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A hybrid MCDM-fuzzy multi-objective programming approach for a G-Resilient 

supply chain network design 

 

Abstract 

Stakeholders are being increasingly encouraged to improve their supply chain risk management 

in order to cope efficiently and successfully with risk of disruption due to unexpected events. 

However, green development was overlooked when considering environmental impact which 

has become a main criterion in supply chain management. Where the era of greenness threatens 

current supply chain partners with the need to either cope with the new green regulations or 

leave the field for new players. Thus, an approach to design supply chains that are 

simultaneously resilient, and green is needed. This study satisfies this need by developing a 

green and resilient (G-resilient, here after) fuzzy multi-objective programming model (GR-

FMOPM) to present a G-resilient supply chain network design in determining the optimal 

number of facilities that should be established. The objectives are minimization of total cost 

and environmental impact and maximization of Value of resilience pillars where Redundancy, 

Agility, Leanness and Flexibility (V-RALF) are four of the main pillars of supply chain 

resilience. Fuzzy AHP is used for determining the importance weight for each pillar followed 

by the application of a Fuzzy technique for assigning the importance weight for each potential 

facility with respect to RALF. The importance weights obtained by Fuzzy AHP and the Fuzzy 

technique are then integrated in the third objective (maximization of V-RALF) to maximize 

the value of resilience pillars. Based on the fuzzy multi-objective model, the ε-constraint 

method is used to reveal Pareto optimal solutions and TOPSIS was then used to select the final 

Pareto solution. A case study is used to validate the applicability of the developed GR-FMOPM 

in obtaining a G-resilient supply chain network design and a trade-off among economic, green 

and resilience objectives. Finally, a sensitivity analysis is performed on the importance weight 

for facilities Pareto solutions with respect to the importance weight of RALF. Research 

findings proved that the developed GR-FMOPM could be used as a tool in evaluating and 

ranking related facilities with respect to their resilience performance. It can also be used to 

obtain a G-resilient supply chain network design in terms of facilities that should be established 

towards a trade-off among the three aforementioned objectives. 

Keywords: G-Resilient; Green development; Supply chain resilience; Fuzzy multi-objective 

optimization; TOPSIS, Fuzzy AHP. 
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1. Introduction 

Recently, the focus of supply chain resilience has gained a growing interest by supply chain 

managers and academics due to significant incidents happening around the world (Soni et al., 

2014; Reyes Levalle and Nof, 2015). The major concerns are how to improve their supply 

chain risk management to generate a resilient supply chain that can efficiently pre-empt and 

react to disruptions due to unexpected incidents (e.g. natural disasters and variance in demands 

and supply). Unexpected disruptions in the flow of information, merchandise, and services can 

happen due to incidents such earthquakes, floods, etc., and can lead to a failure in supply 

chain’s performance in terms of satisfying customers’ demands at the right time and right 

location. For instance, the earthquake that happened in Japan in 2007 lead to significant damage 

to the area where Toyota's key suppliers were located. Therefore, Toyota had to shut down 

production in 12 plants due to lack of supplies (Pettit et al., 2010). Supply chain managers of 

IBM reported that risk management ranks as the second main concern for them (IBM, 2008). 

A study accomplished by Computer Sciences Organisation reported that 60% of the surveyed 

enterprises stated that their supply chains are subject to disruptions. Moreover, 46% of the 

supply chain managers acknowledged that effective supply chain risk management is required 

(Hillman and Keltz, 2007). Thereafter, a limited number of enterprises have taken steps to 

generate resilient supply chains (Muthukrishnan and Shulman, 2006). 

The increasing concern of environmental problems for supply chain management has led to an 

expansion of the boundaries of awareness from conventional to green supply chain networks. 

Carbon dioxide (CO2) levels are one of the main environmental factors that negatively affect 

the climate where growing energy consumption leads to an increase of the effect (Jabbar, 

2008). Thus, decreasing CO2 emissions has become of paramount importance for industries, 

particularly in the USA, the European Union countries, and Japan, due to altered consumer 

behaviour that seeks green services and goods.  

Supply chain managers and researchers are being tasked to improve supply chain resilience to 

cope with disruption risks. They have lagged behind this target, overlooking green 

development in considering environmental impact which has become a main criteria in supply 

chain management and vice versa. Where the era of greenness forces current supply chain 

partners to either adapt to the new green regulations or to leave the field for new players. A 

survival plan is to develop an integrated approach which is simultaneously resilient enough to 

efficiently cope with unexpected disruptions and green in order to handle the increasing global 
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requirement to decrease environmental impacts. Rose (2011) argued that disruptions could 

significantly influence the environment, which interrupts the main processes of a supply chain 

network. One of the main hurdles in obtaining a green supply chain is the vagueness related to 

supply chain processes. Consequently, resilience should be integrated with green supply chains 

to handle uncertainty from disruptions (Rosa et al., 2013). Perrings (2006) clarifies that 

sustainability and resilience are two of the main key-effects in growing economies. Therefore, 

the potential approach should also consider the total costs required for the design the supply 

chain networks aiming to present a cost-effective, green and resilient design. 

In the context of resilience pillars, Ponomarov and Holcomb (2009) reviewed the literature and 

proposed some elements to create a resilient supply chain. Rajesh and Ravi (2015) investigated 

the relationships among the enablers of supply chain risk mitigation in an electronic supply 

chain using the grey DEMATEL approach. The authors recently presented a supplier selection 

study considering resilience pillars such as flexibility, supply capability and supplier profile. 

Kamalahmadi and Mellat-Parast (2016) argued that the flexibility of supplier capability could 

be an effective strategy to improve resilience. Rice and Caniato (2003) differentiated 

redundancy from flexibility. Redundancy capacity is an additional capacity that can be used to 

replace the loss of capacity caused by a disturbance. Flexibility, on the other hand, entails 

restructuring previously existing capacity. Purvis et al. (2016) proposed a framework for the 

development and implementation of a resilient supply chain strategy, which illustrates the 

relevance of various management paradigms (robustness, agility, leanness and flexibility).  

Several research papers have accomplished generating a resilient supply chain network 

(Carvalho et al., 2012; Pereira et al., 2014; Nooraie and Parast, 2015; Mari et al., 2014; 

Rezapour et al., 2017) and a green supply chain network (Paksoy et al., 2012; Kannan et al., 

2013; Harris et al., 2014; Talaei et al., 2015; Tiwari et al., 2016; Mohammed and Wang, 2017 

and 2017a; Miranda-Ackerman et al., 2017). On the other hand, the reviewed literature shows 

that none or few of the previous studies have presented an integrated approach which is both 

simultaneously resilient in terms of robustness, agility, leanness and flexibility to efficiently 

cope with unexpected disruptions, and green to handle the increasing global requirements in 

decreasing the environmental impact. 

This study presents the development of a multi-objective programming model to design a G-

resilient supply chain network in solving the allocation problem of related facilities. Regarding 

resilience, this work considers four pillars (enablers) as key factors to improve supply chain 
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resilience including redundancy, agility, leanness and flexibility as proposed by Purvis et al. 

(2016). The importance weight for each pillar is determined using Fuzzy AHP and the 

correspondence weight for each potential facility is then determined using a fuzzy technique 

based on decision makers’ expertise. Afterwards, the determined importance weights are 

integrated in the developed multi-objective model to maximize the value of resilience 

considering the four pillars. The developed model aims to simultaneously optimize three 

objectives: minimization of total operation, administration, transportation and purchasing cost, 

minimization of environmental impact in CO2 emissions related to transportation throughout 

the network and opening related facilities and maximization of V-RALF. To cope with the 

vagueness in some of the input parameters (e.g. purchasing costs, purchasing quantities, 

demands, CO2 emissions and capacity of facilities), the multi-objective model is then 

developed in the term of a fuzzy multi-objective model. The ε-constraint method is employed 

to optimize the three objectives simultaneously in terms of revealing a set of Pareto optimal 

solutions. Finally, TOPSIS is employed to help decision makers in selecting the final Pareto 

solution. 

To the best of the authors’ knowledge, this research is the first attempt in developing an 

approach that presents a resilient (considering the main pillars of supply chain resilience) and 

green supply chain network design using multi criteria decision-making and multi-objective 

optimization approaches. Furthermore, none of the previous studies have used multi criteria 

decision-making techniques (e.g. AHP or Fuzzy AHP) to assign the related weights for 

resilience enablers (e.g. robustness, agility, leanness and flexibility) and integrate them in a 

fuzzy multi-objective optimization model aiming to maximize value of resilient. 

The structure of the paper is as follows. Selected literature is reviewed in Section 2. The 

problem and research methodology are illustrated in Section 3. The developed fuzzy multi-

objective model and its optimization methodology is described in in Section 4. The results and 

discussions are presented in Section 5. Finally, conclusions and avenues for future directions 

are drawn in Section 6. 

2. Literature review 

The reviewed literature revealed that some research MCDMs for designing and optimizing 

supply chains network design has already been conducted (Harris et al., 2014; Talaei et al., 

2015; Mohammed and Wang, 2017a). This section has reviewed related studies that used 

MCDM in green supply chains and supply chain resilience. 
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2.1 MCDM in green supply chains 

Several research studies have employed multi-objective optimization for handling the 

environmental impacts of supply chain network design. Kelly et al. (2013) reviewed five 

approaches that can be used for assessing and managing environmental responsibilities. 

Elbounjimi et al. (2014) analysed a literature review of the mathematical models used to design 

green closed-loop supply chain networks. Eskandarpour et al. (2015) presented a literature 

survey study on facility location problem reviewing 87 academic papers which taking into 

account economic and ecological aspects and discussing several optimization methodologies. 

Furthermore, the authors categorized the papers based on the modelling type e.g. single 

objective, multi-objective, deterministic, stochastic, and non-linear. Recently, Govindan et al. 

(2017) reviewed research in the field of green supply chain network design under uncertainty. 

Elhedhli and Ryan (2012) formulated a model for solving a supply chain design problem with 

respect to CO2 emissions due to transportation throughout the chain. Bing et al. (2015) 

proposed a mathematical optimization model programing for optimizing re-allocation of 

intermediate processing plants considering emission constraints. Entezaminia et al. (2016) 

developed a multi-objective programming model for obtaining a green supply chain network 

design considering the environmental impacts. Li et al. (2017) solved a two-echelon supply 

chain network design problem considering the production and transportation outsourcing 

problems restricted to the cap-and-trade policy and carbon tax policy. Garg et al. (2015) 

proposed a bi-objective integer nonlinear programming for solving closed-looped four 

echelons supply chain networks taking into account the environmental issues. Sahar et al. 

(2014) modelled a multi-objective programming model that aims at minimizing CO2 emissions 

of transportation and the total cost for a dairy supply chain network. Paksoy et al. (2012) 

proposed a fuzzy multi-objective model for a green closed-loop supply chain network in 

minimizing transportation costs and CO2 emissions. Soleimani et al. (2017) solved a facility 

location problem of a supply chain considering environmental aspect via the development of a 

multi-objective optimization model. Miranda-Ackerman et al. (2017) developed a multi-

objective-TOPSIS model with an aim of obtaining a green three echelons Orange Juice supply 

chain. Golpîra et al. (2017) formulated a green opportunistic supply chain network design 

problem under uncertain input parameters (e.g., demands and shortage costs) as a robust multi-

objective mixed integer linear programming. Shaw et al. (2016) formulated a supply chain 

network design model considering carbon emissions and carbon trading issues. Benders 

approach was proposed to solve the optimization problem. Pishvaee et al. (2014) developed a 
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multi-objective possibilistic programming to solve a sustainable facility location problem 

under uncertainty. Mallidis et al. (2014) formulated a multi-objective optimization model to 

investigate the impact of optimizing facility location and inventory planning on the cost and 

CO2 emissions of multi-layer logistics networks. Coskun et al. (2015) solved an environmental 

sustainability supply chain network design problem encountring the customer segmentation. 

Goal programming was applied to cope with various conflicting targets e.g., total cost, green 

responsibilities and shortages cost. 

2.2 MCDM in supply chain resilience 

The study of supply chain resilience has drawn substantial interest from researchers. In this 

context, there are several papers in the literature that used multi-objective optimization is 

minimizing disruption risk which aims to generate a more resilient supply chain. Snyder et al. 

(2011) proposed a stochastic multi-objective model for solving a facility location problem 

considering facility disruptions. Azaron et al. (2008) investigated a three-echelon supply chain 

in obtaining a compromised solution among total cost, total cost variance, and financial risk 

cost by the goal attainment technique. Hatefi and Jolai (2014) developed a robust model for a 

closed-loop network design under facility disruption risk and uncertain demand. Nooraie et al. 

(2015) formulated a multi-objective model that includes minimization of investment costs, 

minimization of the variance of the total cost and minimization of the financial risk aiming to 

obtain a trade-off among them. Dixit et al. (2016) proposed a multi-objective model to 

maximize supply chain resilience in minimizing unfulfilled demand and transportation cost 

post-disaster. The RALF framework, Purvis et al. (2016), demonstrated the application of a 

qualitative supply chain resilience assessment technique within the food and drink sector based 

on a “traffic light” system.  Where a matrix of 16 key company activities (such as: ingredient 

sourcing, production planning and logistics control) versus the four key management 

paradigms that create resilience (robustness, agility, leanness and flexibility) is used to evaluate 

companies. Each activity is qualitatively assessed (against the perceived industry norm) and 

then assigned a score that is interpreted into a “traffic light”, from 1 (worst = red) to 5 (best = 

green). 

The literature review revealed that research has been conducted into generating resilient supply 

chain networks and green supply chain networks (Paksoy et al., 2012; Kannan et al., 2013; 

Harris et al., 2014; Talaei et al., 2015; Tiwari et al., 2016; Mohammed and Wang, 2016). Table 
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1 lists a number of important studies that use various approaches to obtain green and resilient 

supply chains. 

However, the reviewed literature showed that sustainability and resilience aspects have been 

considered individually (Redman, 2014) as none of the previous studies have presented an 

integrated approach which is simultaneously resilient in terms of robustness, agility, leanness 

and flexibility to efficiently cope with unexpected disruptions and green to handle the 

increasing global requirements in decreasing the environmental impact. The only three studies 

found in the literature considering resilience and green aspects was presented by Mari et al. 

(2014); Fahimnia and Jabbarzadeh (2016) and Zahiri et al. (2017). Mari et al. (2014) proposed 

a multi-objective model that simultaneously optimizes total cost, disruption costs and carbon 

emissions throughout a supply chain network. Zahiri et al. (2017) developed a possibilistic-

stochastic multi-objective optimization model to design a pharmaceutical supply chain network 

considering sustainability and unexpected disruptions. Similarly, Fahimnia and Jabbarzadeh 

(2016) formulated a stochastic fuzzy goal programming to embed sustainability and resilience 

responsibilities into supply chain network. The resilience aspect was formulated based on 

probability of disruption occurrence. However, the two studies did not consider (1) the main 

resilience pillars in designing the supply chain network that we consider in this study, (2) the 

weight of each resilience pillars, (3) the integration of importance weight of resilience pillars 

into the multi-objective model, and (4) the model formulated by Mari et al. (2014) did not 

handle the uncertainty in the input parameters. Thus, this study enriches related literature in 

green supply chain and supply chain resilience in several ways. It presents the development of 

a green and resilient fuzzy multi-objective model to obtain a green and resilient supply chain 

network design with respect to multiple uncertainties. Also, it incorporates the main pillars of 

supply chain resilience in the developed fuzzy multi-objective model. Moreover, it allocates 

an importance weight for each resilience pillar (i.e. RALF) and for each potential facility 

correspondence to these pillars using multi criteria design-making techniques. 
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Table 1. A review of the literature 

 

References 

Dimensions  

Techniques Resilience Green 

This study * * Fuzzy AHP + TOPSIS + 

Multi-objective 

optimization 

Mari et al. (2014) * * Multi-objective 

optimization 

Fahimnia and Jabbarzadeh 

(2016) 

* * Stochastic fuzzy goal 

programming 

Zahiri et al. (2017) * * Possibilistic-stochastic 

multi-objective 

optimization 

Carvalho et al. (2012)  * Simulation 

Nooraie and Parast (2015)  * Multi-objective 

optimization 

Kannan et al. (2015)  * FAD 

Mohammed et al. (2018)    

Gencer and Gürpinar 

(2007) 

 * ANP 

Kuo et al. (2010)  * ANN + MADA + DEA 

Awasthi and Kannan 

(2016) 

 * Fuzzy NGT + VIKOR 

Shaw et al. (2012)  * Fuzzy AHP+Fuzzy, 

Multi-objective 

optimization 

Hsu et al. (2013)  * DEMATEL 
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Tsui and Wen (2014)  * AHP+ELECTRE 

Harris et al. (2015)  * Multi-objective 

optimization 

Fallahpour et al. (2016)  * DEA + Genetic 

programming 

Luthra et al. (2017)  * AHP and VIKOR 

Soni et al. (2014) *  Mathematical modelling 

Pettit et al. (2013) *  Supply Chain Resilience 

Assessment and 

Management 

(SCRAM™) 

Aryanezhad et al. (2010)  *  Expected Value 

approach 

Chen et al. (2011) *  Expected Value 

approach 

Sawik (2014, 2015) *  Stochastic mixed integer 

programming 

Hosseini and Barker 

(2016) 

*  Bayesian Network (BN) 

Lee (2009) *  Fuzzy AHP 

Madadi et al. (2014) *  Conditional value-at-

risk (CVaR) 

Hernandez et al. (2014) *  Multi-objective 

optimization 

Peng et al. (2011)  *  Multi-objective 

optimization 
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Baroud et al. (2015)  *  Stochastic programming 

Losada et al. (2012) *  Mathematical modelling 

Rezapour et al. (2017) *  Mixed integer non-linear 

modelling 

 

3. Problem description and research methodology 

Fig. 1 illustrates the supply chain under study which consists of three sets of facilities E, F and 

G. This research aims at supporting decision makers in obtaining a G-resilient supply chain 

network design in allocating the optimal number of facilities E and F that should be established 

with respect to green and resilience performance. Thus, multi criteria decision-making 

techniques and the developed multi-objective optimization model are integrated. Firstly, fuzzy 

AHP is used to assign importance weights for the four pillars (i.e. robustness, agility, leanness 

and flexibility) of supply chain resilience. Secondly, a fuzzy technique is used to allocate an 

importance weight for facilities E and F with respect to the four resilience pillars. Thirdly, the 

obtained weights from fuzzy AHP and the fuzzy technique are incorporated in a developed 

multi-objective model that aims at minimizing total cost and environmental impact and 

maximizing V-RALF. To cope with the fuzziness in some of the input parameters (e.g. 

purchasing costs, purchasing quantities, demands, CO2 emissions and capacities of facilities), 

the multi-objective model is then developed in terms of a fuzzy multi-objective model. 

Fourthly, the ε-constraint method is used to obtain a set of Pareto optimal solutions. Finally, 

TOPSIS was employed to select the final Pareto solution. Figure 2 shows a framework in terms 

of the processes followed for developing a hybrid MCDM-fuzzy multi-objective programming 

approach towards a G-resilient supply chain network design. 
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Fig.1 Structure of the supply chain network under study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mfg 

1 

2 

g 

G 

Set of Facilities G 

 

tfg 

1 

2 

f 

F 

Set of Facilities F 

 

1 

2 

e 

E 

Set of facilities E 

 

mef 

tef 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apply TOPSIS to select the final solution 

Apply fuzzy AHP to weight resilience pillars 

Solve the model using the ε-constraint 

Start 

Identify a set of eligible facilities E & F  

G-resilient supply chain network design 

Formulate the multi-objective model: 

 Min total cost 

 Min environmental impact 

 Max the value of supply chain resilience 

Apply Eqs. 1-3 to weight facilities in terms of resilience 

pillars 

Assign ε-values 

Identify and define resilience pillars 

Model the uncertainty by formulating the fuzzy 

multi-objective model 

Solve the three objective functions individually to 

obtain their maximum and minimum values 

Input model parameters 



13 
 

Fig. 2. A framework of the developed GR-FMOPM used for obtaining a G-resilient supply 

chain network design. 

3.1 Obtaining the importance weights 

In this research, fuzzy AHP is used to determine the importance weight for each resilience 

pillar. Fuzzy AHP is a decision-making algorithm presented by incorporating Saaty’s AHP 

approach developed in the 1970s with fuzzy set theory (Saaty, 2000; Zimmermann, 2010). In 

this algorithm, fuzzy numbers are presented by a membership function that is a real number 

between 0 and 1. Several research works have proved its applicability in solving related 

problem in supply chains and logistics (Shaw et al., 2012; Kannan et al., 2013; Li et al., 2013; 

Viswanadham and Samvedi, 2013; and Junior et al., 2014). Table 2 presents the linguistic 

variables used for evaluating the four pillars. Decision makers need to evaluate the importance 

of each pillar using the given linguistic variables. The Fuzzy AHP is applied as presented in 

Appendix A. 

Table 2. Linguistic variables used for weighting resilience pillars 

Linguistic Variable Fuzzy number 

Equally important (EI) (0, 0.1, 0.3) 

Weakly important (WI) (0.1, 0.3, 0.5) 

Strongly more important (SMI) (0.3, 0.5, 0.7) 

Very strongly important (VSI) (0.5, 0.7, 0.9) 

Extremely important (EI) (0.7, 0.9, 0.10) 

 

Afterwards, the weight of each potential facility with respect to each resilience pillar is 

determined as follows: 

1. Build the decision matrix (MD) based on decision makers’ expertise as shown in Eq. 1. 

Table 3 presents the linguistic variables used for evaluating facilities E and F with 

respect to each resilience pillar based on decision makers’ expertise. 

1 2( ... )n n n

L
D

w w w
M

N

  
  

(1) 

Where N is the number of decision makers who evaluate the resilience performance of a 

particular facility (l).  
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2. Build the normalized decision matrix as follows: 

l

l

D

ND

D

l L

RowM
M

RowM





 
(2) 

3. Determine the weight of each potential facility in terms of each resilience pillar by 

building the weighted normalized decision matrix as follows: 

ll WN

l L

w RowM


  (3) 

Where MWNl is the weighted normalized decision matrix obtained by multiplying the 

normalized decision matrix (MMD) by the weight of resilience pillars obtained by using fuzzy 

AHP. 

Table 3. Linguistic variables used for weighting facilities E and F with respect to RALF 

Linguistic Variable Fuzzy number 

Very Low (VL) (0, 1, 3) 

Low (L) (1, 3, 5) 

Medium (M) (3, 5, 7) 

High (H) (5, 7, 9) 

Very High (VH) (7, 9, 10) 

 

4. GR-FMOPM formulation 

 

This section presents the development of a fuzzy multi-objective programming model used for 

obtaining a G-resilient network design for a supply chain. This model helps decision makers in 

determining the optimal number of facilities E and F that should be established with respect to 

economic, green and resilient responsibilities. The objectives include minimization of the total 

cost (O1), environmental impacts (O2), and maximization of value of robustness, agility, 

leanness and flexibility (V-RALF) (O3). 

The GR-FMOPM model for the supply chain problem is formulated based on the following 

basic assumptions: 
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 Critical parameters such as purchasing and transportation costs, CO2 

emission/vehicle/m, purchasing quantities of abattoirs, demands of retailers and 

capacity levels of facilities are assumed to be uncertain. 

 Facilities F and G have different purchasing function in term of purchasing quantities 

and demands. 

 The supply chain under study is a forward supply chain network. 

 The potential locations of facilities are known. 

 The number of facilities G is fixed and known. 

 There is no product transportation between facilities at the same level i.e., between two 

facilities E. 

Sets, parameters and decision variables were used for formulating the GR-FMOPM presented 

in Appendix B. 

The first objective O1 minimizes the total cost, which comprises cost for purchasing product 1 

from facilities E and product 2 facilities F, operating cost for running facilities E and F, 

administration cost at facilities E and F, transportation cost for product 1 from facility E to F 

and for the product 2 from facility F to G, respectively. In this model, transportation cost is 

formulated as transportation cost per unit (
t

efc and
t

fgc ) multiplied by transportation distance 

among facilities ( eft and fgt ) and number of required transportation vehicles, which is 

determined by quantity flow of products among facilities ( efm and fgm ) divided by truck 

transportation capacity (cl). With regards to the operating cost, it is determined by multiplying 

the labourer/hour cost by the number of working hours and then multiplied by a variable of 

number of labourer/hour required to process the transported quantity of products. Also, this 

model was applied to an existing case study where the facilities are already existing. Therefore, 

the facility establishment cost was not considered. Minimization of O1 is formulated as 

follows: 

 

1

 

p p a a

e ef f fg e ef f fg

ef fgo o t t

e e

e E f

e f f f ef

F f F g G e E f F f F g G

e E f F e E f F g

e

Gf F

f fg fg

l l

Min O c m c m c m c m

m m
c n x c n x c t c t

c c

       

    

    

 
 

 
  

 
 
   

  

 

   

 
 

(4) 
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The second objective O2 minimizes the environmental impact, which comprises the 

minimization of CO2 emissions due to running network facilities E and F and transporting 

product 1 and 2 from facility E to F and from facility F to G, respectively. The minimization 

of O2 is formulated as follows: 

2_ 2_ 2_ 2_   2
ef fg

e e f f ef ef fg fg

e E f F e E f F f F g Gl l

m m
Min O CO y CO y CO t CO t

c c     

   
      

      
   

 

(5) 

The third objective O3 maximizes the value of supply chain resilience in term of maximizing 

resilience pillars i.e. robustness (R), agility (A), leanness (L) and flexibility (F). The importance 

weights for each pillar and each facility (with respect to the four pillars) obtained by using the 

fuzzy AHP and the fuzzy technique are used to formalize the maximization of V-RALF. The 

maximization of O3 is formulated as follows: 

3 R R R R A A

e e e f f f e e e

e E f F e E

A A L L L L

f f f e e e f f f

f F e E f F

F

e E f F e E
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  (14) 

 
  (15) 

 

Where, Eq. 7 restricts the quantity of product 1 transported from facility E to F so that it cannot 

exceed the capacity of facility E. Eq. 8 ensures the quantity flow of product 2 from facility F 

to G does not exceed the capacity of facility F. Eqs. 9-11 ensure that the purchasing quantities 

of facility F and demands of facility G are fulfilled from facility E and F, respectively. Eqs. 12 

and 13 indicate the required number of labourers (xe and xf) at facilities E and F. These were 

formulated as decision variables and determined based on working rate per labourer/day (re 

and rf) (i.e., how many unit labourer/day can handle) that can handle quantity flows of products 

(me and mf). In other words, these terms refer to the total labourer/hour required to process a 

specified quantity of products. This helps in limiting operating cost to the required number of 

labourer-hour to handle quantity flows of products rather determine it based on a fixed number 

of labourers that could probably be less or over the required number of labourers to run the 

facility. In the field of operation management, this is also so-called man/hour. Eqs. 14 and15 

limit the non-binary and non-negativity restrictions on decision variables. 

4.1 Formulating the fuzzy multi-objective model 

To come closer to the real design, a number of input parameters including purchasing and 

transportation costs, purchasing quantities, demands, CO2 emissions throughout the 

transportation activities and capacity levels of related facilities were considered as uncertain 

input parameters. Therefore, the multi-objective programming model previously developed in 

the previous section is re-developed as a fuzzy multi-objective programming model employing 

an approach developed by Jiménez et al. (2007). The equivalent crisp model is formulated as 

follows (Jiménez et al., 2007; and Mohammed and Wang, 2017a, Mohammed et al., 2017): 
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According to Jiménez et al. (2007), the constraints in the multi-objective model that include 

uncertain parameters in supply capacity (see Eq. 7 and 8), purchasing quantities and demands 

(see Eqs. 9-11) should be fulfilled with a confidence value which is presented as α which is 

normally assigned by decision makers. The α value is associated with the uncertain parameters 

which include capacity of related facilities (Eqs. 19 and 20), purchasing quantities of facility F 

and demands of facility G (Eqs. 21-23). Also, mos, pes and opt are the three prominent points 

(the most likely, the most pessimistic and the most optimistic values), respectively. 

4.1.1 GR-FMOPM Optimization 

In order to optimize the developed GR-FMOPM, the flowing procedures are applied. 

eÎE

åmef £
a

2
.
c
e1

+ c
e2

2
+ 1-

a

2

æ

è
ç

ö

ø
÷
c
e3

+ c
e4

2

é

ë
ê
ê

ù

û
ú
ú
y
e
,  f F 

f ÎF

åm
ef

£
a

2
.
c
f 1

+ c
f 2

2
+ 1-

a

2

æ

è
ç

ö

ø
÷
c
f 3

+ c
f 4

2

é

ë

ê
ê

ù

û

ú
ú
y
f
,       " g ÎG

    f F 

   g G 

a

2
.
d
f 1

+ d
f 2

2
+ 1-

a

2

æ

è
ç

ö

ø
÷
d
f 3

+ d
f 4

2

é

ë

ê
ê

ù

û

ú
ú
³

gÎG

åm fg
,  f F 

f ÎF

åm
ef

£ x
e
r
e  e E 

gÎG

åm fg
£ x

f
r
f
       " f Î F

, 0 , ,ef fgm m e f g 

, , {1,0}, ,e fy y e f  



20 
 

1. The linear membership function correspondence to each objective function is obtained 

as follows: 
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(28) 

where Ab represents the value of bth objective function and Maxb and Minb represent the 

maximum and minimum values of bth objective function, respectably. 

1.1. The minimum values for each objective are determined via optimizing each objective 

individually as follows: 
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1.2.  The maximum values for each objective are determined via optimizing each 

objective individually as follows: 
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    (34) 

2. The ε-constraint method is used to optimize the three objectives simultaneously. This 

method transforms the multi-objective model to a mono-objective model by keeping 

one of the functions as an objective function, and treating other functions as constraints 

limited to ε values (Ehrgott, 2005). The equivalent solution formula (O) is given by: 

 

1 OMin O Min  (35) 

Subject to: 

2 1O   (36) 

   2 1 2

min max
O O         (37) 

3 2O   (38) 

   3 2 3

min max
O O   (39) 

In addition to Eqs. 23-31. 

In this work, the total cost minimization is kept as an objective function (Eq. 35). Minimization 

of environmental impact and maximization of V-RALF is moved to ε-based constraints as 

presented in Eqs. 36 and 38, respectively. Different Pareto solutions can be generated by 
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varying values of ε1 and ε2. These values are varied between the maximum and minimum 

values of objectives three and two, respectively. 

4.2 Revealing the final solution: TOPSIS 

After obtaining a set of Pareto solutions, decision makers should select one solution to establish 

the number of facilities E and F. The selection of the final solution can be determined based 

on the decision makers’ preferences or using a decision-making algorithm. In this work, 

TOPSIS is used for helping the decision makers in selecting the final solution which is the 

closest to the ideal solution and furthest to the nadir solution. The application steps followed 

in Ramesh et al. (2012) are applied and discussed in Appendix C. 

5. Evaluation of the GR-FMOPM: A case study 

In this section, a case study of a meat supply chain, which encompasses 3 farms, 4 abattoirs 

and 7 retailers, is examined to evaluate the applicability of the developed fuzzy multi-objective 

programming model in solving a facility allocation problem with respect to economic, green 

and resilience responsibilities. In this chain, livestock is supplied from farms (set of facilities 

E) to abattoirs (set of facilities F) to be slaughtered then transported to retailers (set G) as a 

packed meat. Table 4 shows the input parameters used for the case study. For example, the 

supply capacity of farm e ( ) is given in a range 1,500 – 1,800 livestock. The data is collected 

from the meat committee in the UK (HMC). The travel distances between farms and abattoirs 

and between abattoirs and retailers are estimated using Google maps. Also, the demands and 

supply capacity of abattoirs and retailers reported in Table 4, is the total demand and capacity 

(livestock or meat packets) for a one-year period. It is worth mentioning that the CO2 emission 

per facility was collected from facilities environmental impact record. The later as illustrated 

by practitioners, it was estimated based on estimated CO2 per livestock (unit) which is based 

on national record in the UK. A decision maker (ADM) from an abattoir was asked to evaluate 

the importance of resilience pillars for the potential three farms (f1, f2 and f3) with respect to 

each pillar, and two decision makers (RDM1and RDM2) from two retailers were asked to 

evaluate the importance of resilience pillars and the potential four abattoirs (a1, a2, a3 and a4) 

with respect to each pillar. The decision makers have an average 9 years of work experience. 

A deep discussion (about 2 hours) was held with ADM, RDM1 and RDM2 individually to 

explain, discuss and evaluate resilience pillars and facilities. For the purposes of the study the 

following definitions were used in discussions with the decision makers: 

c
e
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Supply chain resilience “the ability of a [supply chain] to return to its original state or move 

to a new, more desirable state after being disturbed” Christopher and Peck (2004). This would 

involve the meat supply chain network, shown in Fig. 1 earlier, being able to withstand and 

adapt to the shocks and stresses it is presented with. 

Robustness measures the ability to withstand disruptions to elements within the supply 

network, either through the immediate availability of alternative suppliers or being capable of 

quickly planning the incorporation of new suppliers. For example a retailer may have 

alternative suppliers available should an issue arise with a particular abattoir.   

Agility evaluates the ability to respond in a quick and well-coordinated manner to 

comparatively small market opportunities, through having a partner able to handle unexpected 

/ volatile demand. An example would be an abattoir having several small specialist farms it can 

source from to help cope with demand peaks. 

Leanness assesses the absence of excess / waste and hence the ability to fulfil predictable, 

base-line, demand in an efficient manner.  This could be a retailer that sources from several 

abattoirs that are able to efficiently and cost effectively meet a known base-level of demand. 

Flexibility gauges the ability to respond easily to disturbances in the supply network, whilst 

maintaining control of costs and lead-times. This involves having processes in place that enable 

effective response when disturbances in the supply chain are sensed, such as weather conditions 

that may prevent livestock from being taken to an abattoir for processing. 

Finally, LINGO11 software is used for optimizing the GR-FMOPM running of a personal 

computer with a Corei5 3.2GHz processor and with 8GB RAM. 
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Table 4. Input parameters used for the case study 

  = 3 = 1-1.5 (GBP/Mile) = 110 – 205 (Mile) 

  = 4 = 1-1.5 (GBP/Mile)   = 50 (Unit/Vehicle) 

 = 7 = 3 - 4.5 (GBP/unit) = 1500 – 1800 (Unit) 

= 130 – 150 

(GBP/unit) 

= 3 - 4.5 (GBP/unit) = 1600 - 2000 (Unit) 

= 160 – 190 

(GBP/unit) 

= 43 – 250 (Mile) ne = 9 (Hour) 

= 8 - 9.5 = 10 -11(GBP/Hour) nf = 9 (Hour) 

pf = 1250 – 1450 (Unit) CO2_ef = 271 – 294 

(gram/Mile) 

CO2_e = 82000 – 85000 

(Kg/facility) 

dg = 1100 – 1300 (Mile) CO2_fg = 271- 294 

(gram/Mile) 

CO2_f   = 220000 – 250000 

(Kg/facility) 

= 60 (Unit/labourer-day)
 = 15 (Unit/labourer-day)  

 

5.1 Results 

The developed GR-FMOPM is optimized using the aforementioned input parameters as 

follows: 

1. Table 5 shows the evaluation of the four resilience pillars based on decision makers’ 

expertise. As shown in Table 5, agility was evaluated as the most important pillar 

according the three decision makers’ expertise. On the other hand, leanness was 

evaluated the least important pillars. It is important to check the consistency in 

decision makers’ opinions regarding the pairwise comparison among criteria. In this 

context, Saaty developed a consistent indicator so-called Consistency Ratio (CR) 

that is used to determine whether decision makers’ evaluation is consistent.  The 

consistency ratio is determined as CR = CI / RI; where CI refers to 

Consistency Index, and RI refers to Random Consistency Index. The pairwise 

comparison is considered to be consistent (or has an acceptable inconsistency) if 

the value of CR is less or equal to 0.1. The Consistency Index is determined as 
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1

n
CI

n

 



; where n refers to the number of criteria;   is determined by (i) finding 

the 3rd root for summation of each row in the pairwise decision matrix, (ii) 

determining the summation of the previous step, (iii) determining the summation of 

each column in the pairwise decision matrix, (iv) multiplying the summation by the 

criteria weight corresponding for each criterion, and (v) determine the  value by 

summing the values determined in the previous step. Finally, RI value corresponds 

to the number of criteria, further details, we refer the readers to (Saaty, 1994). In 

this work, CR1 = 0.0475/0.91 = 0.052 and CR2 = 0.031/0.91 = 0.034 which turned 

out an acceptable level of inconsistency for the first and second evaluations, 

respectively. 

2. Fuzzy AHP is applied for allocating the importance weights of each resilience pillar 

including robustness, agility, leanness and flexibility based on decision makers’ 

expertise obtained in the previous step. Table 6 shows the obtained importance 

weight for each pillar. As shown in Table 6, the importance weight order is 

Agility>Robustness>Flexibility>Leanness based on ADM’s expertise, and 

Agility> Flexibility> Robustness>Leanness based on RDMs’ expertise. 

3. Table 7 shows the evaluation of farms and abattoirs with respect to the four 

resilience pillars based on decision makers’ expertise. Eqs. 1-3 are then followed to 

determine the importance weights of the potential three farms and four abattoirs 

using the input parameters obtained from the previous step. Table 8 shows the 

results corresponding to the relevant pillars. Based on the obtained results, arguably, 

farm 2 (GW = 0.383483) and abattoir 3 (GW = 0.298397) revealed the highest 

resilience performance compared to farm 3 (GW = 0.272640) and abattoir 2 (GW 

= 0.214060) which revealed the worst resilience performance. 

4. The three objective functions previously developed in section 4.1. are optimized 

simultaneously using the ε-constraint method as follows: 

4.1. The minimum and maximum values for each objective are obtained via Eqs. 29-

34, respectively. Table 9 shows the obtained objective values; for example, O1 

{minimum, maximum} = {344,703, 501,868}. These values are used for assigning 

ε values and the correspondence membership functions for each objective. 

4.2. Objective one (minimization of total cost) is left as an objective function and 

objectives two and three (minimization of environmental impact and maximization 

V-RALF, respectively) are shifted to the constraint. 
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4.3. The range between the maximum and minimum values for objective functions two 

and three are divided into ten points, the points in between are assigned as ε values 

in Eq. (36 and 38). 

4.4. Pareto optimal solutions are obtained by applying Eq. 35. Table 10 shows a set of 

obtained Pareto optimal solutions which represent trade-offs amongst three 

objectives which include minimizing the total cost and environmental impact and 

maximization of V-RALF. Also, these solutions show the correspondence number 

of farms and abattoirs that should be established. Trade-off solutions among the 

three objectives are illustrated in Fig.3. For instance, solution#1 leads to a total cost 

of 361,348, a CO2 emissions of 211,000 and value of resilience (V-RALF) of 2. 

This solution requires an establishment of farm two (0 1 0) to supply livestock to 

abattoirs two and four (0 1 0 1). This solution is obtained via an allocation of 

ε1=211,075 and ε2 = 2. Fig. 4 shows the Pareto frontier among the three objectives. 

As shown Fig.4, the undesired increase in total cost leads to a desired increase in 

supply chain resilience. Arguably, this is an expected outcome as the number of 

farms and abattoirs that should be established require extra cost. On the other hand, 

increasing the number of farms and abattoirs would provide multi-sourcing of 

livestock and meat products which would improve supply chain resilience as multi-

sourcing is one of the main key-factors in supply chain resilience. Thus, it can be 

argued that decision makers need to spend more money to have multi-sourcing 

which would improve their supply chain resilience. It should be mentioned that the 

ε-constraint is applied with ten α levels between 0 and 1 with an incremental step 

0.1. Consequently, the fuzzy multi-objective model is frequently solved for each α 

level. 

4.5. The membership degrees for the three objectives are determined based on the 

maximum/minimum value and the objectives values obtained in the previous step. 

Table 10 presents the obtained membership digress for the three objectives. 

4.6. Finally, TOPSIS is applied as an aid for decision makers for selecting the final 

Pareto solution. Table 11 shows the ranking of solutions according to their closeness 

coefficient (closeness from the ideal solution and the furthermost from the nadir 

solution). As shown in Table 11, solution#4 revealed the highest closeness 

coefficient (ccp = 0.381474185). Thus, it is selected as a final solution to design the 

resilient and green meat supply chain network since it leads to the best compromise 

of economic, green and resilience performance. Based on this solution, the 
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minimum total cost is 409,515; the minimum CO2 emissions is 304,000 and the 

maximum value of resilience pillars (V-RALF) is 2.285. Also, this solution requires 

the establishment of two farms to supply livestock to three abattoirs as 

geographically illustrated in Fig.5. This solution is obtained via an allocation of ε1= 

304,075 and ε2 = 2.285. 

Table 5. Linguistic pairwise comparison among resilience pillars based on decision experts 

Pillars Robustness Agility Leanness Flexibility 

  ADM   

Robustness - 1/SMI EI EI 

Agility SMI - VSI SMI 

Leanness 1/VSI 1/ - 1/VSI 

Flexibility EI 1/SMI VSI - 

  RDM1   

Robustness - 1/VSI VSI 1/SMI 

Agility VSI - EI EI 

Leanness 1/VSI 1/EI - 1/EI 

Flexibility SMI EI EI - 

  RDM2   

Robustness - 1/VSI EI 1/WI 

Agility VSI - EI EI 

Leanness 1/EI 1/EI - 1/VSI 

Flexibility WI EI VSI - 

 

Table 6. Importance weights of resilience pillars obtained via fuzzy AHP 

 

Decision Maker 

Pillars (Importance Weight) 

Robustness Agility Leanness Flexibility 

ADM  0.196316 0.585745 0.042457 0.175482 

RDM1 and RDM2 0.123805 0.438793 0.036652 0.40075 
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Table 7. Evaluation of potential farms and abattoirs with respect to resilience pillars based on 

decision makers’ experts 

Decision Maker and 

Locations 

                     Pillars    

Robustness Agility Leanness Flexibility 

ADM f1 H VH M H 

 f2 VH VH H VH 

 f3 M H L H 

RDM1 a1 VH VH M H 

 a2 M M L H 

 a3 VH VH H VH 

 a4 M H L H 

RDM2 a1 VH VH L VH 

 a2 L M M M 

 a3 VH VH M VH 

 a4 M H M M 

 

Table 8. Importance weights of farms and abattoirs with respect to resilience pillars obtained 

via the fuzzy technique 

 

Locations 

Pillars (Importance Weight)  

GW  

 

Rank  Robustness Agility Leanness Flexibility 

 f1 0.65438 0.210868 0.14152 0.053407 0.343866 2 

 f2 0.84135 0.210868 0.19813 0.068666 0.383483 1 

 f3 0.46741 0.164008 0.08491 0.053407 0.272640 3 

 a1 0.39794 0.131638 0.10181 0.087664 0.269278 2 

 a2 0.22108 0.073132 0.06109 0.112711 0.214060 4 

 a3 0.39794 0.131638 0.14254 0.112711 0.298397 1 

 a4 0.22108 0.102385 0.06109 0.087664 0.218266 3 

*GW = Global Weight       

 

Table 9. Maximum and minimum values related to O1, O2 and O3 

Objective functions Max  Min  

O1 501868 344703 

O2 517847.785 180075.077 

O3 2.7901 1.93109 
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Table 10.   Pareto optimal solutions obtained via the ε-constraint method 

   values Objective function solutions Opened Facilities 

# α-level 
1  2  Min O1 Min O2 Min O3 Farms Abattoirs 

1 0.1 211075 2 361348 211000 2 0 1 0  1 0 1 0  

2 0.2 241075 2.095 370350 241075 2.095 0 1 0  1 0 1 0 

3 0.3 271075 2.190 389550 268223 2.200 1 1 0  1 0 1 0 

4 0.4 304075 2.285 409515 304000 2.285 1 1 0  1 0 1 1 

5 0.5 337075 2.380 427626 335262 2.390 0 1 1  1 0 1 1 

6 0.6 370075 2.475 446631 369998 2.482 1 1 0  1 0 1 1 

7 0.7 404075 2.570 465843 404000 2.600 1 1 1  1 1 1 0 

8 0.8 437075 2.655 470052 437005 2.655 1 1 0 1 1 1 1 

9 0.9 490075 2.732 481118 488200 2.744 1 1 1  1 1 1 1  

10 1 517847 2.790 492512 509121 2.790 1 1 1  1 1 1 1  

 

Table 11. Membership degrees related to O1, O2 and O3 

µ(O1) 0.97 0.83 0.77 0.62 0.75 0.59 0.39 0.28 0.15 0.066 

µ(O2) 0.93 0.87 0.71 0.66 0.49 0.4 0.31 0.28 0.15 0.07 

µ(O3) 0.09 0.18 0.25 0.32 0.4 0.51 0.68 0.78 0.8 0.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Trade-off solutions in relation to the three objectives. 
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Figure 4. Pareto frontier among the three objectives. 

 

 

Table 12. Ranking of Pareto solutions via TOPSIS 

# ccp Rank 

1 0.381371417 4 

2 0.381388764 3 

3 0.381412348 2 

4 0.381474185 1 

5 0.03238451 10 

6 0.034367057 9 

7 0.036469343 8 

8 0.037900819 7 

9 0.040307304 6 

10 0.041510041 5 
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Figure 5. Geographical illustration of the selected facilities corresponding to solution#4. 

5.2 Sensitivity analysis 

A sensitivity analysis is performed to study the effects of changing the weight of resilience 

pillars on the weights of facilities. Eight different scenarios of weights are assigned to resilience 

pillars (see Eq. 3) related to farms and abattoirs. Tables 13 and 14 show the results related to 

the importance weights of farms and abattoirs, respectively. As shown in Tables 13 and 14, the 

sensitivity analysis reveals small variations in the importance weight of facilities. However, 

both farm 2 and abattoir 3 obtained the highest global weights for the eights scenarios of 

weights. This can be interpreted as the robustness of our implemented approach in finding the 

weight of facilities with respect to the resilience pillars. Finally, another sensitivity analysis is 

also conducted to investigate the effects of varying the weight of the three objectives (i.e., 

minimization of total cost and environmental impact and maximization of Value of resilience 

pillars) on the obtained ranking of Pareto solutions obtained by using TOPSIS. Six different 

combinations of weights are assigned to the three objectives in Eq. 50. Table 15 shows the 

obtained ranking of Pareto solutions for the six different combinations of weights. As shown 

in table 15, the sensitivity analysis reveals small variations in the ranking of Pareto solutions 

as solution#4 revealed the highest closeness coefficient value (ccp) in most runs. However, 

Legend:   

Farms Abattoirs Retailers 

   

   

London 

Yorkshire 

Warwickshire 

Leicestersh

ire 

Balham 

Birmingham 
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Pareto solutions are found to be more sensitive to the weight variation of the third objective 

(i.e., maximization of Value of resilience) compared to the weight of objectives one and two.  

Table 13. Sensitivity analysis of weights of resilience pillars related to importance weights of 

farms 

  Weights of resilience pillars    GW  

 R A L F f1 f2 f3 

1 0.9 0.025 0.025 0.05 0.332550725 0.425946170 0.241503106 

2 0.8 0.1 0.05 0.05 0.334550725 0.421755694 0.243693582 

3 0.7 0.1 0.1 0.1 0.333101449 0.421797101 0.245101449 

4 0.64 0.12 0.12 0.12 0.333055072 0.420442236 0.246502692 

5 0.025 0.9 0.025 0.05 0.355884058 0.365946170 0.278169772 

6 0.1 0.8 0.05 0.05 0.353217391 0.373755694 0.273026915 

7 0.025 0.05 0.9 0.025 0.333942029 0.458496894 0.207561077 

8 0.05 0.05 0.1 0.8 0.311478261 0.399138716 0.289383023 

R =Robustness; A=Agility; L=Leanness; F=Flexibility 

Table 14. Sensitivity analysis of weights of resilience pillars related to importance weights of 

abattoirs 

 Weights of resilience pillars                             GW   

 R A L F a1 a2 a3 a4 

1 0.9 0.025 0.025 0.05 0.314667659 0.183110119 0.320570437 0.181651786 

2 0.8 0.1 0.05 0.05 0.311969246 0.181919643 0.320649802 0.18546131 

3 0.7 0.1 0.1 0.1 0.333101449 0.304652778 0.186458333 0.322013889 

4 0.64 0.12 0.12 0.12 0.301297619 0.188035714 0.322130952 0.188535714 

5 0.025 0.9 0.025 0.05 0.295917659 0.172693452 0.301820437 0.229568452 

6 0.1 0.8 0.05 0.05 0.296969246 0.17358631 0.305649802 0.223794643 

7 0.025 0.05 0.9 0.025 0.278504464 0.169828869 0.380066964 0.171599702 

8 0.05 0.05 0.1 0.8 0.233849206 0.258928571 0.294960317 0.212261905 

R =Robustness; A=Agility; L=Leanness; F=Flexibility 
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Table 15. Sensitivity analysis of weights of three objectives related to Pareto solutions 

# Objectives 

weight 

ccp Rank # Objectives 

weight 

ccp Rank 

1 0.9, 0.05, 0.05   0.383498337 4 1 0.1, 0.8, 0.1 0.382651994 4 

2    0.383549981 3 2  0.382814842 3 

3    0.383658736 2 3  0.382965750 2 

4    0.383777936 1 4  0.383176167 1 

5    0.050661148 10 5  0.043579513 10 

6    0.052877254 9 6  0.047924671 9 

7    0.055115765 8 7  0.052177138 8 

8    0.055626872 7 8  0.056247318 7 

9    0.056940750 6 9  0.062548470 6 

10    0.058264057 5   10  0.065129849 5 

1 0.8, 0.1, 0.1 0.383118951   4 1 0.2, 0.2, 0.6 0.379645960 1 

2  0.383164227   3 2  0.379434666 4 

3  0.383257346   2 3  0.379479365 3 

4  0.383365578   1 4  0.379565732 2 

5  0.045800227 10 5  0.037423920 10 

6  0.047845093  9 6  0.039094165 9 

7  0.049917656  8 7  0.041095447 8 

8  0.050445687 7 8  0.042177641 7 

9  0.051732747 6 9  0.043964090 6 

10  0.052957815 5 10  0.044876362 5 

1 0.7, 0.15, 0.15 0.382741215 4 1 0.1, 0.1, 0.8 0.377883896 4 

2  0.382780252 3 2  0.378180533 2 

3  0.382857984 2 3  0.378009872 3 

4  0.382955601 1 4  0.378335576 1 

5  0.041369712 10 5  0.045576108 10 

6  0.043282209 9 6  0.047359025 9 

7  0.045232280 8 7  0.049610980 8 

8  0.045829942 7 8  0.050694083 7 

9  0.047170059 6 9  0.052453744 6 

10  0.048321026 5 10  0.053360436 5 

 

5.2 Managerial implications 

The results demonstrate the following implications from the managerial perspective: 

 The developed GR-FMOPM can be used as an aid for similar companies to improve 

their supply chain resilience and cope with the increasing environmental regulations. 
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 The procedures applied for weighting resilience pillars and facilities can also be used 

as a decision tool by decision makers in order to evaluate their suppliers with regards 

to resilience pillars. However, other pillars can be added. 

 The quality and safety of food are two major concerns for customers and decision 

makers in the food supply chain. In this context, suppliers with high product healthiness 

and freshness are preferred. Therefore, the results prove that decision makers place high 

value on the freshness of products delivered by suppliers of livestock and meat 

products.  

6. Conclusions 

Recently, the awareness of environmental impact as a concern in supply chain design has 

increased at a rapid pace. Supply chain risk management presents another concern for supply 

chain managers who have to cope with events due to unexpected incidents. Between these two 

concerns, a trade-off among economic, environmental and resilience concerns is required to 

obtain a green and resilient supply chain network design. 

This study contributes to the knowledge in developing an integrated fuzzy multi criteria 

decision-making and fuzzy multi-objective model for obtaining a green and resilient (G-

resilient) meat supply chain network. This study considered four pillars for supply chain 

resilience namely robustness, agility, leanness and flexibility (RALF). Firstly, the importance 

weight for each resilience pillar is determined via fuzzy AHP based on decision experts. 

Secondly, the importance weight for each farm and abattoir with respect to the four resilience 

pillars is determined via a fuzzy technique based on decision makers’ experts. Thirdly, a multi-

objective programming model is developed to obtain a cost-effective green and resilient meat 

supply chain network design. The first objective is formulated to minimize the total cost. The 

second objective is formulated to minimize the environmental impact in particular the CO2 

emissions. The third objective is formulated to maximize the value of supply chain resilience 

in terms of maximizing resilience pillars (Maximization of V-RALF). The obtained importance 

weights for resilience pillars, farms and abattoirs are integrated in the formulation of objective 

three (maximization of V-RALF). Fourthly, the multi-objective model is re-developed in terms 

of a fuzzy multi-objective model to handle the uncertainty in purchasing and transportation 

cost, purchasing quantities, demands, CO2 emissions throughout the transportation and 

capacity of farms and abattoirs. Fifthly, the ε-constraint method is employed to obtain trade-

offs among the three objectives via optimizing the developed fuzzy multi-objective model. 
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Finally, TOPSIS is employed to select the final trade-off that is used to design the meat supply 

chain network. The applicability of the developed green and resilient fuzzy multi-objective 

model (GR-FMOPM) is validated through a case study. The results demonstrate that the 

developed GR-FMOPM can be used as an aid for enterprises to obtain a supply chain network 

design with respect to economic, environmental and resilience aspects. Furthermore, it can be 

used by managers of farms and abattoirs to improve their resilience performance. 

A current work avenue includes an extension of the GR-FMOPM to be a SR-FMOPM 

(sustainable and resilient fuzzy multi-objective programming model) aiming to consider the 

social aspect with the presented economic, environmental and resilient aspects. This is because 

the security of food supply chains (resilience), environmental considerations such as pollution 

and food quality can all potentially impact upon the quality of life of members of the public 

and hence society as a whole. Future avenues of research can be an investigation of the impact 

of sustainability and resilience performance of facilities regarding the distribution plan of 

products quantity among facilities. Also, re-developing the GR-FMOPM as a multi-period GR-

FMOPM would be of benefit in further illustrating the integration of strategic, tactical and 

operational decisions considered in this paper. 

Appendix  

Appendix A 

Fuzzy AHP 

The Fuzzy AHP is applied as follows (Wang et al., 2008): 

1. Use a decision maker’s preference to build a fuzzy pair-wise comparison matrix: 

   

 

1, 1, 1,
~

,1 ,1 ,1

1,1,1               ...      , ,

...                      ...                ...

, ,    ...            (1,1,1)

c c c

c c c

a n m

A

a n m

 
 

  
 
  

  

2. Transform each fuzzy number in the matrix to a crisp number using: 

    

~ ( 2 )

4
crisp

a n m
A

  
  

(40) 

3. Use the approach in crisp AHP to determine the consistency index. 

4. Sum each row of the 
~

A  as follows: 
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5. Normalize the rows by the row sums as follows: 
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6. Determine the degree of possibility of 
~ ~
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(43) 

7. Determine the degree of possibility of  
~

iS  over all other fuzzy numbers as follows: 
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8. Construct the priority vector  1,...,
T

cW w w of the fuzzy comparison matrix as 

follows: 
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Appendix B 

Notations and their meaning used in mathematical formulation 

Set Definition 

     set of  potential facilities, indexed by e  

     set of potential facilities, indexed by f 

S
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     set of facilities, indexed by g  

Parameter Definition 

     unit purchasing cost of product ordered from facility e 

     unit purchasing cost of product ordered from facility f 

      unit transportation cost per mile from facility to facility  

     unit transportation cost per mile from facility to facility g  

     operating cost per hour required at facility e  

     operating cost per hour required at facility f   

     administration cost per unit from facility e 

     administration cost per unit from facility f 

      working rate per labourer per day at facility e 

      working rate per labourer per day at facility f 

     minimum required number of working hours for labourer at facility e 

     minimum required number of working hours for labourer at facility f 

    distance (miles) from facility e to facility f  

    
distance (miles) from facility f to facility g  

      truck transportation capacity (units) 
 

      supply level (units) at facility  

     supply level (units) at facility  

pf     demand (units) required per year by facility   

        demand (units) required per year by facility g  

CO2_e    CO2 emissions (grams CO2 per facility) for running facility e 

CO2_f    CO2 emissions (grams CO2 per facility) for running facility f 

CO2_ef    CO2 emission (grams CO2 per mile) for a lorry travelling from facility e to facility f  

CO2_fg   CO2 emission (grams CO2 per mile) for a lorry travelling from facility f to facility g 
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  weight of redundancy obtained from fuzzy AHP from the perspective of decision 

makers at facility e 

  weight of redundancy obtained from fuzzy AHP from the perspective of decision 

makers at facility f 

  weight of agility obtained from fuzzy AHP from the perspective of decision makers at 

facility e  

  weight of agility obtained from fuzzy AHP from the perspective of decision makers at 

facility f 

  weight of leanness obtained from fuzzy AHP from the perspective of decision makers 

at facility e  

  weight of leanness obtained from fuzzy AHP from the perspective of decision makers 

at facility f 

  weight of flexibility obtained from fuzzy AHP from the perspective of decision makers 

at facility e 

  weight of flexibility obtained from fuzzy AHP from the perspective of decision makers 

at facility f  

  weight of facility e with respect to redundancy obtained using Eq. 3 

  weight of facility f with respect to redundancy obtained using Eq. 3 

  weight of facility e with respect to agility obtained using Eq. 3 

  weight of facility f with respect to agility obtained using Eq. 3 

  weight of facility e with respect to leanness obtained using Eq. 3 

  weight of facility f with respect to leanness obtained using Eq. 3 

  weight of facility e with respect to flexibility obtained using Eq. 3 

  weight of facility f with respect to flexibility obtained using Eq. 3 

Decision variables 

    amount of product (units) transported from facility to facility f  

    amount of product (units) transported from facility to facility g  

     number of labourers required at facility e 
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    number of labourers required at facility f 

1           facility  is open 

0         
e

if e
y

otherwise


 


 

1           facility  is open 

0         
f

if f
y

otherwise


 


 

Appendix C 

TOPSIS 

Assume  opPR- PR o = 1, 2, ..., x (number of pareto solutions); p = 1, 2, ..., y (number of criteria)

refers the *x y  decision matrix, where PRop is the performance rating of alternative Pareto 

solutions with respect to criterion function values. Thus, the normalized selection formula is 

presented as follows: 

1

op

op x

kp

k

PR
N

PR





 

(46) 

The amount of decision information can be measured by the entropy value as: 

1

1
ln( )

ln
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o

E N PR
x 


   

(47) 

The degree of divergence Dp of the average intrinsic information under p = 1, 2, 3, 4 can be 

calculated as follows: 

1p pD E 
 

(48) 

The weight for each criterion function value is given by: 
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(49) 

In this study, all criterion are given an equivalent weight of 0.333. Thus, the criterion weighted 

normalized value is given by: 

fx
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op o opv w N  (50) 

Where, wo refers to a weight in alternatives which are normally assigned by the decision 

makers. 

The positive ideal solution (AT+) and the negative ideal solution (AT-) are taken to generate 

an overall performance matrix for each Pareto solution. These values can be expressed as 

below: 

 

1 2 1 2

1 2 1 2

(max( )  max( )  max( )) ( , ,..., )

(min( )  min( )   min( )) ( , ,..., )

o o oy y

o o oy y

AT v v v v v v

AT v v v v v v
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   

 

 
 

(51) 

A distance between alternative solutions can be measured by the n-dimensional Euclidean 

distance. Thus, the distance of each alternative from the positive and negative ideal 

solutions is given as:  
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(53) 

The closeness coefficient related to each of values of solutions to the value of the ideal solution 

is expressed as follows: 
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p p

D
cc p x
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(54) 

Where 
0pD 

 and
0pD 

, then, clearly,  1,0pcc   

The Pareto solution with the highest closeness coefficient (ccp) is selected as the final solution. 
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