + α)Γ(2 − α)

n−1∑
i=0

bn−i(α)
i∑

j=0

bi−j+1(1 − α)(yj+1 − yj).

(12)

Now, interchanging the order of summation we can write

Jαδαyn =
1

Γ(1 + α)Γ(2 − α)

n−1∑
j=0

(
n−1∑
i=j

bn−i(α)bi−j+1(1 − α)

)
(yj+1 − yj)

=
1

Γ(1 + α)Γ(2 − α)

n−1∑
j=0

(
n−j∑
k=1

bn−j−k+1(α)bk(1 − α)

)
(yj+1 − yj)

(13)

where in the second equality we have introduced a new summation variable k = i− j + 1 for the sum
in the parenthesis. Put m = n− j and denote the sum in the parenthesis above

Sm =
m∑
k=1

bm−k+1(α)bk(1 − α). (14)

We would like to find the approximation of Sm and to this end we use Euler-Maclaurin formula (9)
by using (7) and writing

Sm =
m∑
k=1

((m− k + 1)α − (m− k)α)
(
k1−α − (k − 1)1−α

)
= m

m∑
k=1

((
1 − k

m
+

1

m

)α

−
(

1 − k

m

)α)((
k

m

)1−α

−
(
k

m
− 1

m

)1−α
)

= m
m∑
k=1

f(k),

(15)

where we defined the function f . Now, using (9) we can write

Sm = m

∫ m

1

f(x)dx +
m

2
(f(1) + f(m)) + m

∫ m

1

f ′(x)P1(x)dx. (16)

We will estimate the above three components when m is large. We quickly can see that the easiest
part is

m

2
(f(1) + f(m)) =

m

2

((
1

m

)1−α(
1 −

(
1 − 1

m

)α)
+

(
1

m

)α
(

1 −
(

1 − 1

m

)1−α
))

= O

(
1

m1−α
+

1

mα

)
, m → ∞,

(17)

where the asymptotic behaviour follows from the Taylor expansion. Further, we turn to the analysis
of the first term in (16) for which we change the integration variable y = mx

m

∫ m

1

f(x)dx = m2

∫ 1

1
m

((
1 − y +

1

m

)α

− (1 − y)α
)(

y1−α −
(
y − 1

m

)1−α
)
dy. (18)
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Note that the above is invariant under the transformation α 7→ 1 − α what can be seen by a
substitution y = 1 − x + 1/m. By inspection we can see that the integrand converges to α(1 −
α)(1 − y)α−1y−α as m → ∞ (each expression in parenthesis converges to its derivative), hence, by
the Lebesgue Monotone Convergence Theorem and the definition of Euler beta function we conclude
that

m

∫ m

1

f(x)dx → α(1 − α)

∫ 1

0

(1 − y)α−1y−αdy = Γ(1 + α)Γ(2 − α) as m → ∞. (19)

This, together with (13) proves that in this limit, the discrete composition verifies (3). However, we
would like to investigate the rate of this convergence to have a more useful formula. Due to singularity
of the integrand, we cannot expand it into Taylor series for large m and then integrate since such
expansion would diverge. Since the behaviour of the integrand is different for each terminal: t = 0,
t = 1 we split it into two terms

m

∫ m

1

f(x)dx = m2

(∫ 1
2

1
m

+

∫ 1

1
2

)
= K0 + K1. (20)

Because 1/m > 0, the integrand in K0 does not have any singularities we can safely expand for
1/m → 0

K0 = α(1 − α)

∫ 1
2

1
m

(1 − y)α−1y−αdy +
α(1 − α)

2m

∫ 1
2

1
m

(1 − y)α−2y−α−1(α− y)dy + O

(
1

m2

)
. (21)

And the first integral above is∫ 1
2

1
m

(1 − y)α−1y−αdy =

∫ 1
2

0

(1 − y)α−1y−αdy −
∫ 1

m

0

(1 − y)α−1y−αdy

=

∫ 1
2

0

(1 − y)α−1y−αdy − 1

1 − α

1

m1−α
+ O

(
1

m2−α

)
,

(22)

since the term (1 − y)α−1 = O(1) as m → ∞. By the same argument, the second integral in K0 can
be expanded as follows∫ 1

2

1
m

(1 − y)α−2y−α−1(α− y)dy = mα + O(1), m → ∞. (23)

Therefore,

K0 = α(1 − α)

∫ 1
2

0

(1 − y)α−1y−αdy + O

(
1

m1−α

)
, m → ∞. (24)

A similar analysis cannot be conducted for K1 since we would arrive at a divergence. A roundabout
can be constructed by observing that(

1 − y +
1

m

)α

− (1 − y)α = α

∫ 1
m

0

(1 − y + z)α−1dz. (25)

Then, by Tonelli’s theorem and noting that m(y1−α− (y−1/m)1−α) = (1−α)y−α +O(1/m) we have

K1 = αm

∫ 1
m

0

(∫ 1

1
2

(1 + z − y)α−1y−αdy

)(
1 + O

(
1

m

))
dz

= αm

∫ 1
m

0

(∫ 1
1+z

1
2(1+z)

(1 − u)α−1u−αdu

)(
1 + O

(
1

m

))
dz,

(26)
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where we have put y = (1 + z)u what removes the singularity from the integrand. The integral in
parenthesis can now be expanded for z → 0+ (since z ∈ (0, 1/m)) yielding the leading order

K1 = α

∫ 1

1
2

(1 − u)α−1u−αdu + O

(
1

mα

)
, m → ∞. (27)

Finally, we can go back to (20) to obtain

m

∫ m

1

f(x)dx = Γ(1 + α)Γ(2 − α) + O

(
1

mα
+

1

m1−α

)
, m → ∞. (28)

The next step is to proceed with the remainder in (16). Its analysis is similar to the above and we
sketch only the most important details. By calculating derivatives we see that the remainder has
almost the same form as before

m

∫ m

1

f ′(x)P1(x)dx

= −αm

∫ 1

1
m

((
1 − y +

1

m

)α−1

− (1 − y)α−1

)(
y1−α −

(
y − 1

m

)1−α
)
P1(my)dy

− (1 − α)m

∫ 1

1
m

((
1 − y +

1

m

)α

− (1 − y)α
)(

y−α −
(
y − 1

m

)−α
)
P1(my)dy.

(29)

By counting powers and utilizing the fact that P1 is bounded we can specify the correct convergence
order of the above. For example, the first integral has two singularities for large m: y = 0 and y = 1.
In the former case we can expand in the Taylor series for m → ∞ which will consume two powers of
m leaving y−α singularity. After integration we obtain a term proportional to m with an exponent
1 − 2 + 1 − α = −α. On the other hand, to deal with the singularity at y = 1 we use the trick with
Tonelli’s theorem to obtain a O(m−α) term. The second integral above can be analysed in the same
way with the difference that the singularity at y = 1 yields a O(m−1) term (because the integrand
after expansion in m → ∞ is integrable there), while the one at y = 0 produces O(mα−1). We see
that the remainder introduces terms of the same order, hence putting everything together, recalling
that m = n− j, and returning to (13) brings us to

Jαδαyn = yn − y0 +
n−1∑
j=0

cn−j

(n− j)β
(yj+1 − yj), β = min(α, 1 − α), (30)

with cn−j bounded by, say, C. Hence, for n → ∞ with nh → t ∈ (0, T ) by the definition of Riemann
integral we have∣∣∣∣∣

n−1∑
j=0

cn−j

(n− j)β
(yj+1 − yj)

∣∣∣∣∣ ≤ Ch
n−1∑
j=0

|y′(ξj)|
(n− j)β

= C
nh

n1+β

n−1∑
j=0

(
1 − j

n

)−β

|y′(ξj)| ∼ C
t

nβ

∫ 1

0

(1 − x)−β|y′(xt)|dx

∼ Chβ

∫ t

0

(t− s)−β|y′(s)|ds.

(31)

with ξj being a intermediate point and the new integration variable s = xt. The proof is complete.
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Figure 1: The loglog plot of (32) for increasing m and α = 0.75 (solid, circles) and the reference line
(dashed, triangles).

We close the paper with several numerical verifications of the above theorem. First, it is interesting
to see how the asymptotic relation for the Euler-Maclaurin’s integral (28) behaves. In Fig. 1 a loglog
plot of ∣∣∣∣m∫ m

1

f(x)dx− Γ(1 + α)Γ(2 − α)

∣∣∣∣ , (32)

is depicted for increasing m with f defined in (15). Recall that the integrand is invariant under the
transformation α 7→ 1 − α and thus we consider only one exemplary case of α = 0.75. As can be
seen, the integral approaches its limit with the correct rate. Numerical simulations with other values
of α give very similar results.

We can also verify the main relation of this paper, that is the discrete composition (10). As an
example we choose three test functions: a polynomial t3, sin t, and a non-smooth function |t− 1/2|.
We compute the residue

ρ = |Jαδαyn − yn + y0| , (33)

with the final time t = 1, α = 0.5, and a decreasing sequence of steps h = 1/n. Results of calculations
are presented in Fig. 2. Immediately we can see that now, the convergence to zero is not monotone.
Rather, for the majority of chosen steps h the results of computations cluster along or parallel to
the reference line h0.5. This confirms the predicted order of the remainder rn in (11). As can also be
seen, the results are not sensitive to the chosen test function even if it does not have a continuous
derivative. Interestingly, the residue for h = 10−i for i = 1, 2, 3, ... is smaller than in the other cases.
In each case, however, our estimate of the remainder (11) is confirmed.
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