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Abstract

Accurately assessment of adipose tissue volume inside a human body plays an important role in 

predicting disease or cancer risk, diagnosis and prognosis. In order to overcome limitation of using 

only one subjectively selected CT image slice to estimate size of fat areas, this study aims to 

develop and test a computer-aided detection (CAD) scheme based on deep learning technique to 

automatically segment subcutaneous fat areas (SFA) and visceral fat areas (VFA) depicting on 

volumetric CT images. A retrospectively collected CT image dataset was divided into two 

independent training and testing groups. The proposed CAD framework consisted of two steps 

with two convolution neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. 

The first CNN was trained using 2,240 CT slices to select abdominal CT slices depicting SFA and 

VFA. The second CNN was trained with 84,000 pixel patches and applied to the selected CT slices 

to identify fat-related pixels and assign them into SFA and VFA classes. Comparing to the manual 

CT slice selection and fat pixel segmentation results, the accuracy of CT slice selection using the 

Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using the 

Segmentation-CNN was 96.8%. This study demonstrated the feasibility of applying a new deep 

learning based CAD scheme to automatically recognize abdominal section of human body from 

CT scans and segment SFA and VFA from volumetric CT data with high accuracy or agreement 

with the manual segmentation results.
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1. Introduction

Abdominal obesity is one of the most prevalent public health problems and over one third of 

adults were obese in the United States in recent years [1]. Obesity is strongly associated with 

many different diseases such as heart diseases, metabolic disorders, type 2 diabetes and 

certain types of cancers [1–3]. Inside a human body, there are subcutaneous fat areas (SFA) 

and visceral fat areas (VFA), which both contribute to the abdominal obesity. Studies have 

shown that in the clinical practice separate measurement or quantification of subtypes of 

adipose tissue in SFA and VFA is crucial for obesity assessment since visceral fat is more 

closely related to risk factors for hypertension, coronary artery disease, metabolic syndrome, 

and etc. [4, 5]. Other studies have also found that measurement of the total fat volume and/or 

the ratio between the VFA and SFA could generate useful clinical markers to assess response 

of cancer patients to the chemotherapies, in particular many antiangiogenic therapies [6–8].

Among different imaging techniques for adiposity tissue detection and measurement, 

computed tomography (CT) has been most widely adopted because of its higher accuracy 

and reproducibility [9]. Accurate segmentation and quantification of SFA and VFA from CT 

slices is important for clinical diagnosis and prediction of disease (or cancer) treatment 

efficacy. Currently, manual or semi-automated segmentation of SFA and VFA in a single 

subjectively chosen CT image slice has been adopted to determine fat areas and measure 

adiposity related features as demonstrated in the previous studies [7, 9]. However, this 

approach has a number of limitations including that 1) manual manipulations are time-

consuming and cannot deal with large amount of data; 2) fat area measured from a single CT 

slice may not accurately correlate to the total fat volume of a human body; 3) measurement 

may also not be consistent due to the inter and intra reader variability in selecting CT slice 

and segmenting SFA and/or VFA areas. Therefore, developing a computer-aided detection 

(CAD) scheme for fully automated segmentation and quantification of SFA and VFA is 

necessary [10].

Recently, deep learning methods, especially deep convolutional neural networks (CNN), 

have gained extensive research interests and proven to be the state of art in a number of 

computer vision applications [11–15]. Unlike conventional machine learning methods where 

manual features design is crucial, deep learning models automatically learn hierarchical 

feature representations from raw inputs without knowledge of feature engineering [15]. With 

the availability of large amount of well-annotated datasets and high-speed parallel 

computing resources (i.e. Graphical Processing Units), deep learning models provide 

powerful tools for addressing the problems of object recognition, image segmentation and 

classification [16]. Following the tremendous applications of deep learning in computer 

vision area, there are a couple of previous works that successfully employed CNN methods 

to solve medical image analysis and CAD related problems [17–24]. For example, Roth et al 

[22] developed a multi-level deep CNN model for automated pancreas segmentation from 

CT scans; Brebisson et al [17] used a combination of 2D and 3D patches as the input of 

CNN for brain segmentation; Yan et al [24] applied a multi-instance deep learning 

framework to discover discriminative local anatomies for bodypart recognition; etc.
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In this study, we developed a two-step CNN based CAD scheme for automated segmentation 

and quantification of SFA and VFA from abdominal CT scans. The new CAD scheme 

consists of two different CNNs, while the first one is used to automatically select and collect 

CT slices belonging to abdomen area from the whole CT scan series (i.e., the perfusion CT 

images acquired from ovarian cancer patients, which are scanned from lung to pelvis 

crossing the entire abdomen region), and the second CNN is used for automated 

segmentation of SFA and VFA in each single CT slice. While there has been a number of 

previously published studies that focused on automated quantification of visceral and 

subcutaneous adipose tissue by using combinations of traditional image processing 

techniques (e.g. labelling and morphological operation) [5, 8, 25–30], previous works have a 

number of limitations including that: 1) the selection of CT slice range of interest (i.e. 

abdomen area in this study) is either manually processed or not mentioned; 2) the optimal 

values of some parameters (e.g. morphological operation kernel size) in some of these 

models may not be consistent for different patients and thus human intervention might be 

necessary for tuning these parameters. Our proposed CNN based CAD scheme aims to 

overcome these limitations and achieve fully automated segmentation since (1) the first 

CNN was developed for automated selection of CT slices belonging to abdomen area, and 

(2) there is no parameters needed to be tuned in our CAD scheme after the two CNNs are 

sufficiently trained. The details of this study including the development of CAD scheme and 

performance evaluation are presented in the following sections.

2. Materials and Methods

2.1. Overview of the CAD framework

Our proposed CAD framework consisted of two steps with two CNNs, namely the 

Selection-CNN and Segmentation-CNN. The flowchart for demonstrating the whole process 

of this system is shown in Figure 1. The first Selection-CNN is applied to automatically 

select and collect CT slices of interest (i.e. abdomen area in this study) for each patient. The 

selected slices will then be used as the input of the second Segmentation-CNN for 

automated segmentation of SFA and VFA. The SFA and VFA volumes segmented from all 

CT slices of interest will be combined to compute and measure the adiposity characteristics 

of the particular patient at the very end step. The proposed CAD system is fully automated 

and no human intervention is needed. In the next two sections we will discuss the details of 

the CNN architectures, training process and evaluation methods for the two CNNs 

respectively.

2.2. A CT image dataset

Under an Institutional Review Board (IRB) approved image data collection and retrospective 

study protocol, we randomly assemble an image dataset, which consists of CT images 

acquired from 40 ovarian cancer patients who underwent cancer treatment in the Health 

Science Center of our University. The detailed image acquisition protocol has been reported 

in our previous publication [7, 8]. In brief, all CT scans were done using either a GE 

LightSpeed VCT 64-detector or a GE Discovery 600 16-detector CT machine. The X-ray 

power output was set at 120 kVp and a variable range from 100 to 600mA depending on 

patient body size. CT image slice thickness or spacing is 5mm and the images were 
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reconstructed using a GE “Standard” image reconstruction kernel. Next, these 40 patients 

were randomly and equally divided into two groups namely, a training patient group and a 

testing patient group. CT image data from training patient group were used to train two 

CNNs used in the CAD scheme and the data from the testing patient group were used to 

evaluate the performance of the trained CAD scheme.

2.2.1. Training and testing dataset for Selection-CNN—In order to train Selection-

CNN model to “learn” how to discriminate CT slices as belonging to abdomen area or not, 

an observer manually identified the abdomen area for each of the twenty patients in the 

training patient group. Specifically, an upper bound was subjectively placed just below the 

lung area and a lower bound was placed at the umbilicus level. All CT slices between the 

two bounds were labeled as positive (i.e. belong to slices of interest) and other slices were 

labeled as negative (i.e. not belong to slices of interest). By doing this, we can collect a 

sample of 2,240 CT slices as the training set of Selection-CNN. Among them, 757 are 

“positive slices” located inside the abdominal region and 1,483 are “negative slices” located 

outside the abdominal region. Although in order to optimally train a machine learning 

classifier, many previous studies chose to use “balanced” training datasets with the equal 

number of sample cases in two classes, the “balanced” approach has a limitation of potential 

sampling bias in selecting and removing part of sampling cases from the class with more 

samples. Thus, to maintain the diversity of all image slices, we used all 2,240 image slices in 

the training dataset although the number of “positive” and “negative” slices was different (or 

not balanced). Next, to verify the advantage of using all available training samples, we also 

conducted experiments to compare the classification accuracy between using “balanced” and 

“non-balanced” training datasets with 50 repeated training and validation tests in each 

training condition.

2.2.2. Training and testing dataset for Segmentation-CNN—Similar to Selection-

CNN, Segmentation-CNN also needs some subjectively processed images as the training 

samples to train the classifier. For each of the twenty patients in the training patient group, 6 

CT slices from the abdomen area were randomly selected for the training purpose (totally 

120 CT images). A previously developed and tested CT image segmentation method was 

applied to remove the background (e.g. air and CT bed) and generate a body trunk mask. All 

the pixels inside the body trunk mask with CT number between the threshold −40 HU and 

−140 HU were defined as adipose tissue pixels [9]. An observer manually drew a boundary 

that contains the entire visceral area. The adipose tissue pixels inside the visceral area were 

labeled as VFA pixels whereas the adipose tissue pixels outside the visceral area were 

labeled as SFA pixels.

A Matlab based graphic user interface (GUI) program was developed for implementation of 

image pre-processing step and manual segmentation process. Figure 2 shows an example of 

the working procedure of the GUI. After loading a CT image from the local hard drive, the 

original image is shown in the left figure of the program. The “Body Seg” button has been 

designed to implement the body trunk segmentation algorithm and display the body trunk 

image in the middle figure of the program. Then, an observer can draw a boundary (the blue 
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line in the middle image) that contains the entire visceral area. The segmented SFA/VFA 

result is then shown in the right figure of the GUI window.

Subsequently, 700 adipose tissue pixels (belonging to either VFA or SFA pixel class) were 

randomly selected from each of the 120 CT images for training Segmentation-CNN. By 

doing this, we can collect a sample of 84,000 adipose tissue pixels as the training set. 

Among them, 64,691 are labeled as SFA pixels and 19,309 are VFA pixels. The goal is to 

train the Segmentation-CNN to recognize or distinguish pixels with the CT number between 

−40 HU and −140 HU into SFA or VFA areas. By using the same segmentation criterion, 

120 CT images from the 20 patients in the testing patient group were randomly selected and 

manually labelled for evaluation purpose.

2.3. CNN architectures

2.3.1. Selection-CNN—The task of Selection-CNN is to select the CT slices belonging to 

abdomen area, which will be collected for the computation of adipose tissue volume and 

features. We formulated this task as a binary classification problem. Specifically, we used 

each single CT slice image as the input of a classifier (Selection-CNN) and determine 

whether the CT slice belongs to the abdomen area or not. In this way, each CT slice was 

processed independently; the location and spatial consistency were not considered. In order 

to overcome this limitation, a simple post-processing step was performed to ensure the 

spatial consistency and dependence after obtaining the raw Selection-CNN output.

The architecture of Selection-CNN is shown in Figure 3 and it was developed based on 

LeNet, which was designed by LeCun et al. for image recognition [13]. First, the original 

512×512 CT images were resized to 64×64 using an 8×8 averaging kernel. This step can be 

interpreted as either a down-sampling based image pre-processing step or a “pooling” layer 

in CNN architecture. By doing this, the input size and number of parameters of Selection-

CNN was greatly reduced, which can potentially improve the training efficiency and reduce 

the risk of over-fitting. The down-sampled CT images were then used as input into a 

standard CNN architecture consisting of three convolutional-pooling layers, one fully 

connected layer, and one soft-max layer. Convolutional layers are the core part of CNN 

architecture. They consist of a number of rectangular convolutional filters; the parameters of 

these filters are randomly initialized and learnable during the training process. Each 

convolutional layer performs two-dimensional convolutional operations between the input 

image maps and the convolutional filters followed by a non-linear transformation. The 

convolutional layers can be interpreted as automatic feature extractors that are optimized 

from training data, and thus the outputs of convolutional layers are referred as “feature 

maps”.

Following convolutional layers, max-pooling layers were commonly performed in a number 

of CNN architectures [11, 13, 15]. The operation of max-pooling layer is to take the 

maximum values over sub-windows of feature maps, which can greatly reduce the spatial 

redundancy and the number of parameters. Several convolutional-pooling layer pairs can be 

stacked to get high-level feature representations. These features were then used as input into 

a standard Multi-Layer Perceptron (MLP) classifier, which consists of a fully connected 

hidden layer and a soft-max layer. The Selection-CNN developed in this study contained 
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three convolutional-pooling layers. The numbers of feature maps were 15 for all the three 

layers and the filter sizes were 9×9, 5×5 and 5×5, respectively. A tanh function was applied 

for non-linear transformation. The size of max-pooling was 2×2 for all layers. The fully 

connected layer contained 80 hidden neurons and the soft-max layer contained 2 output 

neurons (i.e. positive or negative).

As a result, the Selection-CNN architecture mapped each 512×512 CT image slice to a 

vector of two continuous number between 0 and 1, indicating the probabilities of the input 

image belonging to positive or negative classes. Considering that the size of training set of 

Selection-CNN is relatively small compared to many of other computer vision datasets using 

deep learning (e.g. MNIST and ImageNet), we took following measures to avoid the 

potential over-fitting problem, which include that (1) the numbers of filters for each 

convolutional layer and hidden layer were set to be smaller than the commonly used CNNs, 

and (2) an L2 regularization term was adopted as a part of loss function.

2.3.2. Segmentation-CNN—After CT slices belonging to abdomen area were selected, a 

Segmentation-CNN based scheme was applied to segment SFA and VFA depicted on each 

single CT slice. This task was also formulated as a binary classification problem. 

Specifically, an image pre-processing step including a previously developed body trunk 

segmentation scheme [31] and a well-defined thresholding process for adipose tissue 

identification [10] was applied to identify all the pixels belonging to the fat area (namely 

adipose tissue pixels) in each CT image; a classifier (Segmentation-CNN in this study) was 

then trained and applied to classify each adipose tissue pixel as belonging to SFA or VFA by 

using their neighborhood pixels and location information as input.

There have been a couple of previous works that applied CNN methods for medical image 

segmentation tasks [17, 18, 20–22]. The basic method is a patch-wise classification process. 

Specifically, in order to classify each single pixel into its correct class, a 2-D rectangle patch 

centered at the specific pixel was extracted, resized and used as the input of a CNN 

classifier. The outputs of CNN indicated the probability of the center pixels belonging to 

each class. The advantage of patch-wise classification is that by extracting separate and 

possible overlapping image patches, we can collect a training set that is large enough for the 

requirement of deep CNN architectures. However, spatial consistency and pixel location 

information are lost to some degree in this basic method. Many approaches have been 

applied to overcome this limitation, including post-processing, increasing the size of image 

patches and using location information as part of the input of CNN, etc. [17, 18, 21, 22].

In this study, we developed the Segmentation-CNN architecture as shown in Figure 4. The 

objective of Segmentation-CNN is to classify an adipose tissue pixel as belonging to SFA or 

VFA. It is a 2-scale CNN architecture where the patches with smaller size are used to 

represent fine details around the target pixel and patches with larger size are used to 

maintain global consistency. The patch sizes of 64×64 and 128×128 were used because they 

yield better results than others. Multi-scale CNN architecture was not considered because it 

will generate larger network and take longer time to train and execute. In addition, it may 

also suffer from the over-fitting problems.

Wang et al. Page 6

Comput Methods Programs Biomed. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The input of Segmentation-CNN consists of three parts. The first part is a 32×32 rectangular 

patch obtained by down-sampling a 64×64 patch centered at the adipose tissue pixel 

depicted on the CT slice, which is the representation of fine details around the target adipose 

tissue pixel. Two convolutional-pooling layer pairs were stacked to get high-level image 

patch features. The numbers of feature maps were 50 for both two layers. The filter sizes 

were 5×5 and 3×3, respectively, while the sizes of max-pooling were 2×2. The second part 

of Segmentation-CNN input is a 32×32 rectangular patch obtained by down-sampling a 

192×192 patch centered at the adipose tissue pixel, which was designed to preserve more 

spatial consistency. Same convolutional-pooling layer pairs were employed to get high-level 

features. The third part is a 3-D vector that contained the normalized and adjusted spatial 

location coordinates of the adipose tissue pixel. A fully connected layer with 2,000 hidden 

neurons was used to fuse the information and high-level features from the three parts of 

input. The dimension of the input of fully-connected layer is 50 (feature maps) × 6×6 (size 

of each feature map after two conv-pool layers) × 2 (two convolutional channel) + 3 

(location coordinates). A soft-max layer was finally applied to generate the likelihood based 

prediction scores.

In addition, we also evaluated the performance of a baseline CNN for comparison. The 

baseline CNN only consists of one channel which is a resized 32×32 rectangular patch 

obtained from a 64×64 patch in the image. Two convolutional-pooling layer pairs and one 

fully-connected layer were stacked to build the network. The numbers of feature maps were 

50 for both the convolutional layers. The filter sizes were 5×5 and 3×3 respectively and the 

fully-connected layer contained 1,000 hidden neurons.

2.4. Experiments and evaluation

2.4.1. Selection-CNN—The loss function of Selection-CNN is set to be the summation of 

a negative log-likelihood term and a L2 regularization term. Mini-batch stochastic gradient 

descent (SGD) methods were applied to minimize the loss function. SGD is one of the most 

popular and widely used training method in machine learning (especially in deep learning) 

applications [16]. It is more efficient for large-scale learning problems compared to some 

other training methods such as second-order approaches. Specifically, the training set was 

split into a number of batches; the gradient of loss function was estimated over each batch 

instead of the whole training set. By using mini-batch SGD, the parameters got more 

frequent updates and training efficiency was greatly improved. Here we set mini-batch size 

equal to 50 and iteratively trained the Selection-CNN for 50 epochs to get the optimal 

parameters.

After obtaining the raw Selection-CNN output, a post-processing step was performed to 

check and ensure the spatial consistency. Specifically, a one-dimensional median filter was 

performed to smooth the outputs (i.e. the probabilities of each CT slice belonging to positive 

or negative class). The longest consecutive CT slices with probabilities of being positive 

greater than 0.5 were predicted as positive and the remaining slices were predicted as 

negative.

For each CT case in the testing group, we compared the manually processed labels and the 

results generated by Selection-CNN with post-processing step. We computed the prediction 

Wang et al. Page 7

Comput Methods Programs Biomed. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accuracy, sensitivity and specificity for each testing case and averaged them over all 20 cases 

in the testing group for performance evaluation.

2.4.2. Segmentation-CNN—Similar to Selection-CNN, a mini-batch SGD was employed 

to train the Segmentation-CNN network to get optimal parameters. The loss function of 

Segmentation-CNN is solely a negative log-likelihood function since we have collected 

enough training samples. The size of mini-batch was set to 500 and the iteration time was set 

to 400 epochs.

For each input (i.e. a 512×512 CT image) in the testing dataset, CAD scheme firstly applied 

the body trunk segmentation algorithm [31] to remove the background. The pixels inside the 

body trunk were scanned one by one. If the pixel has a CT number between the threshold 

−140 HU and −40 HU, a neighborhood patch and location information were extracted and 

used as input of Segmentation-CNN. A likelihood score generated by Segmentation-CNN 

was used to label the pixel as belonging to either SFA or VFA. In order to evaluate the 

performance of this Segmentation-CNN based scheme, 120 CT images from the 20 patients 

in the testing patient group were randomly selected and manually labelled. For each CT 

image, the segmentation result generated subjectively and by Segmentation-CNN based 

scheme were compared. Pixel-wise prediction accuracy and dice coefficients (DC) of 

SFA/VFA were calculated for each image and averaged over the 120 CT images for 

performance evaluation. Dice coefficient is a similarity measurement index commonly used 

to evaluate the performance of image segmentation tasks. It calculates the ratio of 

overlapping volume between two segmented areas. The formula of DC with respect to two 

segmentation areas A and B is shown as below [21]:

3. Results

The training and evaluation process of CNNs were performed on a Dell T3610 workstation 

equipped with a quadcore 3.00GHz processor, 8 Gb RAM and a NVidia Quadro 600 GPU 

card. The models were implemented in Python using Theano library [32]. Figure 5 shows an 

example of the comparison between the abdomen area labelled subjectively by an observer 

and generated by the optimized Selection-CNN. Table 1 summarized and compared the 

quantitative performance evaluation results (i.e. accuracy and DC) of Selection-CNN with 

and without post-processing. Specifically, by using individual CT scans independently as the 

input of Selection-CNN, we can obtain averaged prediction accuracy and DC over 90%. 

Adding the post-processing steps enabled to further improve performance by taking the 

spatial consistence into account. Finally, the study results yielded a mean prediction 

accuracy equal to 0.9582 with standard deviation 0.0268, mean sensitivity equal to 0.9481 

with standard deviation 0.0595 and mean specificity equal to 0.9625 with standard deviation 

0.0521, respectively. The improvement is statistically significant by using paired t-tests (p < 

0.005 for all three evaluation indices).
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Table 2 summarized and compared the performance evaluation results of the proposed 

Segmentation-CNN and a baseline CNN architecture which only used the 64×64 

neighborhood patches as input. It shows that the performance of Segmentation-CNN is 

statistically significantly better than the baseline CNN (p < 0.005 for all the three evaluation 

methods). Figure 6 shows two examples of segmentation results generated by Segmentation-

CNN for segmenting SFA and VFA depicting on CT image slices. Figure 7 shows two 

scatter plots of the volumes of manually labelled SFA/VFA and CAD measured SFA/VFA 

among all the 120 testing CT images. The correlation coefficients are 0.9980 with 95% 

confidence interval (CI) (0.9972, 0.9986) for SFA and 0.9799 with 95% CI (0.9712, 0.9859) 

for VFA respectively.

To evaluate the stability of our CAD scheme, following are the results of our two 

experiments. First, by repeated training the Selection-CNN with different random initialized 

weights for 50 times, the Selection-CNNs without post-processing steps yielded a mean 

prediction accuracy of 0.9324, which is quite similar to the result reported in Table 1 

(0.9352). The highest, median and lowest accuracies among the 50 experiments are 0.9456, 

0.9328 and 0.9167, respectively. Second, the 50 pairs of repeated experiment that compared 

the performance of the trained Selection-CNN using balanced versus unbalanced datasets 

yielded an equal mean prediction accuracy of 0.9324. However, the standard deviations were 

0.0119 and 0.0066 when using 757 pairs of “balanced” training samples and all available 

2,240 “unbalanced” training samples, respectively, which indicates that using all available 

training samples increase diversity of training dataset and yielded more stable testing results.

4. Discussion

Identifying and computing new quantitative image markers for predicting efficacy of cancer 

treatment has been a focused research topic in our recent studies [33–35]. However, 

automatically segmenting SFA and VFA from volumetric CT image data is quite different 

from and/or more complicated than segmenting the targeted tumors from a few image slices. 

Thus, previous CAD schemes in this field are semi-automated schemes [7–9] that require 

manual selection of one targeted CT image slice and possible adjustment of placing 

segmentation seeds or boundary conditions. In this study, for the first time we developed a 

fully-automated CAD scheme and demonstrated its feasibility to segment volumetric SFA 

and VFA data without any human intervention. This study and the new CAD scheme have a 

number of unique characteristics. First, a Selection-CNN with post-processing step was 

developed for automated selection of CT slices belonging to abdomen areas. This CNN 

based process can not only overcome the limitation of manual selection in most previous 

studies which were quite difficult to deal with large-scale datasets, and also generated high 

segmentation accuracy as compared to manually processed results or “ground-truth” (i.e. 

yielding a prediction accuracy and DC greater than 0.95). Therefore, the Selection-CNN for 

automated selection of abdomen CT slices is reliable and can be used to replace manual 

selection, which provide the capability of managing large-scale dataset based medical data 

analysis studies with high efficiency.

Second, in most of the previously developed schemes, the segmentation of SFA and VFA 

was obtained by detecting visceral masks or abdomen wall masks using sequences of 
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traditional image processing techniques such as morphological operations, pixel labelling 

and thresholding [5, 8, 25–30]. Therefore, the segmentation results might be sensitive to the 

selection of parameters (e.g. morphological operation kernels and distance thresholds); these 

parameters were mostly subjectively determined and the optimal values might be different 

for different patients. In this study, we developed a Segmentation-CNN based scheme to 

segment SFA and VFA, which was based on machine learning classifiers and thus provided 

a more “intelligent” way by considering the location coordinates and neighborhood 

information. After sufficiently trained and optimized, the CNN model is free of parameters 

and no human intervention is required for getting optimal segmentation results. Therefore, 

the Segmentation-CNN provided a reliable CAD scheme for fully-automated segmentation 

of SFA and VFA from single CT slices.

Third, the two tasks in this study (i.e. selection and segmentation) were both formulated as 

binary classification problems and Convolutional neural networks were employed as the 

classifier to solve the problems. In traditional machine learning classifiers (e.g. Support 

Vector Machines and random forests) based systems, how to design and select effective and 

discriminative features is a crucial but difficult task. The advantage of convolutional neural 

network is that it can automatically learn hierarchical feature representations from its raw 

input images and therefore, no manual feature extraction and selection process is needed 

[15]. Following the success of CNNs in many other computer vision and medical image 

analysis areas, this study demonstrated that CNN models are effective for recognizing CT 

slices that belong to abdomen areas and segmenting SFA and VFA from single CT slices.

Fourth, we further investigated and employed new approaches of adding post-processing and 

a 2-scale network to maintain global consistency and improve prediction accuracy. The 

study results showed that after using these new approaches CAD scheme enabled to yield 

significantly higher segmentation accuracy than the raw CNN outputs. Thus, this study 

provided an example of how to optimally apply CNN with consideration of spatial or 

location information in developing a deep learning based scheme. The stability of the deep 

learning based CAD scheme has also been tested and approved by the experiments using 

repeated random initializations and different training datasets with balanced and unbalanced 

training samples in two classes.

In addition, based on the experimental results, we also made several observations. For 

example, (1) although direct comparison of segmentation accuracy between using this new 

deep learning scheme (3D data) and previous semi-automated schemes (2D data) is difficult, 

the new automated scheme can achieve high segmentation accuracy as comparing to the 

general visual segmentation. (2) Unlike the conventional machine learning methods, which 

should be optimally trained using a balanced dataset with equal number of training samples 

in two classes, a deep learning based CAD scheme can be optimally trained without such a 

restriction. Thus, the deep learning scheme may have an advantage to build a more stable 

classification model using all available training samples with increased diversity.

Despite the encouraging results, this is a preliminary technology development study with a 

number of limitations. First, we one applied and evaluated a commonly used CNN 

architecture, activation functions, loss functions and the training methods in this study. The 
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performance of this CAD system can be potentially improved by employing other advanced 

deep learning models and methodologies. Second, it took a relatively long time (i.e. a few 

minutes) to segment SFA and VFA in each single CT slice. This is because that each adipose 

pixel is used as an independent input of the deep network and the CAD scheme needs to 

scan all the pixels in the image. More research efforts should be devoted to investigate how 

to improve the computational efficiency of this system. For example, applying an optimal 

sampling and/or super-pixel concept might be helpful for reducing the amount of pixel-wise 

classification process in the system. Thus, at current stage, this deep learning based CAD 

scheme can only be used offline to process the images and segment SFA and VFA from the 

images. Last, the clinical potential of this new technology needs to be evaluated in the 

clinical studies to validate whether using volumetric adiposity-related image features can 

significantly improve accuracy in predicting disease prognosis (e.g. response of ovarian 

cancer patients to chemotherapies) as compared to previous manual or semi-automated 

methods that measured adiposity from one selected single CT slice.

In summary, in order to overcome the limitation of estimating SFA and VFA from one 

subjectively selected single CT image slice, we developed and tested a new CAD scheme for 

adipose tissue segmentation and quantification based on a sequential two-step process 

including (1) selecting CT slices belonging to abdomen areas and (2) segmenting SFA and 

VFA from each of the selected CT slices. We demonstrated that applying this new deep 

learning CNN based CAD scheme enabled to recognize specific body parts (abdomen in this 

study) from volumetric CT image data and segment SFA and VFA from each selected CT 

slice with high accuracy or agreement with manual segmentation results. As a result, this 

study provided researchers a new and reliable CAD tool to assist processing volumetric CT 

data and quantitatively computing a new adiposity related imaging marker in the future 

clinical practice.
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Highlights

• A Selection-CNN was developed for automatically selecting abdomen part 

from CT slices.

• A Segmentation-CNN was developed for automatic segmentation of SFA and 

VFA.

• Both two schemes can generate high accuracy compared to manual selection/

segmentation.

• A fully automatic CAD scheme for quantifying adiposity tissue volumes was 

provided.
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Figure 1. 
Overview of the two-step CNN based CAD scheme for adipose tissue quantification
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Figure 2. 
Demonstration of the Matlab GUI program for implementation of image preprocessing and 

manual segmentation process
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Figure 3. 
Architecture of Selection-CNN
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Figure 4. 
Architecture of Segmentation-CNN
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Figure 5. 
Examples of abdomen area selected by Selection-CNN. (a) A patient CT scan from vertical 

view. (b) Comparison of abdomen area selected by an observer (blue line) and by optimized 

Selection-CNN (red line)
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Figure 6. 
Examples showing the segmentation of VFA and SFA generated by Segmentation-CNN in 

two CT image slices. In these two images, SFA is shown in green color and VFA is 

represented by red color.
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Figure 7. 
The scatter plots of the manually and automatically (i.e. by Segmentation-CNN) measured 

(a) SFA and (b) VFA volume.
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Table 1

Summarization of quantitative performance evaluation of Selection-CNN without and with post-processing

Prediction accuracy Sensitivity Specificity

Selection-CNN 0.9352 ± 0.0344 0.9287 ± 0.0690 0.9362 ± 0.0722

Selection-CNN with post-processing 0.9582 ± 0.0268 0.9481 ± 0.0595 0.9625 ± 0.0521
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Table 2

Summarization of quantitative performance evaluation of baseline CNN and Segmentation-CNN

Evaluation Pixel-wise prediction accuracy SFA Dice coefficient VFA Dice coefficient

Method

A baseline CNN 0.9535 ± 0.0253 0.9696 ± 0.0175 0.8890 ± 0.0563

Segmentation-CNN 0.9682 ± 0.0218 0.9797 ± 0.0145 0.9150 ± 0.0624
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