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Abstract

In open Hamiltonian systems, the escape from a bounded region of phase space according to an ex-

ponential decay law is frequently associated with the existence of hyperbolic dynamics in such a region.

Furthermore, exponential decay laws based on the ergodic hypothesis are used to describe escapes in these

systems. However, we uncover that the presence of the set that governs the hyperbolic dynamics, commonly

known as the chaotic saddle, invalidates the assumption of ergodicity. For the paradigmatic Hénon-Heiles

system, we use both theoretical and numerical arguments to show that the escaping dynamics is non-ergodic

independently of the existence of KAM tori, since the chaotic saddle, in whose vicinity trajectories are more

likely to spend a finite amount of time evolving before escaping forever, is not utterly spread over the energy

shell. Taking this into consideration, we provide a clarifying discussion about ergodicity in open Hamil-

tonian systems and explore the limitations of ergodic decay laws when describing escapes in this kind of

systems. Finally, we generalize our claims by deriving a new decay law in the relativistic regime for an in-

ertial and a non-inertial reference frames under the assumption of ergodicity, and suggest another approach

to the description of escape laws in open Hamiltonian systems.
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I. INTRODUCTION

When a point mass travels freely and meets a region of interaction, commonly described in

terms of a potential, its state of motion is irremediably affected. The particle may escape eventu-

ally from the influence of the potential, resuming its free journey until another obstacle is encoun-

tered. This physical phenomenon is known as a scattering process, and if the potential function

is nonlinear, the particle might experience a chaotic scattering [1]. In this case, the particle will

be subject to chaotic dynamics that will cause its final state of motion to be extremely sensitive

to modifications in the initial conditions, which hinders its predictability [2]. In most scattering

processes, the particle experiences the effect of chaotic dynamics just for a finite amount of time

before escaping, i.e., its motion undergoes a transient chaotic dynamics [3, 4]. This phenomenon

is typical in open 2D time-independent Hamiltonian systems, among which the Hénon-Heiles sys-

tem constitutes a paradigmatic example [5]. Briefly, transient chaotic dynamics is governed by the

presence in phase space of the chaotic saddle, also called invariant nonattracting chaotic set [6],

which rules how much time particles spend in the phase space region called the scattering region.

Chaotic scattering is a fundamental field in nonlinear dynamics, which has many different applica-

tions in physics, such as molecule scattering, advection of particles in fluid mechanics, transition

of materials, or even stars escaping from galaxies [7–10].

To study the probabilistic laws that govern the particle escape from the influence of the poten-

tial, large ensembles of particles can be launched inside the scattering region, where they interact

with the potential well. In this way, particles escape following an exponential decay law when

hyperbolic chaos governs the dynamics, whereas escapes take place according to algebraic laws

when the underlying dynamics is nonhyperbolic [11–15]. On the other hand, exponential decay

laws are sometimes associated with ergodic motions, so it is common to find works in which the

concepts of chaos and ergodicity are used in an equivalent way [16]. Boltzmann coined the terms

ergoden or ergodische, whose Greek etymological origin means “energy path” [17], to refer to

systems in which trajectories, if left to itself for long time enough, will pass close to nearly all the

dynamical states on the energy surface [18], i.e., the dynamical states compatible with a constant

energy. It is widely known that in small systems with a few degrees of freedom chaos is decisive

to determine if the laws of statistical mechanics are satisfied, and therefore it is the key to many

proofs that demonstrate that systems are ergodic [19].

However, exponential decay laws based on the ergodic hypothesis, which we shall name er-
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godic decay laws hereafter for simplicity, are inadequate to describe the rich phenomenology of

open Hamiltonian systems, as confirmed by the numerical results presented in this work. The

reason is that assuming this hypothesis in the open regime is an oversimplifying approximation

for small exits, since it implies disregarding the existence of KAM tori or the chaotic saddle in

the nonhyperbolic and hyperbolic dynamical regimes, respectively. As is well known, KAM tori

prevent particles to escape exponentially for long periods of time due to the phenomenon of stick-

iness, by which particles starting in a chaotic region can stick to the vicinity of the boundary of

a regular region before escaping [20–24]. Therefore, the KAM stickiness clearly disallows the

assumption of equiprobability of the phase space states, avoiding ergodic motions [18, 25, 26].

On the other hand, whereas the presence of the chaotic saddle can make the decay law expo-

nential, it is also responsible for the existence of particles that evolve and spend a finite amount

of time near its vicinity before escaping. Specifically, a significant number of particles approach

the chaotic saddle following its stable manifold, and move away from its vicinity following its

unstable manifold [6]. In this manner, despite the fact that hyperbolic chaos rules the dynamics in

these situations, the particle’s motion is non-ergodic before escaping because the saddle vicinity

occupies only a subset of the energy shell. Then, once again, we can not expect equiprobability of

the phase space states, when following any escaping trajectory compatible with some value of the

energy. Briefly speaking, in terms of measure theory, the measure that characterizes the escaping

process from the chaotic saddle along the so-called unstable manifold is very different from the

natural measure of a hyperbolic and closed Hamiltonian system [27] that is ergodic and, therefore,

that can be described by the microcanonical ensemble throughout the chaotic sea in its phase space

[25].

One of the purposes of the present work is to extend ergodic decay laws to relativistic chaotic

scattering, to study numerically their scope of applicability regarding the system’s dynamical

regimes, and to propose other ways to widen these laws taking into account statistical methods

that do not rely on the ergodic hypothesis. Firstly, we provide a complete description of the

Hénon-Heiles model in Sec. II, including striking aspects of escapes, such as the critical time. In

Sec. III we thoroughly discuss the concept of ergodicity in open Hamiltonian systems, and pro-

vide numerical evidence of the limited applicability of ergodic decay laws at the end of the section.

Furthermore, we derive an analytic ergodic decay law in a relativistic version of the Hénon-Heiles

system in Sec. IV. We also derive this analytical decay law considering that escapes are measured

by a noninertial reference frame comoving with a particle that never escapes from the scattering
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region. Finally, in Sec. V, we conclude this work with a discussion of our findings and suggest-

ing possible ways to obtain a more accurate characterization of decay laws utilizing statistical

mechanics.

II. MODEL DESCRIPTION

The Hénon-Heiles system was introduced in 1964 to study the existence of a third integral

of motion in models of galaxies with axial symmetry [28]. We utilize a dimensionless and con-

servative version of the Hénon-Heiles system where the particle dynamics is governed by the

Hamiltonian

H(px, py, x, y) =
p2
x + p2

y

2
+ V (x, y), (1)

where px and py are the momenta, and V (x, y) is a nonlinear potential function which depends on

x and y. In the Hénon-Heiles system, the potential well is written as

V (x, y) =
1

2
(x2 + y2) + x2y − 1

3
y3. (2)

The value of the mechanical energy is determined by the Hamiltonian, which is a conserved quan-

tity, H(px, py, x, y) = E. When the energy is above a threshold value called the escape energy,

Ee = 1/6, most trajectories are unbounded so that the system enters an open regime, where es-

capes are allowed and the potential well exhibits three symmetric exits, as shown in Fig. 1. In

addition, we define the quantity ∆E ≡ E − Ee for convenience in computing decay laws in next

sections.

The corresponding equations of motion are given by

ẋ =
∂H

∂px
= px, ṗx = −∂H

∂x
= −x− 2xy,

ẏ =
∂H

∂py
= py, ṗy = −∂H

∂y
= y2 − x2 − y.

(3)

The fixed points of the system can be computed from these latter equations. In this manner, we

see that the system has three fixed points located at the saddle points of the potential well, namely,

(xs, ys) = (0, 1), (
√

3/2,−1/2) and (−
√

3/2,−1/2), and another fixed point right in the mini-

mum of the well, (xm, ym) = (0, 0). In addition, there exist three highly unstable periodic orbits

known as Lyapunov orbits [29]. If a trajectory crosses through one of them, it escapes towards

infinity and never returns back to the scattering region. The Lyapunov orbits are placed extremely
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close to the saddle points in the present version of the Hénon-Heiles system, and therefore it is

convenient to define the scattering region as the allowed region of the potential well delimited by

the lines that cross the saddle points, as can be visualized in Fig. 1(b). Unless otherwise speci-

fied, trajectories have been computed by means of an adaptive Runge-Kutta-Fehlberg method [30]

with a relative tolerance of 10−12 for each solution of the system of equations and a maximum

value of the integration step of 5 · 10−3, small enough to conserve the mechanical energy along the

trajectory.

FIG. 1: (a) Hénon-Heiles potential, V (x, y) = 1
2(x2 + y2) + x2y − 1

3y
3. (b) Closed and open isopotential

curves projected into the configuration space (x, y). We arbitrarily establish the exits of the potential well

at the saddle points: Exit 1 (red), Exit 2 (green) and Exit 3 (blue). In this way, the scattering region is the

allowed region of the potential well delimited by the saddle points lines. The potential minimum is located

right at the center of the well (black dot). (c) Scattering region for E = 0.19 (light gray) and a particle

trapped in a KAM structure describing a non-escaping orbit typical of the nonhyperbolic regime. (d) Exit

basins and non-escaping orbits in black associated with E = 0.19, as computed by means of the tangential

shooting method [5] with a 500×500 resolution. (e) Similarly, for E = 0.25, an escaping orbit starting

from the same initial condition that in (c), but in the hyperbolic regime. (f) Exit basins for E = 0.25.

The underlying dynamics of open systems is determined by the presence of KAM tori in phase

space. They are sticky sets of quasiperiodic orbits that may delay escapes or even trap particles
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forever within the scattering region, as shown in Fig. 1(c). Then, there exist two open dynamical

regimes. On the one hand, the nonhyperbolic regime where KAM tori coexist with the chaotic

saddle and the phase space exhibits regions where the dynamics is regular surrounded by a chaotic

sea [31]. An example of the typical nonhyperbolic topology of the exit basins is presented in

Fig. 1(d). As already indicated, the KAM tori stickiness may significantly influence the global

properties of the dynamics, such as the decay law, which can become algebraic at long times.

On the other hand, if the system energy is increased, the KAM tori that dominate the dynamics

disappear and thus the hyperbolic regime begins. The destruction of such KAM structures has

been studied recently, yielding approximately an energy value of E ≈ 0.2309 for the transition

between dynamical regimes [32]. After this energy value, the chaotic saddle dominates the dynam-

ics, making the system chaotic (see, e.g., Figs. 1(e) and 1(f)). Nonetheless, some remnant KAM

tori may survive for E > 0.2309, after the destruction of the last relevant KAM tori. The pres-

ence of such remnant structures in the hyperbolic regime show that purely hyperbolic dynamics

is unlikely to exist [33]. However, they have been extensively studied and found to be extremely

small and difficult to locate [34, 35], so that their possible stickiness barely affects the decay law:

an ensemble of particles escapes conforming an exponential law at long times in the hyperbolic

regime. Finally, this situation is different in area-preserving maps, where there exist apparently

relevant sticky KAM structures for ranges of parameter values arbitrarily large [36].

In order to illustrate how the volume in phase space occupied by the KAM tori evolves as

the system energy is varied, we analyze the well-known surface of section (y, py) located at x =

0, which is a convenient plane transverse to the orbits. Similar surfaces of section have been

extensively used in area-preserving maps [21] and in continuous-time systems as well [5]. Thus,

particles are launched from the exits of the scattering region with random initial shooting angles

into its interior. These trajectories map the entire surface of section except the area occupied

by the KAM tori. Using a partition of the surface of section with high resolution, it is easy to

compute what fraction of points have not been visited by the escaping trajectories, which is the

fraction occupied by the KAM tori (see Appendix at the end of the manuscript for some method

specifications). We show in Fig. 2(a) examples of which regions are mapped (darker gray) and

those occupied by the KAM tori (lighter gray) for three values of the energy, and in Fig. 2(b)

the fraction of KAM tori versus the system energy. The shape of the curve is non-trivial due

to the complexity of the KAM tori destruction [35]. Although the volume of the phase space

occupied by tori KAM is residual for E > 0.208 (dashed red line), it has been shown that KAM
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structures can influence up to E ≈ 0.2309 still some global properties of the dynamics, such as

the unpredictability of the final state of the system [32]. For this reason, along this work, we set

the hyperbolic regime in the energy range E > 0.2309.

FIG. 2: Computing the fraction of KAM tori in the surface of section (y, py) placed at x = 0, where only

escaping trajectories are launched from the exits of the scattering region (more details in the text and in

Appendix). (a) For E = 0.19, a trajectory launched from the Exit 3 with eight crossings though the surface

of section before escaping through Exit 3, again. We also show three examples of surfaces of section for

E = 0.17, 0.19 and 0.25, where the mapped regions (darker gray) and KAM tori regions (lighter gray)

are depicted. (b) Fraction of the surface of section occupied by KAM tori fk versus the system energy,

specifically, 50 equally spaced values belonging to the interval E ∈ [0.17, 0.25]. The dashed lines are

placed at E = 0.208 (red) and 0.2309 (black), respectively. We have set a 500×500 grid resolution for the

surface of section and 106 initial conditions have been launched for each energy value.

In addition to KAM tori, a relevant set of the phase space is the chaotic saddle. Specifically,

it is an invariant set with zero-Lebesgue measure resulting from the intersection of the stable

and unstable manifolds. The stable (unstable) manifold consists of a self-similar fractal set of an

uncountable number of orbits that approach the saddle as t → ∞ (t → −∞) [37]. On the other

hand, the stable manifold can be understood as the boundary of the exit basins, which exhibits

the Wada property in the Hénon-Heiles system [5]. For this reason, the stable manifold of the

chaotic saddle (and therefore itself) can be characterized by means of the fractal dimension of the

exit basins boundary. As the energy is increased, such boundary becomes smoother, the fractal

dimension of the chaotic saddle decreases and the system becomes more predictable [32].
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An important concept, such as the critical time, has not been addressed in this system yet. The

critical time is defined as the escape time spent by a particle launched from a saddle point of the

potential towards the center of the well [38, 39]. More specifically, it is the maximum time that

straight-line trajectories can spend inside the scattering region before escaping. We name these

trajectories as the critical trajectories and there exist as many as saddle points the potential has

(see Fig. 3(a)). We compute this time in the Hénon-Heiles system utilizing the critical trajectory

associated with Exit 1,

tc(E) = 2

∫ yf

ys

dy

p
= 2

∫ yf

1

dy√
2E − y2 + 2

3
y3
, (4)

where ys = 1 is the y-coordinate of the saddle point located at the Exit 1, and yf is the y-coordinate

of the point of the configuration space which satisfies the equality E = V (0, yf ). Finally, p =√
p2
x + p2

y is the modulus of the particle momentum.

Interestingly, critical trajectories are not disturbed by the presence of KAM tori in light of

Fig. 3(b). In addition, already in Fig. 3(a), we also show the critical trajectories even when the

potential well is closed, for E = 0.16. In this example, the three trajectories remain bounded

along straight lines over 100 time units, bouncing back and forth against the potential barriers.

They can be simulated over any arbitrarily longer time and would describe the same straight-line

bounded behavior, because the so-called critical trajectories are closely related to some of the

stable normal modes of the Hénon-Heiles system in its closed regime [34, 35]. More examples

of critical trajectories are shown when the system is open in Fig. 3(a) again. Therefore, as the

critical trajectories are not deviated by the likely influence of KAM tori or the chaotic saddle, we

can safely state that critical trajectories are the orbits in the open regime that spend the longest

time without suffering any effect of the sets that govern the dynamics. In order to demonstrate the

latter, we compute the exit basins shown in Fig. 3(c) by shooting particles with a constant initial

angle θ0 = 3π/2. We notice that there exists a smooth region of initial conditions (depicted in

red) near the Exit 1 critical trajectory, that is surrounded by the typical fractal regions produced

by the influence of the sets that governs the dynamics, where the final state of particles is subject

to chaos. As this smooth region becomes larger as the system energy increases, it implies that a

significant amount of particles starting from it might escape having only suffered negligible effects

from such mentioned sets on their trajectories and their escape times.

The critical times versus the system energy as a numerical result of Eq. (4) and as an average

computed from the escape times of three critical trajectories are in perfect agreement as shown
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in Fig. 3(d). As pointed out above, the values of critical times are not disturbed by the presence

FIG. 3: (a) Critical trajectories (red, green and blue) in the configuration space forE = 0.16 (closed regime)

and E = 0.17, 0.19 and 0.25 (open regime). We also simulate another trajectory (yellow) initialized near

the critical trajectory associated with the Exit 1. (b) Critical trajectories in the space (y, py) when x = 0.

They allow to visualize the presence of KAM tori (black) and their proximity to the critical trajectories. (c)

Exit basins as computed by shooting particles always with a constant initial angle, θ0 = 3π/2. (d) Critical

times versus the system energy as a numerical result of Eq. (4) (black line) and as an average from the

escape times of three critical trajectories (red triangles). On the other hand, t̄e (red squares) represents the

average escape times of 5 · 105 particles launched randomly along the critical trajectory associated with the

Exit 1, and t̄e (yellow) means the average escape times of particles launched with θ0 = 3π/2 and randomly

distributed within the delimited region by the dashed lines depicted in (a) and (c). Finally, the vertical

dashed line splits the nonhyperbolic and hyperbolic regimes at an approximate energy value E = 0.2309.
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of KAM tori. Furthermore, we compute the average escape times of two different ensembles

of particles. On the one hand, we randomly launch particles along the Exit 1 critical trajectory,

i.e., with x0 = 0 and θ0 = 3π/2 as initial conditions. As expected, the average escape times

computed are always less that the critical times, since simulated trajectories are just shorter parts

of the Exit 1 critical trajectory. On the other hand, we simulate particles with θ0 = 3π/2 again,

but randomly distributed within the region delimited by the limits of the Exit 1 for E = 0.17,

i.e., x0 = ∓
√

2∆E/3, where ∆E = 0.17 − 1/6 (see the dashed black lines in Fig. 3(a) or

3(c)). Simulations reveals that average escape times are less than critical times for approximately

E > 0.18 because the majority of these particles bounce against the potential barrier and escape

through the Exit 1, having evolved shorter trajectories that critical trajectories in general. We recall

that all these particles belong to the smooth region mentioned above.

Finally, according to the results about critical times, we state that all escaping orbits after

the critical time are affected by KAM tori and the saddle in the nonhyperbolic and hyperbolic

regimes, respectively. Conversely, as indicated above, there exist some escaping orbits that are

negligibly affected by these sets before the critical time. Importantly, this fact is reflected in the

decay curves: a sudden change of the tendency of the escapes occurs when the critical time is

achieved. For instance, escapes take place more slowly after the critical time when the dynamics

is nonhyperbolic because all escaping orbits are affected by KAM tori stickiness, as shown in the

next section.

III. DECAY LAW IN THE NEWTONIAN HÉNON-HEILES SYSTEM

Theoretically, a Hamiltonian system is ergodic when its energy surface uniquely consists of

a chaotic sea, due to the existence of a dense set of highly unstable periodic orbits densely em-

bedded in it [37]. However, a problem may arise when testing if the motion is ergodic or not in

open systems, since it is necessary to simulate trajectories trapped in the scattering region for a

large amount of time. For example, in open systems, simulated trajectories generally escape be-

fore accomplishing long enough times to fill densely the energy surface and test the assumption

of ergodicity. In this regard, a modified Hénon-Heiles system with reflecting walls, where elas-

tic collisions occur, was proposed to prevent particles from escaping [25]. The authors provide

numerical results claiming that this modified Hénon-Heiles system behaves ergodically in the hy-

perbolic regime when the walls are placed far from the origin of the potential well. Thus, one
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might think that if the reflecting walls are placed infinitely far from the origin, the Hénon-Heiles

system would be recovered and, following the computational results shown above, one would ob-

tain that the open and hyperbolic Hénon-Heiles system behaves ergodically. However, this limit

case is unattainable in computational practice, since the Hénon-Heiles system is open and does

not allow any escaped trajectory to return to the scattering region again. As we will discuss below,

the fact that trajectories escape forever causes the escaping process to be non-ergodic.

Since the chaotic saddle is a zero-Lebesgue-measure set and the definition of ergodicity only

requires that almost all trajectories in the energy surface fill it densely [17], the presence of such

an invariant set should not hinder a priori the application of the ergodic hypothesis. However,

saddle sets separate the phase space into disjoint sets, what invalidates the ergodic hypothesis.

This is evinced by the fact that a trajectory launched directly towards any of the exits can leave

the scattering region without returning (for instance, see any critical trajectory). Moreover, the

phase space fragmentation is manifested by the existence of large and differentiated exit basins,

as can be appreciated in Fig. 1(f). Therefore, the approximation of ergodicity to derive decay

laws can only be made for energies close to the energy escape, i.e., when the exits are vanishingly

small and the exit basins exhibit a completely fractalized structure. Furthermore, and as we show

numerically right ahead, this hypothesis also demands to consider short enough times. Finally, as

is well known, we recall that the stickiness and the possible entrapment of the particle developed

by KAM tori prevent that a set of trajectories with a Lebesgue measure different from zero satisfies

the ergodic hypothesis [18, 25, 26].

Having stated the problems of assuming the ergodic hypothesis in open systems, we elucidate

below the range of applicability of an ergodic decay law to describe exponential escapes. At first,

the evolution of the number of particles inside the scattering region for any hyperbolic system can

be expressed without loss of generality as

N(t) = N0e
−α(E)t, (5)

where α(E) is the decay rate and depends on the mechanical energy of the system. A decay law,

αe, has been derived analytically in the case of the open Hénon-Heiles system [16], obtaining

αe(∆E) =

√
3∆E

S(∆E)
, (6)

where the function S(∆E) is the area of the scattering region as defined in Sec. II, which can

be computed by utilizing a Monte Carlo method. The calculus of the ergodic decay rate, αe,
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is accomplished by means of the microcanonical ensemble, which is the only ensemble able to

describe the statistical properties of ergodic systems [40].

To test the ergodic decay law, we launch a large amount of particles (N0 = 5·105) from different

initial conditions randomly distributed in the configuration space of the scattering region, i.e., with

random values for x0, y0 and θ0. For convenience, the evolution of the number of particles inside

the potential well is shown in natural logarithmic scale, i.e., lnN(t) in Fig. 4. This representation

enables the reader to infer easily an exponential decay when a linear relation between lnN and t

appears. We take into account several time intervals to fit the exponential behaviors.

In order to ascertain how the time intervals affects the decay, firstly, we define the short-time

quantities t5%, t10% and t15%, where, for instance, t10% means the time at which the 10% of the

FIG. 4: We consider short times (t5%, t10% and t15%), the critical time (tc) and long times (t2c ≡ 2tc,

t99% and t99.9%). (a) Decay curves (gray) when the underlying dynamics is nonhyperbolic for E = 0.17,

0.19, 0.21 (solid lines) and 0.23 (dashed line). (b) Exponential decay curves (gray) when the underlying

dynamics is hyperbolic, for E = 0.235, 0.25, 0.275 (solid lines) and 0.29 (dashed line). (Inset plots) The

first instants of the decay curves. (c) The evolution of the fitting times versus the system energy. (d) Again

the evolution of the fitting times versus the system energy, but the evolution of the long times is included.

12



particles starting inside the scattering region have escaped. These short times are usually smaller

than the critical time and thus are located at the beginning of the time evolution. Secondly, we

consider the critical time, tc. As indicated in the previous section, notice that the decay curve

suffers a slight change of tendency when this time is reached in both dynamical regimes, although

this change is even more subtle in the hyperbolic regime. Finally, we define the long-time quantity

t2c, which is twice the critical time for nonhyperbolic dynamics and, on the other hand, we also

establish the long-time quantities t2c, t99% and t99.9% for hyperbolic dynamics. Note that, in the

nonhyperbolic regime, the exponential decay only appears during the first instants of the time

evolution, provided that KAM tori turn the decay law algebraic at long times, as is clearly shown

in Fig. 4(a). For this reason, we only compute exponential fittings until the time t2c, when KAM

tori are present. However, the presence of the chaotic saddle makes the escapes exponential in the

hyperbolic regime (see Fig. 4(b)), and thus we are able to fit the exponential decay until longer

times, such as t99% or even t99.9%. Interestingly, we observe that the fraction of trapped particles

for E = 0.23 is greater than for E = 0.21. This result is in agreement with the fact that the phase

space volume occupied by KAM tori usually follows a non-trivial tendency as the energy changes.

Furthermore, we show in Figs. 4(c) and 4(d) how the time quantities defined above evolve as the

system energy increases.

The fitted decay rates αa,b associated with the time intervals t ∈ [ta, tb] are displayed in Fig. 5.

For example, the exponential rate α0,10% has been computed considering only a very small part

of the decay curve, t ∈ [0, t10%]. We observe that the shorter the times considered in exponential

fitting, the better the agreement is between the ergodic decay rate, αe, and the fitted rate, such as

α0,5% (see Fig. 5(a)). This is explained because the ergodic decay law does not take into account

the KAM tori and the chaotic saddle, whose traces in particle paths are more noticeable when the

longer the time particles have evolved inside the scattering region. Thus, as a consequence, the

ergodic decay law overestimates the decay rate αc,2c when KAM tori are present and escapes are

delayed by them. However, in the hyperbolic regime, the ergodic decay law underestimates all

long-time decay rates, such as αc,2c, α2c,99% and α99%,99.9%, because the unstable manifold of the

chaotic saddle affects the escapes at long times, accelerating them (see Fig. 5(b)). In addition,

we note that as the system energy is increased, the chaotic saddle also enhances its effects on

escapes at short times. Hence, the ergodic decay rate underestimates escapes when the energy

system is high even at short times. This last argument can be applied when analyzing why the

fitted rate α0,c does not agree with the ergodic decay law neither, because the influence of the sets
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that governs the dynamics is strong enough to prevent particles from being distributed according

to the microcanonical ensemble at the critical time as well.

Furthermore, we would like to highlight that the decay rates for long times may be useful to

quantify whether particles always escape in the same way over the three different periods of the

time evolution that we establish in the hyperbolic regime, namely αc,2c, α2c,99% and α99%,99.9%.

For example, these decay rates can be affected by the existence of extremely small KAM tori that

may survive even after the destruction of the dominant KAM tori [34, 35]. In our simulations, we

have not found trapped particles for energies greater than E > 0.2309, neither long-time algebraic

decays for at least the 99.9% of the initialized particles in the scattering region. Therefore, such

remnant KAM structures are not decisive in the exponential escape regime. Nonetheless, we ob-

serve in Fig. 5(b) that the decay rates of the two last periods considered, α2c,99% and α99%,99.9%,

exhibit a fluctuating evolution when plotted against the system energy, whose cause deserves fur-

ther research. So far, we have found that hyperbolic decay rates measured at any given sufficiently

long time are underestimated by the ergodic decay law, which implies a clear limitation of this

kind of decay laws in describing escapes in open systems.

FIG. 5: Exponential fittings of the decay curves at (a) short times, (b) critical and long times. We recall that

the dashed line again splits the nonhyperbolic and hyperbolic dynamics when E = 0.2309. For the sake

of clarity, although the decay law αe has been computed in terms of ∆E, we show the results of fittings in

terms of E for simplicity.

Now, we present the decay basins for hyperbolic dynamics in Figs. 6(a–c) to visualize which

particles escape during each time interval and how they are distributed inside the scattering re-
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gion. Furthermore, they relate the escape times and the exit basins built by utilizing the tangential

shooting method [5]. We observe that an important fraction of particles escapes before the critical

time. These particles start their escaping trajectories far from the fractal boundaries of the exit

basins, i.e., far from the influence of the chaotic saddle. This confirms that the critical time is the

maximum escape time for a trajectory that is not affected by the sets that governs the dynamics.

Conversely, all the initial conditions associated with escape times higher than the critical time are

located close to the fractal boundaries of the exit basins.

FIG. 6: (a–c) Decay basins for E = 0.235, 0.25 and 0.275, respectively. The color code indicates the initial

conditions from which escapes occur before the short time t15% (lighter red), the critical time tc (red), twice

the critical time t2c (darker red), and finally those from which particles have not already escaped by t2c

(black). (Inset plot) Exit basins associated with the shown decay basins. (d–f) Average escape times, again,

for E = 0.235, 0.25 and 0.275. We launch 2.5 ·103 particles for each initial condition (x0, y0) with random

shooting angles belonging to the interval θ0 ∈ [0, 2π). As explained in the text, the average escape times

can be interpreted as the regions where it is more likely to find a particle in the configuration space. (Inset

plot) Zoom-in near the potential barrier between Exit 1 and Exit 3, where a low-probability region is found

in the three cases.

Nonetheless, we are interested in the escape time distribution by shooting particles from initial

conditions randomly. Hence, we show here the average escape times in the configuration space in
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Figs. 6(d–f), where for each pixel we launch a large amount of particles and compute the mean

of their escape times. In the three cases shown, it can be observed an apparently fractal struc-

ture that is reminiscent of the typical structures that appear in scattering functions when a Smale

horseshoe-like set rules the dynamics, such as the chaotic saddle. In fact, this structure is formed

by the initial conditions that spend long escape times, i.e., the initial conditions close to the stable

manifold of the chaotic saddle [37]. Therefore, the images of average escape times provide a clear

manifestation of the presence of the chaotic saddle when particles are launched randomly.

Moreover, we study how the chaotic saddle explicitly affects particle trajectories. Then, again,

by launching particles with random values for x0, y0 and θ0, and taking into account every position

of their orbits, we obtain the regions where a hypothetical particle is more likely to be found

before its eventual escape. Not surprisingly, the images obtained are the same as those provided

by calculating the average escape times (see Figs. 6(d–f)), since trajectories starting close to the

chaotic saddle spend longer times within the potential well: they come close to the chaotic saddle

along its stable manifold, stay in its neighborhood, and leave it along its unstable manifold. In

light of the results, the particle is more likely to be found near the chaotic saddle in its escaping

process. In addition, we also detect a region of low probability of finding the particle, as can be

visualized in the inset plots of Figs. 6(d–f).

Finally, in Fig. 7 we show the instantaneous distribution of particles at some relevant times of

the decay law. The regions that are emptied in the first place are those close to the exits from which

particles can escape if the shooting angle points directly towards the exit. Subsequently, when the

critical time is reached, a symmetric structure can be inferred in the particle distribution, which

is closely related to the manifestation of the chaotic saddle (see Figs. 6(d–f)). Interestingly, the

fact that trajectories spend a finite period of time in the chaotic saddle vicinity implies that there

are zones of the scattering region full of particles and others empty during the time evolution. For

instance, as indicated above, there is an almost zero probability of staying in the space nearby the

wall between two exits, because the chaotic saddle does not occupy that zone (see the inset plots of

Figs. 7(a–b)). Hence, the presence of the chaotic saddle is incompatible with an equiprobability of

being in any dynamical state compatible with energy, as assumed by the microcanonical ensemble.
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FIG. 7: Particle distribution at (a) t15%, (b) tc and (c) t99%, respectively, by means of a histogram, for

E = 0.25. The histogram color code consists of a fading between yellow (highly occupied area) and dark

blue (lowly occupied area). The white color means an area depleted of particles. (Inset plots) Zoom-in of

the particle distribution near the potential barrier between Exit 1 and Exit 3. We depict the present particles

(black dots) in the allowed scattering region compatible with energy (gray).

IV. DECAY LAWS IN THE RELATIVISTIC HÉNON-HEILES SYSTEM

We now employ a relativistic version of the Hénon-Heiles system to extent our claims to the

relativistic realm. Hence, we consider a particle interacting in the limit of weak external fields

whose dynamics is governed by the conservative and dimensionless Hamiltonian [41–44]

H(px, py, x, y) = c
√
c2 + p2

x + p2
y + V (x, y), (7)

where c is the value of the speed of light and V (x, y) is again the Hénon-Heiles potential described

above. Although the equations of motion are different from the Newtonian ones, the four fixed

points of the relativistic system still remain at the three saddle points of the potential well and at its

minimum. For this reason, we have defined the relativistic scattering region as in the Newtonian

Hénon-Heiles system. Furthermore, the Lorentz factor is defined as

γ =
1√

1− v2

c2

=
1√

1− β2
, (8)

where v is the speed of the particle and β = v/c the ratio between the speed of the particle and

the speed of light. The Lorentz factor γ and the quotient β are two ways to express how large is v

compared to c, and they vary in the ranges γ ∈ [1,+∞) and β ∈ [0, 1), respectively. We shall use

β as the relativistic parameter for convenience in showing our numerical results.

We utilize a method introduced in [45, 46] to increase the kinetic energy of the system to the

relativistic regime (the value of β). Firstly, the maximum speed that the particle can have along
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its trajectory before escaping can be defined as vm ≡
√

2E, bearing in mind that the maximum

kinetic energy is found at the potential minimum, V (xm, ym) = 0, and E is the total mechanical

energy of the Newtonian version of the Hénon-Heiles. Thus, the method is based on the fact that

β is a quantity that equivalently depends on vm and c, hence working on a dimensionless system it

is possible to increase the value of β by fixing the value of vm and decreasing the numerical value

of the speed of light. In this manner, if the value of β is almost null, vm � c, the speeds of the

particle during its evolution within the scattering region only represents a very low percentage of

the speed of light. In this case, we recover the Newtonian version of the Hénon-Heiles system. On

the contrary, if the value of β is close to one, the speed of the particle represents a high percentage

of the speed of light. For the sake of clarity, although the numerical value of c is modified to select

a value of β, this numerical value of c always represents the speed of light in the system because

its dynamics is governed by the Hamiltonian (7). For more method’s details see [47].

We have arbitrarily established vm ≈ 0.679 along this section, which corresponds to the Newto-

nian energyE ≈ 0.2309, to focus on hyperbolic dynamics in this relativistic Hénon-Heiles system.

Summarizing, the Newtonian and hyperbolic system becomes relativistic and increasingly hyper-

bolic as β increases. In Fig. 8, we show the effect of β on the dynamics and the basin topology: the

particle generally escapes more quickly and the fractal boundaries of exit basins are smoother as β

increases. Finally, the computations along this section have been carried out only until β = 0.75,

since the relativistic Hamiltonian (7) has been derived in the limit of weak external fields.

FIG. 8: Scattering regions (pale gray) and escaping trajectories starting from the same condition but for

(a) β = 0.25, (b) 0.5 and (c) 0.75, where the underlying dynamics is hyperbolic. As β = vm/c always

holds, the computational value of the speed of light changes inevitably when the value of β changes. We

have arbitrarily set vm ≈ 0.679, and therefore the values of the speed of light in the computations are (a)

c ≈ 2.718, (b) 1.359 and (c) 0.906, respectively. (Inset plots) Exit basins associated.
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We also concentrate our efforts on exponential decay laws along this section and derive a decay

rate based on ergodic motion inside the scattering region. Firstly, instead of the momenta px and

py, Eq. (7) can be rewritten in terms of the total momentum of the particle p and the angle θ formed

by the speed vector and the positive x-axis, obtaining thus

H(p, x, y, θ) = c
√
c2 + p2 + V (x, y). (9)

Importantly, we recall that the total momentum of the particle is related to its speed in this dimen-

sionless version of the system by p ≡ γv. Furthermore, we express the total relativistic energy as

∆E ≡ E − Ee = γc2 + V − 1/6 for convenience when computing the decay rate. In addition,

there exists a relation between ∆E and β, which is

∆E(β) =
c2√

1− β2
− 1

6
, (10)

since the potential energy is null, V (xm, ym) = 0, when we define β as the relativistic parameter

of the system. The motion in the well is assumed to be ergodic, and therefore the phase space

distribution inside the scattering region for a given energy ∆E is expressed by

ρ(p, x, y, θ) =
δ (E −H(p, x, y, θ))∫

dpdxdydθδ (E −H(p, x, y, θ))
, (11)

where δ(E) represents the Dirac delta function. Here, we are interested in the distribution of

the variables in the configuration space. In this manner, we integrate Eq. (11) along the interval

p ∈ [0,∞), yielding

ρ(x, y, θ) =
γ

2π
∫
S(∆E)

dxdyγ
, (12)

where the integral is bounded inside the scattering region, and the Lorentz factor γ depends on

the spatial coordinates because the system is conservative and every point of the well is associated

with a specific kinetic energy value. Notice that if the limit c → ∞ (or γ → 1, equivalently) is

considered, the Newtonian probability density ρ(x, y, θ) = 1/2πS(∆E) is recovered, as derived

in [16]. For simplicity, we define Γ(∆E) ≡
∫
S(∆E)

dxdyγ, where the integral can be solved

numerically by means of a Monte Carlo method.

In resemblance to the Newtonian case, the number of particles remaining inside the scattering

region under hyperbolic dynamics at the time t is N(t) = N0e
−αet, where the αe(∆E) is again

the decay rate, but relativistic. It can be computed by setting that the flux of escaping particles

through an exit of the well, for instance, the Exit 1, is∫∫
dxdθρv · n̂ =

∫ xb

xa

dx

∫ π

0

dθρ(x, y, θ)v(x, y) sin θ, (13)
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where the quantity ρv means a current density vector and n̂ is the normal vector to the Exit 1, which

points outwards along the direction of the y-axis [16]. We choose the Exit 1 for convenience, since

the integral then remains defined along the segment delimited by x ∈ [xa, xb] and y = 1, as shown

in Fig. 9(a). Specifically, the points

xa,b = ∓
√

2

3
(∆E − c2) (14)

satisfy the condition E = c2 + V (xa,b, 1), where the particle kinetic energy vanishes. Finally,

bearing in mind the triangular symmetry of the well, the flux of escaping particles is the same

through all exits, and therefore the decay rate of the system is three times the decay rate through

the Exit 1, yielding the integral

αe(∆E) =
3

πcΓ(∆E)

∫ √ 2
3

(∆E−c2)

−
√

2
3

(∆E−c2)

dx

√(
∆E − 3

2
x2

)2

− c4. (15)

It is possible to solve this integral by means of elliptic functions, obtaining the result

αe(∆E) =
4
√

2∆E
√

∆E + c2

√
3πcΓ(∆E)

{
E

(
∆E − c2

∆E + c2

)
− c2

∆E
K

(
∆E − c2

∆E + c2

)}
, (16)

where E(m) and K(m) are the elliptic integrals of first and second kind, respectively, andmmeans

the squared elliptic modulus. In our case, m = (∆E − c2)/(∆E + c2).

The results are similar to the Newtonian case already discussed. Firstly, as the value of β is

varied, the slope of the exponential decay curves becomes greater, as shown in Fig. 9(b). On the

other hand, the shorter the fitting time of the decay curve is considered, the better the agreement

between the numerical fittings and the ergodic decay rate αe, as displayed in Fig. 9(c). This is

due to the fact that the chaotic saddle barely affects the trajectories escaping during the very first

instants of the time evolution. Hence, as in the Newtonian case, the ergodic decay rate, αe, only

takes into account the initial distribution of particles, in our case, randomly distributed inside

the well. However, this initial distribution of particles is modified by the saddle since the time

evolution begins. That is why only short-time fittings work. This last reasoning is also valid to

interpret why the critical-time fittings do not strictly agree with the analytical decay rate, as seen

in Fig. 9(d). Finally, when the relativistic system becomes very energetic, the ergodic decay rate

underestimates all long-time fittings, αc,2c, α2c,99% and α99%,99.9%, similarly to the Newtonian case.

Moreover, we would like to mention that the formalism of ergodic decay laws discussed and

developed along this work also fails when the regime is highly energetic (Newtonian and rela-

tivistic schemes included). In Fig. 9(b), for β = 0.75, it is noticeable that the first change of
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tendency in the decay curve happens before the indicated critical time (red triangle). Then, a prob-

lem arises, because the critical time is providing us misleading or unclear information regarding

tendency changes. We argue that in very energetic cases the scattering region that we define, de-

limited by the potential saddle points, becomes far from the actual scattering region, delimited by

the Lyapunov orbits, and does not reflect the actual phenomenology of escapes in the system. This

produces the effect that the decay curve shows changes in the tendency before (and after as well)

the critical time. In other words, when the system is highly energetic, the critical time becomes

FIG. 9: (a) Scheme of the Exit 1 for β = 0.25. (b) Hyperbolic particle decay for β = 0.25, β = 0.5 (solid

lines) and β = 0.75 (dashed line). (c) Exponential fittings of the decay curves for only short times in the

inertial relativistic approximation for β ∈ [0.05, 0.75]. (d) Similar fittings to (c) but for critical and long

times. We clarify that although the decay law αe has been computed in terms of ∆E, we show the results

of fittings in terms of β for simplicity (see Eq. (10)).
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irrelevant to study the decay laws.

Time is absolute in nonrelativistic systems, but the measure of time in relativistic systems may

depend on the choice of the reference frame. Escape times have been measured by an inertial

clock at rest in the potential well in this work so far. However, it is possible to consider another

noninertial reference frame comoving with a particle that describes a trajectory for a long time

enough to measure the escape times of the other particles. The hypothetical clock attached to this

particle will suffer the well-known time dilation phenomenon and measure the so-called proper

time [48], which in few words corresponds to the travel time of the twin who leaves the Earth in

the twin paradox. Hence, given an infinitesimal time interval dt as measured by an inertial clock,

the particle clock will measure the time

dτ =
dt

γ(t)
, (17)

where γ(t) is the Lorentz factor at time t. Both time intervals satisfy that dτ ≤ dt, since the

Lorentz factor is usually greater than unity along the particle trajectory. Importantly, note that it

is necessary to know the complete Lorentz factor evolution of the particle clock to measure the

proper time of an escaping trajectory, which is the result of integrating Eq. (17).

Nonetheless, as the particle dynamics is bounded under the same energetic conditions, given

a value of β, the Lorentz factor of all the trajectories is similar on average at any time t before

escaping. Then, there exists an approximate average value of the Lorentz factor and it can be

reasonably estimated as the arithmetic mean between the maximum and the minimum values of

the Lorentz factor inside the potential well, i.e.,

γ̄(β) =
1 +

√
1− β2

2
√

1− β2
, (18)

as introduced in [47]. Taking this into consideration, Eq. (17) can be approximated as dτ̄ ≡ dt/γ̄,

where γ̄ is a constant. Hence, escape times as measured by an inertial clock will be higher than

escape times of the same trajectories as measured by the noninertial particle clock. This latter

affects quantitatively the exponential decay laws. The decay rate in the inertial case, for instance,

αe, will be smaller than the decay rate in the noninertial case, yielding

ᾱτe ≡ γ̄αe, (19)

where the approximation of bounded dynamics have been taken into account.
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Observing particle escapes from a noninertial clock makes them occur faster due to the time

dilation both at short and long times, according to the results shown in Fig. 10. Moreover, the fitted

decay rate ατ0,5% for very short times agrees with the noninertial ergodic decay rate ᾱτe . Thus, the

approximation of assuming an average Lorentz factor inside the scattering region to characterize

escapes works, at least for short times, which corresponds to the real range of applicability of

ergodic decay laws, as proven in previous sections of this work.

FIG. 10: Exponential fittings for short times and long times to compare the decay rates as measured by an

inertial clock at rest in the potential well in blue (αe, α0,5% and αc,99.9%) and as observed from a noninertial

particle clock evolving chaotically inside the scattering region in red (ᾱτe , ατ0,5% and ατc,99.9%).

V. CONCLUSIONS

The indiscriminate use of the concepts of hyperbolicity, chaos and ergodicity is sometimes

found in the bibliography referring to dynamical systems with a few degrees of freedom, because

chaos is usually responsible for the fulfillment of ergodicity in this kind of systems. In this manner,

we have contextualized in the present work each of these terms in the open regime of the Hénon-

Heiles system and provided solid evidence that, far from being equivalent, chaos and the fact that

the system is open can also be the precise reason why its motion is non-ergodic. In particular, we

refer to the existence of a chaotic saddle, which provokes that particles explore all the regions of

the energy surface unevenly before escaping.

Therefore, we have studied numerically an exponential decay law based on ergodic motions in

the Newtonian Hénon-Heiles system. We conclude that this ergodic decay law is able to quantify
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adequately escapes only for the very first instants of the time evolution when particles are launched

randomly distributed. Thus, when the time evolution begins, particles remain no longer equally

distributed throughout the scattering region, and in this way no longer conform to the microcanon-

ical ensemble, on which the ergodic decay law is based. Indeed, particles evolve according to

other more complex probability distributions given by the Liouville equation which dictates the

evolution of the probability density according to the sets that govern the dynamics, i.e., KAM tori

or the chaotic saddle in the nonhyperbolic and hyperbolic regimes, respectively.

In addition to the detailed study of the Newtonian case, we have extended the formalism of

the ergodic decay laws to a relativistic version of the Hénon-Heiles system for the first time. The

result, obtained by means of measuring escapes from two inertial and noninertial reference frames,

is that we have encountered the limitations present in the Newtonian case, for the same reasons.

Nonetheless, the current work constitutes a step towards the solution in the characterization of

decay laws in open systems. Bearing in mind the limitations of the microcanonical distribution,

other distributions based on the sets that governs the dynamics have to be considered in the cal-

culus of new decay laws. For instance, when KAM tori are present, the particle distribution must

be affected by the phenomenon of stickiness. Therefore, in this case, there exist some regions

near KAM tori where particles explore for longer times that others. On the other hand, when the

chaotic saddle governs the dynamics, a fractalized particle distribution over the saddle can defi-

nitely describe all the escaping orbits in the hyperbolic regime. In general, we insist, the measure

in the open regime evolves according to Liouville equation and converges to a fractal probability

density defined on the chaotic saddle.

The critical time has to be considered as well, since it is part of the phenomenology caused by

the invariant sets. Importantly, our numerical study has allowed us to interpret that the so-called

critical time in open Hamiltonian systems means the maximum escape time that a trajectory is

able to spend inside the scattering region without being affected at all by KAM tori or the chaotic

saddle. Then, the existence of escaping orbits unaffected by them is reflected in the decay curves,

which suffer a sudden change in their tendency when the critical time is reached. This fact opens

some room to explore particle distributions that evolve in time.

To conclude, we mention some processes in nature with only a few relevant degrees of freedom

where our numerical work can be useful. For example, open systems can be interpreted as scat-

tering models of nuclear or chemical reactions, where each exit represents a final rearrangement

of atoms and molecules [49]. Interestingly, these kinds of reactions may occur chaotically and, in
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light of the present results, non-ergodically. Another relevant scattering phenomenon is the chaotic

interaction that takes place among the resulting components of molecules above their dissociation

energy. These processes constitute a sort of laboratory for studying the so-called quantum-classical

correspondences (QCC) present in coupled nonlinear oscillators [7], and perhaps our conclusions

about ergodicity might be helpful to understand the formation of different bounded and unbounded

states.

On the other hand, relaxation of nonequilibrium systems such as glass-forming melts or soft

matter can be modeled by means of a modified Hénon-Heiles system, whose saddle points are

located at different values of the potential energy [9]. More specifically, processes of relaxation

consist of local reorientations of the masses that form the glass structure. In some cases, these

processes are governed by a chaotic saddle, and hence new studies can be addressed to analyze how

non-ergodic dynamics may also affect the structure and properties of glasses. Finally, the interest

in diffusion phenomena in the so-called soft Lorentz gases has grown because these systems are

able to simulate the electronic transport in graphene-like structures [50]. The unit cell of the

triangular lattice of potentials in such systems is reminiscent to the morphology of the Hénon-

Heiles potential. Numerical works have evinced that soft Lorentz gases exhibit normal diffusion

or superdiffusion due to a non-trivial interaction between trapped and ballistic periodic orbits

that form the KAM tori. Superdiffusion is related to a dependence on initial conditions, and

hence ergodicity is broken in such a case. Thus, the present work can provide new approaches to

elucidate this phenomenology.
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Appendix: Comments on computing the fraction of KAM tori in a surface of section.

As indicated, an ensemble of particles are launched from the exits of the scattering region with

random initial shooting angles into its interior. Such initial conditions, blue, red and green colored

in Fig. 2(a), are all the possible final conditions of trajectories just before escaping forever, but with
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their velocity vector rotated by π radians. For clarity, the limit case of all possible final conditions

is reached when the number of initial conditions is infinite. Thus, due to the time symmetry of

conservative systems, we simulate all escaping trajectories but backwards in time.

Another basic method to compute the fraction of KAM tori consists of counting how many tra-

jectories do not escape of the total number of trajectories initially launched [32]. Such a method

is usually computationally expensive as it has to evolve trajectories belonging to KAM tori, which

do not escape by definition, in addition to trajectories with long transients due to KAM sticki-

ness. The latter trajectories, if the final computation time is less than their escape times, can be

interpreted as belonging to KAM tori, which would yield an erroneous result of the fraction of

KAM tori. Nonetheless, the alternative method proposed here depends on the number of particles

launched: the greater the number of escaping particles, the greater the probability of mapping the

whole area of the surface of section occupied by the chaotic regions. Specifically, the regions of

the surface of section that are most complicated to map are those away from the fractal boundaries

of exit basins and tori KAM. These regions, which grow as the energy of the system increases, are

formed by a multitude of trajectories that we must launch, which escape without exhibiting long

transients and map only a few points on the surface of section.

For completeness, we add two more method’s aspects. On the one hand, note that it is totally

equivalent launching an infinite ensemble of particles by the proposed method that simulating a

single particle trajectory that elastically bounces off the exits forever [25], since in both cases one

would obtain the same fraction of KAM tori. On the other hand, this computationally afford-

able method can be applied to any system (including area-preserving maps and continuous-time

systems) that exhibits exits well-defined where particles can be started from.

[1] J. M. Seoane and M. A. F. Sanjuán, Rep. Prog. Phys. 76, 016001 (2013).

[2] J. Aguirre, R. L. Viana, and M. A. F. Sanjuán, Rev. Mod. Phys. 81, 333 (2009).

[3] Y.-C. Lai and T. Tél, Transient Chaos: Complex Dynamics on Finite-Time Scales, Springer, New York

(2010).

[4] T. Tél, Chaos 25, 097619 (2015).

[5] J. Aguirre, J. C. Vallejo, and M. A. F. Sanjuán, Phys. Rev. E 64, 066208 (2001).

[6] E. Ott, Chaos in Dynamical Systems, Cambridge University Press, New York (1993).

26



[7] Y.-D. Lin, A. M. Barr, L. E. Reichl, and C. Jung, Phys. Rev. E 87, 012917 (2013).

[8] A. Daitche and T. Tél, New J. Phys. 16, 073008 (2014).

[9] J. Q. Toledo-Marı́n and G. G. Naumis, Phys. Rev. E 97, 042106 (2018).

[10] J. F. Navarro, Sci. Rep. 9, 13174 (2019).

[11] W. Bauer and G. F. Bertsch, Phys. Rev. Lett. 65, 2213 (1990).

[12] Y.-T. Lau, J. M. Finn, and E. Ott, Phys. Rev. Lett. 66, 978 (1991).
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