
1 
 

The continuous maximal covering location problem in large-scale natural 

disaster rescue scenes 

Yang, P., Xiao, Y., Zhang, Y., Zhou, S., Yang, J. & Xu, Y. 

 
Abstract: This study proposes a continuous maximal covering location problem (C-MCLP) that is often confronted 

in the rescuing scenes of natural disasters such as earthquakes, floods, and storms. The aim of the research is to 

optimize (dynamically and rapidly) the continuous locations of the communication hub-centers (e.g., moving 

vehicles or boats) of the self-organizing mobile network that is quickly established in such signal-free fields. The 

proposed C-MCLP well represents the real emergency rescues, but it is more complex to solve than the traditional 

discrete MCLP models, where the hub facilities are typically immobile and placed only within a limited set of 

candidate sites. We develop two mixed-integer linear programming (MILP) models for the C-MCLP. The first 

model is the single-period C-MCLP model, which is applicable to a stochastic rescuing environment where the 

rescue teams (RTs) do not have planned movements and can move towards any direction. The second one is the 

multi-period C-MCLP model, which is for cases where RTs have planned movements in multiple periods/phases. 

We introduce a new linearization method for the non-linear Euclidean distance with a controllable approximation 

error allowance, by which the proposed models are linearized and can be solved optimally using commercial MIP 

solvers such as CPLEX and Lingo. To solve large-sized problems, we develop a MILP-based fix-and-optimize 

heuristic approach to obtain near-optimal solutions with high computational efficiency. Then we conduct simulation 

experiments to verify the proposed models and heuristic approach with an intended time-limit setting on 

small-sized and large-sized test problem instances, respectively, with up to 1000 nodes of rescue teams. Finally, 

experimental results are analyzed and compared with those obtained using the traditional k-means clustering 

algorithms, which confirm that the proposed models and approach are applicable for the C-MCLPs in emergency 

rescue scenes, and can yield rapid and good solutions. 
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1. Introduction 

Along with increasing intensification of human activities and global climate change, the occurrences of natural 

disasters in recent decades appeared to be much more frequent, posing significant and growing threats to human 

life and safety. According to the International Disaster Database (EMDAT, 2019), as shown in Fig.1, there was a 

significant increase of natural and geophysical disasters in recent years, and the estimated economic damage in 

2017 was reported as 334 billion USD (Below and Wallemacq, 2018). 

https://pure.aston.ac.uk/admin/workspace.xhtml?openEditorId=e211c2d5-3f70-4313-8078-3a4e47ced267&family=researchoutput
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All types                                   Earthquakes 

Fig. 1. Natural Disasters: an upward trend 
(Source: https://ourworldindata.org/grapher/number-of-natural-disaster-events) 

Most natural disasters are unpredictable with respect to when and where they occur; however, they always cause 

big damage to local infrastructure and significant losses in human lives and properties. A typical example presented 

in Fig. 2 is the well-known Wenchuan earthquake occurred in west China on May 12, 2008 (Wenchuan, 2008); In 

the incidents almost all the buildings in the red and yellow regions were reported as completely damaged. In 

addition, most part of the green region was exposed to an unrecoverable electrical power interruption. To minimize 

the post-disaster casualties, rescue operations should be carried out immediately within the so-called golden 

rescuing period. According to the statistical data, if disaster rescues are carried out within the first 72 hours, as 

shown in Fig. 3 for three time-varying survival rates, most survivors (more than 50%) could be rescued within the 

first 24 h, and the survival rate decreases dramatically as the golden time passes. However, the communication 

systems in the stricken areas are disrupted in most cases; thus, the rescue and relief operations are very inefficient 

and difficult to conduct, which leads to more casualties. In such cases, emergency communication vehicles (CVs) 

are typically deployed in the area to provide dedicated wireless communication coverage for rescue operations. The 

CVs, loaded with base transceiver station (BTS) antenna equipment, can transmit data, voice, picture/video, and 

other information in a timely manner, and provide onsite signal channels connecting the rescue teams (RTs) and the 

control centers. In addition, they help the command center and rescue teams to allocate rescue/relief resources more 

efficiently. Although there may be hundreds or thousands of RTs searching in a large-scale field of the incident, the 

number of available CVs are normally insufficient to cover the entire area, given that each individual CV has a 

limited capacity and effective covering radius (e.g., 1–3 km depending on the terrain). The dynamic and stochastic 

movements of the RTs makes it more difficult to be covered by communication signals all the time, it is therefore 

necessary to manage the CVs efficiently with continuously optimized locations, well-scheduled moving paths, and 

dynamic assignments of servicing nodes, to provide an overall maximal coverage of the RTs in the rescue process. 

This optimization problem hereby is referred to as the continuous maximal covering location problem (C-MCLP). 
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Fig. 2. Stricken region of the 512-Wenchuan-Earthquake (source: Wenchuan (2008)) 

 
Fig. 3. General survival rates after an earthquake in three locations (source: Gao and Nie (2015)) 

The C-MCLP can be considered as a variant of the classical location problem, which has been extensively 

studied and has important application in many fields. In 1929, the industrial layout problem proposed by German 

scholar Alfred Weber was first recognized as a continuous site selection problem. Thereafter, it was referred to as 

the Weber problem (Friedrich, 1929). In geometry, the Weber problem is one of the most well-known problems in 

location theory, which has the objective to determine a point in the plane that minimizes the total transportation 

costs from the point to n destination points. Several variants of the site selection problem have subsequently been 

developed, such as the set covering problem, center problem, and p-median problem (Brandeau and Chiu, 1989; 

Wang, 2006). 

The MCLP was first investigated by Church and ReVelle (1974) with respect to network design. Thereafter, 

various extensions to the original MCLP problem have been studied and modeled in many application fields, which 

were reviewed in their published time sequence as follows. Akella et al. (2007) proposed a mixed-integer 

programming (MIP) model that integrates the base station location problem, frequency channel assignment 

problem, and emergency notification problem. They developed a Lagrangean heuristic technique to improve the 

optimality gap further, based on the solution obtained by a greedy heuristic. As the extension of the application of 
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MCLP model, Erdemir et al. (2010) considered three coverage options of emergency services for motor vehicle 

crashes to establish a MCLP model considering both the response time and total service time. Their models also 

considered the uncertainties of vehicle crash distribution. Davari et al. (2011) extended the MCLP to a fuzzy 

maximal covering location problem (FMCLP), where the travel time between any pair of nodes was considered as a 

fuzzy variable, and they designed fuzzy expected value maximization model and a simulated annealing (SA) based 

solution approach. Yin and Mu (2011) extended the MCLP to take into account the capacity of the facilities, which 

is named as the modular capacitated maximal covering location problem (MCMCLP), where each of the potential 

sites (for building facilities) had several possible capacity levels to select. On the basis of single-period MCLP 

model, Dell’Olmo et al. (2013) presented a multi-period MCLP model for optimizing the periodical locations of the 

intersection safety cameras on an urban traffic network in a given planning horizon. Mohammadi et al. (2014) 

applied the MCLP model to optimize the location of emergency medical service centers considering a 

comprehensive objective including response time, cost of sites construction, and ambulance coverage, and with 

constraints on available ambulance number, limited budget, and minimum coverage level. Hochbaum and Pathria 

(2015) considered a general case of the maximum k-coverage problem and analyzed the quality of the k-stage 

covering algorithm. Taking the uncertain distribution of covered demand into consideration, Zhang et al. (2017) 

developed an (α, β)-maximal covering location model and an α-chance maximal covering location model under the 

uncertain distribution of covered demand. Paul et al. (2017) formulated a multi-objective hierarchical extension of 

the MCLP model, for the maximization of the population coverage, which requires rapid response windows and 

minimized modifications to the present structure. Bhattacharya and Nandy (2013) studied the k facilities maximal 

coverage problem, which is referred to as k-MaxCov, to maximize the total number of users served by new added 

facilities. They proposed an algorithm with a complexity time of O (n×log(n)) for the k-MaxCov problem. 

In addition to the modeling research on MCLPs, there are also a number of papers and technical reports in 

literature related to the methods of solving the MCLP. Pirkul and Schilling (1991) presented an efficient solution 

procedure that is particularly applicable to the assignment of uncovered demand to old facilities. Galinier and Hertz 

(2007) developed three exact algorithms for the large set covering problem that aims to find a minimum set of 

element subsets to cover the entire elements. Corrêa et al. (2009) suggested the use of column generation and 

covering graph approaches to obtain competitive solutions for the probabilistic MCLP instances up to 818 vertices 

in reasonable computational time. Guzmán et al. (2016) used a parametric approach to solve the fuzzy extension of 

the MCLP model, where they transformed the fuzzy model into several crisp problems using a decision parameter, 

and then solved the problems using classical optimization techniques. 

Heuristic algorithms were often applied for solving large scale MCLP problems where exact algorithms are not 

applicable, such as genetic algorithm (GA) (Zarandi et al., 2011), simulated annealing (SA) (Rabieyan and 

Esfandiari, 2011), variable neighborhood search (VNS) (Davari et al., 2013), particle swarm optimization (PSO) 

(Takaci et al., 2012), and hybrid algorithms (Ma et al., 2012; Davari et al., 2013).  Zarandi et al. (2011) developed 

a genetic algorithm (GA) based heuristic, referred to as the customized GA, for solving the problems up to 2500 

nodes with fair accuracy. Rabieyan and Esfandiari (2011) proposed a SA algorithm to solve the proposed novel 

queuing location problem, which can be considered as a variant of the MCLP. Takaci et al. (2012) used a discrete 

particle swarm optimization (DPSO) algorithm to solve the fuzzy maximal covering location time problem. Ma et 
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al. (2012) established a mathematical model for the location problem of emergency service facilities, and then 

developed a solution approach referred to as the genetic-simulated annealing algorithm (GSAA). Davari et al. 

(2013) developed a combination of the variable neighborhood search (VNS) and fuzzy simulation to solve the 

large-scale MCLP instances on a plane with fuzzy coverage radii under the Hurwicz criterion. Mcgregor et al. 

(2018) studied the maximum k-set coverage problem using the data streaming algorithm. Other meta-heuristic 

algorithms include the variable neighborhood search algorithm (Xiao et al., 2012, 2014) and hybrid genetic 

algorithm (Xiao et al., 2017). 

In this study, we considered a continuous and dynamic case of the MCLP in a large-scale disaster rescuing scene, 

where the locations of CVs were taken as continuous decision variables to optimize the routes of CVs in multiple 

periods and phases. The optimization goal is to achieve an overall maximal coverage of the RTs in the whole 

rescuing process. The contribution and novelty of this research are outlined as follows. 

 We advanced the dynamic C-MCLP that involves multiple periods/phases of planned rescue operations in 

large-scale scenes, considering continuous arriving/joining of new RTs and CVs over time and two 

hierarchical objective functions on the maximal signal coverage (primary) and the minimized total moved 

distance (secondary) of the CVs. 

 We presented two mixed-integer programming (MIP) models for the C-MCLP: the single-period C-MCLP 

model and the multi-period C-MCLP model to cater for different cases in rescuing.  

 We developed a linearization method for the nonlinear Euclidean distance function, by which the proposed 

MIP models were transformed into mixed-integer linear programming (MILP) models that can be optimally 

and efficiently solved using commercial MIP solvers. 

 A MILP-based heuristic algorithm, which is referred to as the MILP-based dynamic iterative partial 

optimization (MILP-DIPO), was developed to obtain near-optimal solutions for large-sized C-MCLPs rapidly. 

 We tested the proposed models and algorithms in an AMPL/CPLEX environment with simulated large-scale 

problem instances with up to 1000 nodes of rescue teams. 

The rest part of this paper is organized as follows. In Section 2, we first introduce and describe the problem, and 

then provide two MIP models for the single-period C-MCLP and multi-period C-MCLP in the two sub-sections. 

After that, a linearization method is provided for the nonlinear Euclidean distance function. In Section 3, 

discussions on solution approaches and algorithms are presented, which includes a two-stage optimization 

framework, the traditional k-mean clustering algorithm, and MILP-based heuristic algorithm. In Section 4, 

simulated experiments are conducted on different scales of disaster rescue scenarios and the experimental results 

are analyzed. Finally, the conclusions and future work are presented in Section 5. 

2. Problem description and formulation 

The C-MCLP can be described as follows. For a region subject to a natural disaster, e.g., earthquake, tsunami, 

floods, or storms; local infrastructure is exposed to significant damage, and communication and power supply 

interruptions. To search for and rescue the survivors injured or trapped beneath collapsed buildings, mountains, or 

buried by landslides, a group of rescue teams (RTs), denoted by set N, enter into this region to carry out emergency 

rescue operations, followed by a fleet of communication vehicles (CVs), denoted by set V, to provide the mobile 
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communication services for the RTs. Thus, the RTs, CVs, and links between them compose a dynamically 

self-organizing communication network. With a preliminary analysis of the disaster-stricken area, the command 

center is assumed to have developed a rough initial plan of action routes for each group of RTs, to guide their 

search over a set of pre-defined target areas that are represented by location coordinates (xit, yit), where i N∈ , 

t T∈ , and T is the set of periods (or phases) of the plan. To provide mobile communication services, the CVs are 

required to dynamically select a number of RTs to follow and to determine the optimal target locations in each 

period. Each CV is assumed to be subject to the following restrictions: (1) a maximum covering radius Dmax, only 

within which the RTs can be covered by wireless-signals; (2) a maximum channel capacity C that represents the 

maximum number of RTs a CV can service, and (3) a maximal distance maxL that a CV can travel between two 

consecutive periods. A binary variable Eijt is used to indicate whether RT i is covered by CV j in period t (Eijt = 1) 

or not (Eijt = 0). Thus, ijtE = 1 if the distance ijtd between RT i and CV j in period t is within Dmax while ijt
i N

E C
∈

≤∑ ; 

otherwise, ijtE = 0, where {0,1}, , V,ijtE i N j t T∈ ∈ ∈ ∈ . Thus, an RT is considered to be connected to the 

self-organizing communication network if (and only if) it is serviced/covered by a minimum of one CV. In addition, 

more RTs and CVs are supposed to be continuously arriving at the field and start their rescue actions from the 

arrived periods. Each CV, j, is set with an initial point (X0j, Y0j) from which the vehicle enters the field. The 

objective of the C-MCLP is to maximize the overall coverage of all RTs over the entire planning horizon, and the 

decision variables include the binary assignments of RTs to CVs and the continuous route locations of CVs in all 

periods/phases. 

The above described C-MCLP is a complex combination of the continuous site location problem with the task 

selection problem in multiple periods. It is difficult to obtain optimal solution for large-size problems. Further, 

given that the rescuing environments are time-varying with uncertainties, such as unexpected events and new 

arrivals of RTs/CVs, the C-MCLP should be rapidly solved within a short CPU time, otherwise the outcome 

solution may be no longer fit for the fast-changing situation. In practice, the problem size may be large, and it may 

involve the service of hundreds/thousands of RTs in such a signal-free area. The formulation of the C-MCLP is 

presented with two MIP models in Sections 2.1 and 2.2 for single and multiple periods, respectively. 

2.1 The single-period C-MCLP model 

The single-period C-MCLP considers a random search and rescue scene where the RTs do not have planned 

movements and are free to move at all directions whereas the CVs must constantly change their positions to follow 

the RTs to provide a maximum coverage. In the single-period C-MCLP mode, each RT i, i N∈ , is associated with 

a current location (xi, yi) and a random deviation ∆i of Euclidean distance from the current location. The CVs have 

current locations ( , )j jX Y  that are supposed known, and need to find out a set of targeting locations (Xj, Yj) they 

can move to for serving the RTs. The random deviation ∆i is introduced because the RTs are also moving randomly 

while the CVs are moving to their optimized targeting locations. The CVs are subject to certain limitations such as 

maximum covering radius max
jD , maximum channel capacities Cj, and maximum moving length Lmax during the 

time period a CV can travel. The Lmax is determined normally by the travel speed of CV and the interval length of 
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re-optimized CV locations. The parameters and notations used in the single-period C-MCLP model are introduced 

as follows. 

 Parameters: 

N   set of nodes that represents the RTs 

V     set of nodes that represents the CVs 

i      index of RTs, where i N∈  

j      index of CVs, where j V∈  

max
jD   maximum covering radius of CV j, where j V∈  

   (xi, yi)  current location coordinates of RT i, where i N∈  

i∆   a random deviation of RT i from its current location, where i N∈  

( , )j jX Y  current location coordinates of CV j, where j V∈  

maxL    distance that a CV can travel during the time interval of re-optimization 

M     a large number 

Cj     capacity of the CV j, where j V∈ , representing the maximum number of RTs a CV can service 

Decision variables: 

(Xj, Yj) continuous variables that indicates the new/targeting location coordinates of CV j 

,x y
ij ijd d , dij continuous variables that indicate the new/targeting distances between RT i and CV j in the x-axis, 

y-axis directions, and in Euclidean metric 

ijd   continuous variable that indicates the Euclidean distance between RT i and CV j 

ijE   binary variable that indicates whether RT i is served by CV j (Eij = 1) or not (Eij = 0) 

ie     binary variable that indicates whether RT i is served by a CV (ei = 1) or uncovered (ei = 0)  

, ,x y
j j jD D D  continuous variables indicating the distance travelled for CV j in the x-axis, y-axis directions, and in 

Euclidean metric 

The objective function is the maximization of the signal coverage rate (SCR) of the RTs, i.e., the ratio of covered 

RTs to the total number of RTs. Thus, the single-period C-MCLP can be formulated using a mixed-integer nonlinear 

programming model as follows. 

Problem single-period C-MCLP: 

Max. /| |i
i N

_Coverage_RatSignal e (SCR)= e N
∈
∑  (1) 

Subject to: 
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2 2

=

 

( ) ( )

x
ij i j

y
ij i j

x y
ij ij ij

d x X

d y Y i N j V

d d d

 −

 = − ∀ ∈ ∈

 = +

，  (2) 

( ) ( )max1 ,ij j ij iM E D d i N j V⋅ − ≤ − − ∆ ∀ ∈ ∈  (3) 

ij j
i N

C E j V
∈

≥ ∀ ∈∑  (4) 

 ,i ije E i N j V≤ ∀ ∈ ∈   (5) 

2 2( ) ( )

y
j j j

y
j j j

x y
j j j

D X X

D Y Y j V

D D D

 = −

 = − ∀ ∈

 = +

  (6) 

max
jD L j V≤ ∀ ∈   (7) 

0, 0, 0, 0, 0,
,

0, 0, 0, {0,1}, {0,1}

x y
j j ij ij ij

x y
j j j i ij

X Y d d d
i N j V

D D D e E

 ≥ ≥ ≥ ≥ ≥ ∀ ∈ ∈
≥ ≥ ≥ ∈ ∈

 (8) 

In the above formulations, Constraints (2) calculate the Euclidean distances between the RTs and CVs. It should 

be noted that the Euclidean distances calculated in Constraints (2) are nonlinear; however, they can be linearized 

using the method introduced in the Section 2.3. Constraints (3) ensure that the variable Eij takes a zero value when 

the distance plus deviation, dij + ∆i, is greater than max
jD , such that only the RTs within the covering radius are 

counted for the coverage rate. Constraint (4) ensures that the capacities of the CVs are not exceeded. Constraint (5) 

indicates that an RT can be identified as covered when it is covered by a CV. Constraints (6) calculate the moved 

distances of CVs in the x-axis, y-axis directions, and in Euclidean metric. Constraints (7) restrict the moved 

distance of each CV within the maximum length. Constraint (8) defines the value domains of all the variables. The 

linearized single-period MCLP model was coded in AMPL, as shown in Fig. A3 in Appendix, which was also used 

in the computational experiments of Section 4. 

2.2 The multi-period C-MCLP model 

The multi-period C-MCLP considers an overall optimization of the continuous location coordinates (Xjt, Yjt) of 

the CVs in multiple planned periods/phases. As an example shown in Fig. 4, the yellow circle represents the 

starting point of CVs, and three groups of rescue teams, represented by filled red, blue and green circles 

respectively, are covered by three CVs represented by hollow circles of the same color in rescuing process. The 

arrows show the planned rescue paths of CVs. This example assumed that all RTs have planned actions in rescuing, 

and the CVs are following the RTs with optimized moving paths to provide effective wireless communication 

service. The multi-period C-MCLP model needs to consider the increasing numbers of RTs and CVs along the 

periods, because more RTs and CVs may continuously arrive and join the rescue actions over time. In comparison 

to the single-period model, the multi-period model has several differences, as follows: 
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(1) The RTs have planned targeting locations in multiple periods/phases. 

(2) Each CV has an initial location and a maximum distance it can traverse over one period.  

(3) The numbers of RTs and CVs may increase as the time goes on, e.g., in the first period, there may be 

only 10 rescue teams, while in the second period there may be 15 rescue teams including 5 new joined 

ones. 

(4) All CVs need to serve the RTs with a maximized SCR (primary objective) and at the same time to travel 

at the shortest total moved distance (secondary objective) in all periods/phases. 

 
Fig. 4. Example of the two-period C-MCLP  

The parameters and decision variables used to describe the multi-period C-MCLP model are listed below.  

Parameters 

T    set of periods/phases (hereafter, period is used for simplicity) 

t     index of period, where t T∈  

Nt    set of RTs that are available in period t, where t T∈  

Vt    set of CVs that are available in period t, where t T∈  

i    index of RTs, where ti N∈   

j    index of CVs, where tj V∈  

max
jD    maximum covering radius of CV j, where tj V∈  

maxL     maximal distance that a CV can travel within one period 

( itx , ity )   coordinates of RT i in period t, where ti N∈  and t T∈  

( 0jX , 0jY )  initial location coordinates of CV j, where j V∈  

Cj      capacity of the CV j, where j V∈  

M    a large number 

Decision variables 
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(Xjt, Yjt)  continuous variable indicating the coordinates of CV j in period t. 
x
ijtd , y

ijtd  continuous variables indicating the distances between RT i and CV j in period t in the x-axis and 

y-axis directions  

ijtd  continuous variable indicating the Euclidean distance between RT i and CV j in period t. 

x
jtD , y

jtD  continuous variables indicating the moved distances of CV j in the x-axis and y-axis directions in 

period t 

jtD    continuous variable indicating the moved distance of CV j in Euclidean metric in period t 

ijtE   binary variable indicating whether RT i is served by CV j (Eij = 1) or not (Eij = 0) 

ite     binary variable that indicates whether RT i is served by one CV (ei = 1) or uncovered (ei = 0)  

The multi-period C-MCLP considers two hierarchical objective functions. The first function is to maximize the 

overall SCR of all the RTs in all periods. The second one is to minimize the total moved distance (TMD) of all the 

CVs, while keeping the maximized SCR unchanged. Thus, the multi-period C-MCLP can be formulated as a 

two-objective mixed-integer nonlinear programming model as follows. 

Problem multi-period C-MCLP: 

Max. '

,
/ | |

t

it t
i N t T

_Coverage_Rate (SCSignal R)= e N
∈ ∈
∑  (9) 

Min. 
,t

jt
j V t T

Total_Moved_Distance (TMD) D
∈ ∈

= ∑  (10) 

Subject to: 

2 2

, ,

( ) ( )

x
ijt jt it

y
ijt jt it t t

x y
ijt ijt ijt

d X x

d Y y i N j V t T

d d d

 = −

 = − ∀ ∈ ∈ ∈

 = +

 (11)  

, 1

, 1

2 2

,

( ) ( )

y
jt jt j t

y
jt jt j t t

x y
jt jt jt

D X X

D Y Y j V t T

D D D

−

−

 = −

 = − ∀ ∈ ∈

 = +

 (12)  

( ) ( )max1 , ,ijt j ijt t tM E D d i N j V t T⋅ − ≤ − ∀ ∈ ∈ ∈  (13)  

max ,jt tD L j V t T≤ ∀ ∈ ∈  (14) 

  ,
t

j ijt t
i N

C E j V t T
∈

≥ ∀ ∈ ∈∑  (15)  

' , ,it ijt t te E j V i N t T≤ ∀ ∈ ∈ ∈  (16)  
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0, 0, 0, 0,

0, 0, 0, 0, ; ,
{0,1}, {0,1}

x y
jt jt ijt ijt

x y
ijt jt jt jt t

it ijt

X Y d d

d D D D i N j t N
e E

 ≥ ≥ ≥ ≥
 ≥ ≥ ≥ ≥ ∀ ∈ ∈
 ∈ ∈

 (17)  

In the above formulations, Constraints (11) calculate the Euclidean distances between the RTs and the CVs in 

multiple periods, and Constraints (12) calculate the moved Euclidean distances of the CVs in multiple periods. 

Similarly, the nonlinear characteristics in these formulations can be linearized using the method introduced in 

Section 2.3 for the nonlinear Euclidean distance linearization. Constraints (13) ensure that the variable Eijt = 0 when 

the distance dijt > Dj
max. Constraint (14) guarantees that the moved distance of each CV in each period is less than 

or equal to the given maximum distance Lmax. Constraint (15) ensures that the capacity of each CV is not exceeded. 

Constraint (16) indicates that an RT can only be identified as covered when it is covered by a minimum of one CV. 

Constraint (17) defines the value domains of all the variables. The linearized version of the multi-period MCLP 

model written in AMPL code is shown in Fig. A4 in Appendix. Moreover, it was used in the computational 

experiments presented in Section 4. 

2.3 A Euclidean distance linearization method 

The Euclidean distance metrics used in Constraints (2), (6), (11), and (12) of the C-MCLP formulations are 

typically nonlinear expressions, which make the models non-optimally solvable to MIP solvers such as CPLEX and 

Lingo. Xie et al. (2018) used a set of linear constraints to surrogate the Euclidean distance metric within a negative 

controllable error range. For two points A (x1, y1) and B (x2, y2) on a two-dimension plane, the Euclidean distance 

function can expressed as shown in Eq. (18). 

( ) ( )2 2
1 2 1 2d x x y y= − + −          (18) 

The lower bound, d', of the Euclidean distance d can be restricted by the following linear constraints (Xie et al., 

2018).  

( ) ( )1 2 1 2sin cos 1d x x k y y k k nθ θ′ ≥ − ⋅ + − ⋅ ≤ ≤      ,    (19) 

where θ is a constant angel calculated by 2arccos(1 4 2 )θ ε ε= − + , 
2

n π
θ

 =   
,     represents the smallest 

integer that is greater than or equal to , and ε is a given parameter to control the bounded d' deviating from the 

true Euclidean distance d within a given percentage ε, i.e., | | 100%d d
d

ε
′ −

× ≤ . 

However, the minimal d' bounded by Eq. (19) is always smaller than the true Euclidean distance d, though the 

gap can be as small as possible controlled by ε. This may cause the solution technically infeasible in some cases 

where distances smaller than the threshold are not allowed. For example, if the Euclidean distance is 10 and we let 

ε = 0.1%, then the resulted bounded distance can be minimally 9.99 in an extreme case.  

For above reason, this paper provides an alternative constraint, expressed in Eq. (20) as follows, that can be used 

to bound a minimum value, d", that is no less than the true Euclidean distance d within a given maximum error 
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range ε. 

1 2 1 2
sin( ) sin( ) cos( ) cos( ) 1

sin( ) sin( )
k k k kd x x y y k nθ θ θ θ θ θ

θ θ
− − − −′′ ≥ − ⋅ + − ⋅ ≤ ≤      ,    (20) 

where θ is a constant angel calculated by 1=2arccos( )
1

θ
ε+

, 
2

n π
θ

 =   
, ε is the given parameter that guarantees 

| | 100%d d
d

ε
′′ −

× ≤ , and d is the true Euclidean distance. Detailed proof of Eq.(20) is provided in Appendix.  

In Table 1, some example data of n, θ, and ε calculated by both Eqs.(19) and (20) are provided for readers of 

direct use. It can be observed that n and θ always have very close values corresponding to different ε under Eqs. (19) 

and (20), so they can be considered as the same level of complexity when used in model formulations.  

Table 1. Example data of n, θ, and ε 

 ε 10% 5% 2% 1% 0.5% 0.2% 0.1% 0.05% 0.02% 0.01% 0.005% 0.001% 

Using 

Eq.(19) 

θ 0.902 0.635 0.401 0.283 0.2000 0.1265 0.0895 0.0633 0.0400 0.0283 0.0200 0.00894 

n 2 3 4 6 8 13 18 25 40 56 79 176 

Using 

Eq.(20) 

θ 0.859 0.620 0.397 0.282 0.1996 0.1264 0.0894 0.0632 0.0400 0.0283 0.0200 0.00894 

n 2 3 4 6 8 13 18 25 40 56 79 176 

Consequently, by using the surrogate constraints in Eq. (18) and a given accuracy requirement ε , the 

nonlinear Euclidean distances in Constraints (2), (6), (11), and (13) can be converted into the following linear 

Constraints (21), (22), (23), and (24), respectively, as follows. 

,

,

,

,
sin( ) sin( ) cos( ) cos( ) , , 1,2...,

sin( ) sin( )

x
ij i j

x
ij j i

y
ij i j

y
ij j i

x y
ij ij ij

d x X i N j V

d X x i N j V

d y Y i N j V

d Y y i N j V
k k k kd d d i N j V k nθ θ θ θ θ θ

θ θ


 ≥ − ∀ ∈ ∈

 ≤ − ∀ ∈ ∈
 ≥ − ∀ ∈ ∈


≤ − ∀ ∈ ∈
 − − − − ≥ + ∀ ∈ ∈ =


    (21) 

sin( ) sin( ) cos( ) cos( ) , 1,2...,
sin( ) sin( )

x
j j j

x
j j j

y
j j j

y
j j j

x y
j j j

D X X j V

D X X j V

D Y Y j V

D Y Y j V
k k k kD D D j V k nθ θ θ θ θ θ

θ θ


 ≥ − ∀ ∈

 ≤ − ∀ ∈
 ≥ − ∀ ∈


≤ − ∀ ∈
 − − − − ≥ + ∀ ∈ =


      (22) 
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, ,

; ,

; ,

, ,
sin( ) sin( ) cos( ) cos( ) , , , 1,2...,

sin( ) sin( )

x
ijt it jt t t

x
ijt j i t t

y
ijt it jt t t

y
ijt j i t t

x y
ijt ijt ijt t t

d x X i N j V t T

d X x i N j V t T

d y Y i N j V t T

d Y y i N j V t T
k k k kd d d i N j V t T k nθ θ θ θ θ θ
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
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
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
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  (23) 
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−

−

−

−


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
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
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     (24) 

3. Solution approaches 

3.1 A two-stage optimization framework 

We adopt the MILP-based hierarchical framework introduced by Xiao et al. (2015) to optimize the two 

hierarchical objective functions of the multi-period C-MCLP model with Pareto optimization. This is because the 

SCR is always considered as a more important objective than TMD so it should be maximized, while the TMD of 

CVs is being minimized based on the optimized SCR. The introduced hierarchical framework hereby includes the 

following two stages. The first step is to execute optimization on the SCR, i.e., the signal coverage rate, with no 

requirement on the TMD. After a maximized objective value on the SCR, which is denoted as SCR*, is obtained, the 

following Constraint (25) is added to the MILP model to set a minimum requirement for the SCR objective. 

* '

,
/ | |

t

it t
i N t T

SCR e N
∈ ∈

≤ ∑                  (25) 

Next, the TMD objective is set as the objective function to solve the MILP model with a re-optimized solution. 

Hence, the finally obtained solution is a Pareto optimal solution that was optimized on both SCR and TMD 

objectives. The two-stage optimization framework is outlined in Fig.5 as follows. 

1) Set SCR as the objective function without objective function TMD 

2) Solve the C-MCLP model to obtain an optimized SCR value denoted as SCR* 

3) Set TMD as the objective function without objective function SCR 

4) Add Constraint (25) to the model 

5) Solve the model to obtain the Pareto optimal solution on the two objectives SCR and TMD 

Fig. 5. A two-stage optimization framework 

The hierarchical setting of two objective function in Fig.5 is special case of multi-objective optimization 
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searching for the Pareto optimal solutions. More information on the methods and applications of multi-objective 

optimization can be seen in recent reviews carried out by Cui et al. (2017), Konak et al. (2006), and Zitzler et al. 

(2000). It should also be noted that the first stage of optimizing the SCR is much more time-consuming than the 

second stage of optimizing the TMD. Our pilot experiments indicated that the first stage might require several 

hours of CPU time whereas the second stage required only a few seconds for large-sized instances. Therefore, as 

introduced in the following sub-sections, the algorithms were designed mainly for the first stage.  

3.2 The k-means algorithms 

The k-means algorithm (Hartigan A. J., 1979) is an efficient algorithm for rapid clustering of data objects into a 

given number of clusters, to minimize the inner-distances of the clusters. The k-means algorithm (or its variants) is 

typically used as efficient solution approach for various facility location problems (Xiao et al., 2017, You et al., 

2019). The k-means algorithm was adopted to partition the RTs into the same number of CVs. The RTs with 

distance similarities were grouped into the same cluster and therefore served by one CV. Thus, the cluster centers 

were set as the target locations of the CVs.  

The k-means algorithm starts from a random initialization of CVs’ locations as the seed centers. Then, repeat to 

partition each RT to the closest center . After that, the cluster center is replaced by the mean center of the members 

in that cluster. These two steps are repeated until the objective function no longer changes. We consider two types 

of objective function, i.e., (1) the total inner-distances of all clusters and (2) the total number of covered RTs, to 

form two types of k-means algorithm denoted as k-means-I and k-means-II, respectively. The framework of the 

k-means-I/II algorithms for the C-MCLP is outlined as follows: 

The k-means-I/II algorithm: 

(1)  Set the cluster number k as the same number of CVs 

(2)  Randomly generate k locations as the initial locations of CVs 

(3)  Calculate the distances between the RTs and CVs 

(4)  Assign each RT to its closest CV 

(5)  Calculate the mean centers of the clustered RTs as the new location for CVs 

(6)  Calculate the objective function: (I) the total inner-distances or (II) the total number of covered RTs 

(7)  Repeat steps (3), (4), and (5) until there is no further change to the objective function 

(8)  For each CV, rank its assigned RTs with descending distance order 

(9)  For each CV, pick its member RTs as the covered nodes from the nearest to furthest, until the capacity is 

reached or the maximum covering radius is exceeded 

(10)  Output the signal coverage rate 

Fig. 6. Framework of the k-means algorithm 

3.3 A MILP-based fix-and-optimize heuristic approach 

For large-sized C-MCLP instances, an efficient heuristic approach was developed to obtain near-optimal 

solutions and achieve high computational efficiencies. The proposed approach is referred to as the MILP-based 

dynamic iterative partial optimization (MILP-DIPO for short), and it is based on the MILP-based neighborhood 

searching algorithms developed by Xiao et al. (2016, 2019a, 2019b). The underlying principle is as follows. For a 

large-sized complex problem with multiple decision variables, if a complete optimization over all variables cannot 

be achieved within an acceptable CPU time, then partial optimizations (POs) can only be applied to a small portion 
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of the selected decision variables, while the most other variables are set with given values. Thus, the selected 

decision variables can be efficiently optimized within a very short CPU time. Then, POs are applied repeatedly to 

different portions of randomly selected variables, until no further improvement can be made to the objective 

function after a given number of continuous attempts. The main framework of the MILP-DIPO algorithm is 

outlined in Fig.7 as follows: 

Algorithm: MILP-based Dynamic Iterative Partial Optimization (DIPO) 

Input:  

Tmax: maximum allowed computation time 

Pmax: maximum number of continuous attempts without improvement  

[tmin, tmax]: minimum/maximum time setting for partial optimization 

W0: initial number of RTs for partial optimization 

∆: a percentage number of RTs for dynamic adjusting the scope of partial optimization 

W: number of RTs selected for partial optimization 

U: a set that includes the selected RTs 

P: a number that indicates the non-improvement times 

Output:  

S: best solution found 

1) Let S0 ← Initialization: set all RTs uncovered (e.g., by Eijt ← 0) to construct a feasible solution S0 
2) Let S ← S0, P ← 0, and W ← W0 

3) Iterative Partial Optimization (IPO) Loop Begin 

3.1)   Let U ← null 

3.2)   Apply a rule to select a number W of nodes from N into U 

3.3)   For j in V, fix all Eijt decision variables for i ∈N  

3.4)   For j in V, unfix Eijt decision variables for i ∈U  

3.5)   Implement the MILP solver to obtain a new solution S', and record the used CPU time t 

3.6)   IF S' improves upon S, THEN let S ← S' and P ← 0 

3.7)   ELSE let P ← P+1 

3.8)   IF P ≥ Pmax or total CPU time ≥ Tmax or W ≥ total number of RTs  THEN BREAK and go to 

Step 5 

3.9)   IF t ≤ tmin, THEN  let W ← W + ∆  

3.10)  IF t ≥ tmax, THEN  let W←W - ∆ 

4)  Loop End  

5)  Output S 

Fig. 7. Main framework of the MILP-DIPO algorithm 

As shown in Fig. 7, the MILP-DIPO algorithm starts with an initial solution S0, a simple feasible solution that 

covers no RTs, and then S0 is set as the incumbent solution C. The non-improvement counter P and the number of 

nodes to be selected W are initialized in Step 2. Thereafter, a loop is launched in Step 3 to implement the iterative 

Partial Optimization (IPO), which includes Steps 3.1–3.10. In Step 3.2, a set of RTs is selected according to the 

time frequency priority (TFP) rule (Xiao et al., 2019a, 2019b) under which the nodes having been selected fewer 

times are always assigned higher possibility to be selected. A frequency recorder, e.g., ri, is used to record the times 

of being selected for each node i. Thus, the probability of selecting node i under the TFP rule is calculated as 

1
( 1)i

i

p
r R

=
+

, where 1
( 1)j N j

R
r∈

=
+∑ . For example, if there are three nodes 1, 2, and 3, and they were selected for 2, 
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0, and 3 times respectively, then their probability of being selected are calculated as 0.21, 0.63, and 0.16 

respectively. Notably, for solving multi-period C-MCLP, the selected RTs should come from all the periods. In 

Steps 3.3 and 3.4, the selected nodes (RTs) are unfixed for their assignments, whereas the remainder are fixed. The 

CPLEX solver is then applied to optimize the selected nodes (Step 3.5). In Steps 3.6 and 3.7, the new obtained 

solution is judged for if it has been improved upon incumbent solution. If yes, then it is accepted as the new 

incumbent solution, and the non-improvement counter P is reset to zero; otherwise, P is incremented by one. The 

loop is stopped on one of the three conditions: (1) no further improvement can be made on the incumbent solution 

after a number Pmax of continuous attempts, (2) the total elapsed CPU time is greater than a given limited time Tmax, 

or (3) all the nodes were simultaneously selected for optimization (Step 3.8). In Steps 3.9–3.10, the number W is 

adjusted dynamically to control the solving time used by CPLEX between tmin and tmax. The number W is increased 

by ∇ percentage of the total RTs when the previous CPU time is shorter than tmin, or decreased by ∇ percentage 

when the CPU time is longer than tmax. Finally, the resulted incumbent solution S is the best solution found; thus, it 

is the output of the algorithm. It should be noted that when applying the MILP-DIPO algorithm to the solution of 

large-scale multi-period C-MCLP, the partial optimizations should be implemented on RTs selected from all the 

periods (Step 3.2). 

In the IPO loop, the MILP solver (CPLEX) consumes most of the CPU time (Step 3.5); thus, the computational 

complexity of the algorithm is dependent on how many times the IPO is implemented by the MILP solver, which is 

controlled by an input parameter Pmax. The average CPU time, denoted as R, used by CPLEX for each round of 

partial optimization and restricted between tmin and tmax, is determined by the number of selected nodes W. Thus, the 

algorithm’s complexity level can be estimated as O (Pmax×W×R). 

4. Simulating experiments 

The simulation experiments were conducted on a Linux PC server with two 2.90 GHz Intel Xeon (R) CPUs (32 

threads) and 128-GB RAM. The MIP solver AMPL/CPLEX (version 12.6.0.1) was used to solve the tested 

instances. 

4.1 The experimental data 

Several groups of datasets were generated to simulate the search and rescue operations in natural disaster 

stricken areas of different scales. The first group contained three instances with rescue team numbers 20, 50, and 

100, respectively; and their actions were conducted in a specified square region with dimensions of 100 × 100. 

Here, one unit of distance was set to be 100 m. The second group contained four instances with rescue team 

numbers 200, 400, 600, and 1000, respectively. The first three instances had a specified square region with 

dimensions of 200 × 200, and the final instance (with 1000 rescue teams) had a large region with dimensions of 300 

× 300. The targeting coordinates of the rescue teams were randomly generated within the regions, with a random 

deviation i∆  in [0, 5] for each RT i ∈ N. The number of CVs was set as 3, 3, 6, 12, 23, 34, and 56 with respect to 

team number of 20, 50, 100, 200, 400, 600, and 1000, respectively. The covering radius of the CVs was set as 15 

(1.5 km), the capacity of each CV was set as 18, and the maximal moved distance within one period was set as 

Lmax=30. 
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For the multi-period C-MCLP, five periods/phases of rescuing operations were considered with an increasing 

numbers of rescue teams that were assumed to be continuously arriving and joining the rescue operations. Two test 

instances were generated to test the performances of the proposed model and heuristic algorithm. The first test 

instance simulated a five-period case with 20, 25, 30, 35, and 40 available RTs in five periods, to search for 

survivors in a 100x100 region, and the number of CVs was set as 3, with parameters C=18, Dmax=15, and Lmax=30. 

The second test instance was a larger multi-period C-MCLP instances with 160, 180, 200, 220, and 240 available 

RTs in five periods, to search for survivors in a 300x300 region. The number of available CVs was set as 15, with 

parameters C=18, Dmax=25, and Lmax=50. In these two instances, the targeting coordinates of RTs in each period 

were generated by the simulation of a planned search actions, wherein all the teams started from one entry side and 

gradually searched across the whole region.  

In all the calculations, the Euclidean distance linearization parameter ε was set as 0.1%, which indicates that the 

approximate error rate for the Euclidean distance linearization was within 0.1%. 

4.2 Experiments on single-period C-MCLP 

For the small-sized instances (the number of rescue teams was 20, 50, 100, and 200), the CPLEX solver was 

directly used to obtain optimal solutions. Moreover, we also applied the k-means-I, k-means-II, and MILP-DIPO 

algorithms to obtain 10 heuristic solutions for each instance. The parameters settings for DIPO were Tmax = 300, 

Pmax = 50, tmin = 1, tmax = 1, W0 = 10, and ∆ = 1%. The computational results are listed in Table 2, which reveal the 

differences between these methods with respect to the solution quality (SCR) and computational efficiency 

(solution time). Columns NRT and NCV represent the number of rescue teams and number of CVs, respectively. As 

can be seen in Table 2, the resulted SCR values by CPLEX are optimal. The MILP-DIPO algorithm could also 

obtain the optimal solutions in 10 runs for all test instances. Columns MILP-DIPO best and MILP-DIPO avg 

indicate the best solution and average solution found in 10 runs, respectively. The k-means algorithms delivered 

quite worse solutions, without finding any optimal solution. The solution time required by the CPLEX, k-means, 

and MILP-DIPO could be considered negligible when the number of rescue teams was less than 100. When the 

number of rescue teams increased, CPLEX required significantly more time to obtain the optimal solution. This can 

be attributed to the combinatorial nature of the C-MCLP, which leads to an exponentially growth of time in 

accordance with an increase in the problem size. The MILP-DIPO showed both good solution qualities and 

relatively high computational efficiencies. The k-means algorithms have much higher computational efficiency but 

lower solution quality than other two. 

Table 2. Comparison of solutions obtained by different methods. 

NRT NCV SCR Time (s) 

  CPLEX k-means-I k-means-II MILP-DIPO best MILP-DIPO avg CPLEX k-means DIPO 

20 3 20/20 17.7/20 17.2/20 20/20 20/20 <1  <1 <1 

50 3 21/50 11.0/50 10.3/50 21/50 19.5/50 <1  <1 1.4 

100 6 51/100 39.5/100 35.9/100 51/100 49.9/100 3.0  <1 16.2 

100 12 57/100 37.7/100 36.2/100 57/57 57/57 7.9  <1 21.5 

120 12 66/120 44.0/120 43.9/120 66/120 65.5/120 14.9  <1 32.1 
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140 12 74/140 47.8/140 49.2/140 74/140 73.3/140 17.3  <1 33.7 

160 12 83/160 56.1/160 55.5/160 83/160 83/160 33.3  <1 38.5 

180 12 93/180 62.5/180 61.4/180 93/180 92.4/180 42.2  <1 38.5 

200 10 84/200 67.9/200 62.5/200 84/200 83.5/200 49.1  <1 35.3 

200 12 100/200 52.5/200 50.4/200 100/200 98.9/200 77.1  <1 46.6 

200 14 113/200 79.3/200 75.7/200 113/200 111.8/200 182.1  <1 52.3 

200 16 130/200 90.1/200 90.4/200 130/200 128.2/200 998.8  <1 58.4 

      Note: bold-face indicates the optimal values.  

Fig. 8 presents three optimal solutions obtained by CPLEX for the instances wherein NRT = 20, 50, and 100, 

respectively, to provide readers a graphic view of the problem structures and solutions. As shown in the figure, CVs 

move from an initial location to the optimized targeting locations, the center of the circles, to maximize the 

coverage of RTs. In the first image, three CVs were deployed to serve 20 rescue teams. Different colors were used 

to plot the rescue teams that were covered by different CVs; wherein the red, green, and blue colors represent the 

rescue teams covered by CV1, CV2, and CV3, respectively. The pink color represents the rescue teams that were 

not covered by CVs. In the second and third images, the detailed results were illustrated for the instances wherein 

NRT = 50 and NRT = 100, respectively.  
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Fig. 8. Detailed solutions for NRT = 20, 50, and 100 

Next, we tested the performance of our model with respect to different values for parameters ε and Lmax. First, we 

used CPLEX to solve two instances, NRT/NCV = 100/12 and NRT/NCV = 200/10, and obtained the optimal 

solutions with respect to different values of ε from 5% to 0.01% and with fixed Lmax=30. The computational results 

are shown in Table 3. The results reveal that as ε varied, both the SCR objective values and the solving time varied. 

In general, more computational time is required to increase the accuracy of the parameter ε. In practice, control of 

the error range within 0.1% (ε = 0.1%) should meet the requirements of most practical applications. Next, we used 

CPLEX to solve these two instances with fixed ε = 0.1% and with respect to different values of Lmax increasing 

from 20 to 50. Table 4 presents the performance of the model. As can be seen from the table, the SCR and TMD 

increased steadily as the Lmax increased, and more computational time was required for a larger Lmax.  

Table 3. Solution efficiencies under different values of ε 

   NRT=100, NCV=12  NRT=200, NCV=10 

Ε Θ n SCR Time (s)  SCR Time (s) 

5% 0.620 3 55/100 2.7  82/200 15.1 
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1% 0.282 6 56/100 2.5  83/200 28.1 

0.5% 0.1996 8 57/100 2.0  83/200 30.6 

0.1% 0.0894 18 57/100 8.8  84/200 49.8 

0.05% 0.0632 25 57/100 4.1  84/200 54.2 

0.01% 0.0283 56 57/100 6.1  84/200 107.9 

 

Table 4. Solution efficiencies under different values of Lmax
 

  NRT=100, NCV=12   NRT=200, NCV=10 

Lmax SCR TMD Time (s)  SCR TMD Time (s) 

20 59 160.3 0.9  94 140.4 1.5 

25 61 211.6 2.8  96 181.0 30.5 

30 65 235.8 21.7  102 222.4 51.9 

35 65 232.1 46.2  104 251.8 180.6 

40 67 264.5 929.2  107 262.5 554.0 

45 70 307.1 1852.3  107 262.5 3600 

50 70 307.1 3600  109 285.9 3600 

Thereafter, we tested the proposed MILP-DIPO heuristic algorithm with the large-sized problem instances of 

NRT = 400, 600, and 1000. Given that the CPLEX solver was unable to deliver the optimal solutions for these 

instances within an acceptable CPU time-range, e.g., 300 s, in emergency situations, we used the DIPO algorithm, 

as shown in Fig. 9, to obtain heuristic solutions. The parameters settings for MILP-DIPO were Tmax = 300, Pmax = 

50, tmin = 1, tmax = 1, W0 = 100, and ∆ = 1%. The CPLEX (with a time limit of 300 s) and k-means algorithm were 

also used to solve these instances and obtain comparative solutions. We repeatedly ran the DIPO algorithm for 10 

times, and the average/best/worst solutions of the 10 runs were obtained for each instance. The obtained solutions 

were compared, as shown in Table 5.  

In Table 5, the number of RTs and CVs are listed in the first two columns, the objective values are compared in 

the third, fourth, and fifth columns, and the computational times are compared in the last column. With respect to 

the SCR objective, the MILP-DIPO algorithm was proved to be the best. In particular, even the worst result yielded 

by MILP-DIPO was better than or close to the best results yielded by the other two methods. The best SCR 

optimized by MILP-DIPO are higher than the solutions of the CPLEX by 2.3%, 12.7%, and 6.5% for the instances 

of NRT = 400, 600, and 1000, respectively. The solutions are also higher than the solutions of the k-means 

algorithm by 55.2%, 30.5%, and 38.1% for the instances of NRT = 400, 600, and 1000, respectively. With respect 

to the computational efficiency, the k-means was the best, as it required less than 1s to compute. However, given 

that the primary objective is the maximization of the SCR, the MILP-DIPO algorithm can be considered as more 

practical than the other two algorithms. Fig. 9 presents a comparison of the SCR objective values of the solutions 

obtained using the three methods (CPLEX, k-means-I, and MILP-IPDO) with respect to the three tested instances. 
Table 5. Comparison of solutions obtained using MILP-DIPO, CPLEX, and k-means algorithms 

   k-means  MILP-DIPO  Time (s) 

NRT NCV CPLEX I II  Best Worst AVG  CPLEX k-means MILP-DIPO 

400 23 220/400 145.0/400 144.3/400  225/400 221/400 222.8/400  300 < 1 124.9 

600 34 370/600 319.6/600 314.6/600  417/600 398/600 405/600  300 < 1 130.0 

1000 56 496/1000 382.3/1000 380.5/1000  528/1000 493/1000 504.5/1000  300 3.2 198.2 

Note: bold fact indicates the best values.  
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Fig. 9. Comparison of the solutions with respect to different methods 

4.3 Experiments on multi-period C-MCLP 

The multi-period C-MCLP model is applicable to a more complex disaster rescue case, and it allows for RTs to 

join the rescue actions continuously as previous RTs move forward. All RTs were assigned different targeting areas 

to carry out rescue actions in different periods. First, we applied CPLEX to solve the small multi-period instance 

with RT numbers 20, 25, 30, 35, and 40 in five periods. The optimal solution was obtained in 43 seconds and 

shown in Table 6, where the columns SCR and TMD represent the objective function values achieved by the 

multi-period C-MCLP model. Table 7 presents the optimal CV coordinates in different periods. 

Table 6. Solution of the small multi-period instance 
t NCV SCR TMD Time (s) 

1 3 20/20 36.83 

67.07 

50.31 

60.23 

71.54 

-- 

2 3 23/25 -- 

3 3 21/30 -- 

4 3 28/35 -- 

5 3 33/40 -- 

Total  125/150 285.97 43 

 

Table 7. Optimized coordinates of CVs in multiple periods 
 Initial Period = 1 Period = 2 Period = 3 Period = 4 Period = 5 

(Xj, Yj) 

(50, 0) 

(50, 0) 

(50, 0) 

(37.78, 11.04) 

(50.03, 5.09) 

(60.33, 11.25) 

(24.68, 23.03) 

(50.03, 35.21) 

(73.30, 25.39) 

(21.97, 50.89) 

(51.37, 45.29) 

(81.51, 34.34) 

(21.93, 64.81) 

(48.65, 70.90) 

(82.64, 54.86) 

(15.20, 89.62) 

(46.56, 86.61) 

(76.93, 84.3) 

 
The movements of the RTs and CVs are plotted in Fig. 10, where squares represent the RTs, circles represent the 

CVs, and nodes in same color represent a CV’s coverage. The filled squares indicate the RTs covered by a CV 

whereas the empty squares indicate the RTs not covered by any CVs. It can be observed that at the beginning all 

RTs were covered by CVs as they were gathering around the initial position. However, as the search actions went 

on, more and more RTs became uncovered as the RTs start to disperse in the whole search region and new RTs were 

continuing to join in. The CVs were scheduled with the shortest moved distance to provide as a maximized SCR as 

possible. The assignments of RTs to CVs were dynamically determined based on the locations of the RTs and CVs. 

That means a RT could be connected to one CV in one period and it might be connected to another one in the next 

period. When a RT is covered by multiple CVs, it just connects to one of them and occupies only one channel. This 
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figure presents a planned search and rescue process starting from the initial point and crossing the entire area, with 

more RTs joining over time. It simulates the real need from the rescuing scene that seeks primarily to cover as more 

as possible the number of RTs in all periods (as the primary objective), and secondarily to shorten the total moved 

distance of the CVs (as the secondary objective).  
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Fig. 10. Movements of RTs and CVs in five periods 
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It should be noted that the CVs are always assumed to be able to move faster than RTs, which is determined 

by the setting of parameter Lmax; otherwise, the period coverage rates of the obtained solution will show a 

gradually decreasing trend to zero as the time period goes on. When Lmax is large enough, the optimized SCR 

in a period will be mainly determined by the distribution of RTs in that period, and equally affected by the 

distributions of RTs before and after that period. Without considering the moved distance of CVs in the first 

period from their initial locations, the multi-period solution would be the same if the RTs are supposed to 

move reversely from the last period to the first one. 

Next, we tested the MILP model and the proposed MILP-DIPO algorithm on the large multi-period C-MCLP 

instance. This instance has 160, 180, 200, 220, and 240 available RTs, totally 1000, in five periods. Four methods, 

i.e., CPLEX, k-means-I, k-means-II, and DIPO, were applied to solve this test instance and compare the results. 

The CPLEX solver was set with a 3600 second time limit, and the MILP-DIPO algorithm was set with parameters 

Tmax = 300, Pmax = 50, tmin = 1, tmax = 1, W0 = 100, and ∆ = 1%. All methods (except CPLEX) repeated 10 runs to 

obtain 10 random solutions. The results are compared in Table 8 as follow. 
Table 8. solution comparison of the large multi-period C-MCLP instance 

 SCR  TMD 

Method Best Worst AVG Time (s)  Best Worst AVG Time (s) 

k-means-I 546 489 523.5 <1  -- -- -- <1 

k-means-II 536 488 513.6 <1  -- -- -- <1 

CPLEX 496 -- -- 3600  3426.6 -- -- 2.5 

MILP-DIPO 615 587 597.9 179.7  3316.1 3160.2 3253.3 1.2 

As seen in Table 8, in the first stage for maximizing the SCR, the MILP-DIPO algorithm used averagely 179.7 

second and obtained the best average solution 597.9, as well as the best solution 615 among all methods under 

comparison. The k-means-I and II ranked the second and third ones, respectively, while the CPLEX solver is the 

last. In the second stage (for CPLEX and MILP-DIPO only), the TMD were obtained efficiently when the primary 

objective was fixed to a known value, with 2.5 and 1.2 seconds for CPLEX and MILP-DIPO, respectively. This 

indicated that computational complexity of the C-MCLP lies mainly on the first stage for maximizing the SCR. 

Moreover, in some particular cases where CVs are relatively rare resources, the number of CVs can be also an 

secondary objective function to be minimized, together with the SCR and TMD, forming a multi-objective 

optimization problem for studying. 

5. Conclusion 

The C-MCLP plays a significant role in efficient searching and rescuing survivors in natural-disaster scenes, 

such as earthquakes, floods, and storms, where communication system is often disrupted. In this study, we 

formulated the C-MCLP with two mixed-integer mathematical linear programming models and two hierarchical 

objective functions, e.g., the maximal signal-coverage and the shortest moved distance, to provide high-quality 

solutions at high computational efficiencies. The proposed models can be efficiently and optimally solved for 

small- and medium-sized problem instances by directly using commercial MILP solvers such as CPLEX and Lingo. 

For the large-scale problems and the multi-period cases, we developed an efficient heuristic algorithm, referred to 
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as MILP-DIPO, to solve the problem with near-optimal solutions rapidly. The experimental results and comparison 

with the traditional k-means algorithm revealed that the proposed models and algorithms work efficiently with 

better solutions obtained in a limited time setting, e.g., within 300 s, which is a suitable time limit for such 

emergency situations.  

Besides natural-disaster rescues, the proposed models and solution method can also be extended to other 

applications such as warehouse/factory location optimization in logistic distribution system, distribution 

coverage of emergency rescue resources in urban areas, and orbit optimization of a group of communication 

satellites. The current models are mainly tested on academic case studies, but yet to be be tested in an real 

situation. Future study and improvement on the theoretical models and solution approach of the C-MCLP 

include: (1) considering dynamic connection reliability affected by environmental terrain differences, (2) 

considering robust optimization of senarios with uncertain movements of rescue teams, or (3) developing a 

more efficient heuristic algorithm for large-sized problem instances. 
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Appendix  

Equation 2 2z x y= +  expresses a cone surface in a x-y-z coordinate system. Fig. A1 shows the 

intersecting circle by the plane z = r and 2 2z x y= +  , where r is positive number. Let A and B be 

two points on the circle that pose angles kθ-θ and and kθ with the x-axis, where θ is a given angle 

and k is an integer. Then, the coordinates of points O, A, and B are expressed as O(0, 0, 0), 

A(rcos(kθ-θ), rsin(kθ-θ), r), B(rcos(kθ), rsin(kθ), r), respectively. Let z = ax + by represent the 

equation of the plane passing points O, A, and B. It can be deduced that  

sin( ) sin( ) cos( ) cos( )and
sin( ) sin( )

k k k ka bθ θ θ θ θ θ
θ θ

− − − −
= = . 

A

B

O

x

y

(z)

θ

(k-1)θ

r

 
Fig. A1. A linear surrogate of the Euclidean distance 

Thus, the Euclidean distance equation, 2 2z x y= + , can be bounded of its minimum value by a set of planes 

with different k by the constraints as follows. 

 
sin( ) sin( ) cos( ) cos( ) , 1, 2,...,

sin( ) sin( )
k k k kz x y kθ θ θ θ θ θ η

θ θ
− − − −

≥ + ∀ = ,    (A1) 

where θ is a given angle and η represents the number of planes calculated by 
2
πη
θ

 =   
. 

Let’s see the first plane, i.e., k=1, which has the equation tan( / 2)z x y θ= + . The maximum approximate 
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error by this plane for replacing the equation 2 2z x y= +  with Eq. (A1) is at the middle of arc (A, B), noted by 

point C as shown in Fig. A2. The coordinate of point C is ( cos( / 2), sin( / 2), )z z zθ θ . Suppose the 

correspondent point C' on the plane has a coordinate of ( cos( / 2), sin( / 2), )z z zθ θ ′ , then 

cos( / 2) sin( / 2) tan( / 2)z z zθ θ θ′ = + . Thus, the error rate ε can be calculated by  

100% cos( / 2) sin( / 2) tan( / 2) 1z z
z

ε θ θ θ
′ −

= × = + −     (A2) 

Thus, the minimum angle for guaranteeing a given maximum error rate ε is 
12arccos

( +1)
θ
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Fig. A2. The maximum approximate error estimation 

#Parameters 
set RT;     #set of rescue teams, RT 
set CV;     #set of communication vehicles, CV 
param RT_X{RT};    #coordinate X of RTs 
param RT_Y{RT};    #coordinate Y of RTs 
param delta{RT};    #maximum deviations of the RTs from their current locations 
param CV_X0{CV};   #initial coordinate X of CVs 
param CV_Y0{CV};   #initial coordinate Y of CVs 
param q:=18;    #given parameter for Euclidean distance linearization 
param cita:=0.0872;   #given parameter for Euclidean distance linearization 
param Dmax{CV};    #maximum coverage range of CVs 
param C{CV};    #capacity of CVs 
param Lmax; 
param M:=999;    #a large number 
 
#Decision variables 
var CV_X{CV}>=0;   #coordinate X of CV 
var CV_Y{CV}>=0;   #coordinate Y of CV 
var dx{RT,CV} >= 0; 
var dy{RT,CV} >= 0; 
var d{RT,CV} >= 0;   #Euclidean distances between CVs and RTs 
var E{RT,CV} binary;   
var E1{RT} binary; 
var DX{CV} >= 0; 
var DY{CV} >= 0; 
var D{CV} >= 0;    #moved distances of CVs 

 
maximize Signal_Coverage:   sum{i in RT} E1[i];  
 
subject to Con1a{i in RT, j in CV}: dx[i,j] >= RT_X[i] - CV_X[j]; 
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subject to Con1b{i in RT, j in CV}: dx[i,j] >= CV_X[j] - RT_X[i]; 
subject to Con2a{i in RT, j in CV}: dy[i,j] >= RT_Y[i] - CV_Y[j]; 
subject to Con2b{i in RT, j in CV}: dy[i,j] >= CV_Y[j] - RT_Y[i]; 
subject to Con3{i in RT,j in CV, p in 1..q}: 

d[i,j] >= dx[i,j]*(sin(p*cita)-sin(p*cita-cita))/sin(cita) + dy[i,j]*(cos(p*cita-cita)-cos(p*cita))/sin(cita); 
subject to Con4{i in RT, j in CV}: M*(E[i,j]-1) <= Dmax[j]-d[i,j]-delta[i]; 
subject to Con5{i in RT}: E1[i] <= sum{j in CV}E[i,j]; 
subject to Con6{j in CV}: C[j] >= sum{i in RT}E[i,j]; 
subject to Con7a{j in CV}: DX[j] >= CV_X0[j] - CV_X[j]; 
subject to Con7b{j in CV}: DX[j] >= CV_X[j] - CV_X0[j]; 
subject to Con8a{j in CV}: DY[j] >= CV_Y0[j] - CV_Y[j]; 
subject to Con8b{j in CV}: DY[j] >= CV_Y[j] - CV_Y0[j]; 
subject to Con9{j in CV, p in 1..q}: 

D[j] >= DX[j]*(sin(p*cita)-sin(p*cita-cita))/sin(cita) + DY[j]*(cos(p*cita-cita)-cos(p*cita))/sin(cita); 
subject to Con10{j in CV}: D[j] <= Lmax; 

Fig. A3 The single-period C-MCLP model coded by AMPL 

#parameters 
set T;     #set of periods 
set RT{T};    #set of rescue teams, RT 
param RT_X{t in T, RT[t]};  #coordinate X of rescue teams in all periods 
param RT_Y{t in T, RT[t]};  #coordinate Y of rescue teams in all periods 
param delta{t in T, RT[t]}; 
set CV;    #set of communication vehicles, CV 
param CV_X0{CV};  #initial coordinate X of CVs 
param CV_Y0{CV};  #initial coordinate Y of CVs 
param q:=18;    #given parameter for Euclidean distance linearization 
param cita:=0.0872;   #given parameter for Euclidean distance linearization 
param Dmax{CV};   #maximum coverage range of CVs 
param C{CV};   #capacity of CVs 
param Lmax; 
param M:=999;   #a large number representing the maximum range of the to-be rescue area 
 
#decision variables: 
var CV_X{T,CV}>=0;  #coordinate X of CVs 
var CV_Y{T,CV}>=0;  #coordinate Y of CVs 
var dx{t in T,RT[t],CV} >= 0; 
var dy{t in T,RT[t],CV} >= 0; 
var d{t in T,RT[t],CV} >= 0; #distances between CVs and RTs in periods 
var E{t in T,RT[t],CV} binary; 
var E1{t in T,RT[t]} binary; 
var DX{T,CV} >= 0; 
var DY{T,CV} >= 0; 
var D{T,CV} >= 0;   #moved distances of CVs in periods 
 
maximize Total_Signal_Coverage: sum{t in T,i in RT[t]}E1[t,i];  
minimize Total_Moved_Distance: sum{t in T,j in CV}D[t,j];  
 
subject to Con1a{t in T,i in RT[t], j in CV}: dx[t,i,j] >= RT_X[t,i] - CV_X[t,j]; 
subject to Con1b{t in T,i in RT[t], j in CV}: dx[t,i,j] >= CV_X[t,j] - RT_X[t,i]; 
subject to Con2a{t in T,i in RT[t], j in CV}: dy[t,i,j] >= RT_Y[t,i] - CV_Y[t,j]; 
subject to Con2b{t in T,i in RT[t], j in CV}: dy[t,i,j] >= CV_Y[t,j] - RT_Y[t,i]; 
subject to Con3{t in T,i in RT[t],j in CV, p in 1..q}: 
    d[t,i,j] >= dx[t,i,j]*(sin(p*cita)-sin(p*cita-cita))/sin(cita) + dy[t,i,j]*(cos(p*cita-cita)-cos(p*cita))/sin(cita); 
subject to Con4{t in T, i in RT[t], j in CV}: M*(E[t,i,j]-1) <= Dmax[j]-d[t,i,j]; 
subject to Con5{t in T, i in RT[t]}: E1[t,i] <= sum{j in CV}E[t,i,j]; 
subject to Con6{t in T,j in CV}: C[j] >= sum{i in RT[t]}E[t,i,j]; 
subject to Con7a{j in CV}: DX[1,j] >= CV_X0[j] - CV_X[1,j]; 
subject to Con7b{j in CV}: DX[1,j] >= CV_X[1,j] - CV_X0[j]; 
subject to Con7c{t in T, j in CV:t>1}: DX[t,j] >= CV_X[t-1,j] - CV_X[t,j]; 
subject to Con7d{t in T, j in CV:t>1}: DX[t,j] >= CV_X[t,j] - CV_X[t-1,j]; 
subject to Con8a{j in CV}: DY[1,j] >= CV_Y0[j] - CV_Y[1,j]; 
subject to Con8b{j in CV}: DY[1,j] >= CV_Y[1,j] - CV_Y0[j]; 
subject to Con8c{t in T, j in CV:t>1}: DY[t,j] >= CV_Y[t-1,j] - CV_Y[t,j]; 
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subject to Con8d{t in T, j in CV:t>1}: DY[t,j] >= CV_Y[t,j] - CV_Y[t-1,j]; 
subject to Con9{t in T, j in CV, p in 1..q}:  
 D[t,j] >= DX[t,j]*(sin(p*cita)-sin(p*cita-cita))/sin(cita) + DY[t,j]*(cos(p*cita-cita)-cos(p*cita))/sin(cita); 
subject to Con10{t in T, j in CV}: D[t,j] <= Lmax; 

Fig. A4 The multiple-period C-MCLP model coded by AMPL 


